Skip to main content

The Pelagic Ecosystem

  • Chapter
  • First Online:
Fungi in Coastal and Oceanic Marine Ecosystems

Abstract

More than 50 species of phytoplankton are infected and killed by “parasitoid protists” as well as fungi belonging to oomycetes and chytrids. Many fungal parasites are biotrophic, obligate parasites and may regulate phytoplankton populations. Commensalistic, mutualistic, and parasitic fungi, including yeasts, oomycetes, and thraustochytrids, are found in mesozooplankton, fish, and mammals. Fungi, particularly thraustochytrids, are active and abundant in the water column and display seasonal dynamics. Yeast diversity is high in coastal waters and decreases in the oceans. Several metagenomic studies have revealed novel fungal lineages in the pelagic, many of which may be picoeukaryotic. Thraustochytrid populations vary widely from <1 to 600 × 103 celles L−1 seawater. They achieve peak densities towards the end of productive seasons and are related to POC. Actively growing fungal hyphae are found in pelagic POM. Yeast populations may be related to phytoplankton blooms. Abundance of thraustochytrids, as well as filamentous fungi, displays a “boom or bust” phenomenon. Their biomass is often negligible but may occasionally rival that of bacteria. Thraustochytrids and aplanochytrids in the water column might serve as important sources of nutrition for zooplankton. Fungi may be highly active in shallow water benthic.

In one drop of water are found all the secrets of the Ocean

Kahlil Gibran

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alldredge K, Youngbluth M (1995) The significance of macroscopic aggregates (marine snow) as sites for heterotrophic bacterial production in the mesopelagic zone of the subtropical Atlantic. Deep Sea Res Part A 32:1445–1456

    Article  Google Scholar 

  • Bongiorni L (2012) Thraustochytrids, a neglected component of organic matter decomposition and food webs in marine sediments. In: Raghukumar C (ed) Biology of marine fungi. Springer, Berlin, Heidelberg, pp 1–14

    Chapter  Google Scholar 

  • Bongiorni L, Dini F (2002) Distribution and abundance of thraustochytrids in different Mediterranean coastal habitats. Aquat Microb Ecol 30:49–56

    Article  Google Scholar 

  • Bongiorni L, Mirto S, Pusceddu A, Danovaro R (2005a) Response of benthic protozoa and thraustochytrid protists to fish-farm impact in seagrass (Posidonia oceanica) and soft bottom sediments. Microb Ecol 50:268–276

    Article  CAS  PubMed  Google Scholar 

  • Burkill PH, Mantoura RFC, Owens NJP (1993) Biogeochemical cycling in the northwestern Indian Ocean: a brief overview. Deep-Sea Res 40:643–649

    Article  Google Scholar 

  • Cury JC, Araujo FV, Coelho-Souza SA, Peixoto RS, Oliveira JAL (2011) Microbial diversity of a Brazilian coastal region influenced by an upwelling system and anthropogenic activity. PLoS One 6:e16553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damare S, Raghukumar C (2008a) Fungi and macroaggregation in deep-sea sediments. Microb Ecol 56:168–177

    Article  PubMed  Google Scholar 

  • Damare V, Raghukumar S (2008b) Abundance of thraustochytrids and bacteria in the equatorial Indian Ocean, in relation to transparent exopolymeric particles (TEPs). FEMS Microbiol Ecol 25:40–49

    Article  Google Scholar 

  • Damare V, Raghukumar S (2010) Association of the stramenopilan protists, the aplanochytrids, with zooplankton of the equatorial Indian Ocean. Mar Ecol Prog Ser 399:53–68

    Article  CAS  Google Scholar 

  • Damare V, Raghukumar S (2012) Marine aggregates and transparent exopolymeric particles (TEPs) as substrates for the stramenopilan fungi, the thraustochytrids: roller table experimental approach. Kavaka 40:22–31

    Google Scholar 

  • Damare V, Damare S, Ramanujam P, Mina RM, Raghukumar S (2013) Preliminary studies on the association between zooplankton and the stramenopilan fungi, aplanochytrids. Microb Ecol 65:955–963

    Article  CAS  PubMed  Google Scholar 

  • Donachie SP, Zdanowski MK (1998) Potential digestive function of bacteria in krill Euphausia superba stomach. Aquat Microb Ecol 14:129–136

    Article  Google Scholar 

  • Ducklow H (2000) Bacterial production and biomass in the oceans. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley-Liss, New York, pp 85–120

    Google Scholar 

  • Fell JW (2012) Yeasts in marine environments. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. Walter de Gruyter GmbH & Co KG, Berlin/Boston, pp 91–102

    Google Scholar 

  • Fell JW, Statzell AC, Hunter IL, Hunter IL, Phaff HJ (1969) Leucosporidium gen n., the heterobasidiomycetous stage of several yeasts of the genus Candida. Antonie Van Leeuwenhoek 35:433–462

    Article  CAS  PubMed  Google Scholar 

  • Fize A, Manier JF, Maurand J (1970) Sur un cas d’infestation du Copepode Eurytemora velox (Lillj) par une levure du genre Metschnikowia (Kamienski). Ann Parasitol Hum Comp 45:357–363

    CAS  PubMed  Google Scholar 

  • Gadanho M, Almeida JMGCF, Sampaio JP (2003) Assessment of yeast diversity in a marine environment in the south of Portugal by microsatellite-primed PCR. Antonie Van Leeuwenhoek 84:217–227

    Article  CAS  PubMed  Google Scholar 

  • Gaertner A (1968) Eine Methode des quantitativen Nachweises niederer mit Pollen köderbarer Pilze im Meerwasser und im Sediment. Veröff Inst Meeresforsch Bremerh Suppl 3:75–92

    Google Scholar 

  • Gaertner A (1979) Some fungal parasites found in the diatom populations of the Rosfjord area (South Norway) during March 1979. Veröff Inst Meeresforsch Bremerh 18:29–33

    Google Scholar 

  • Gaertner A, Raghukumar S (1980) Ecology of the thraustochytrids (lower marine fungi) in the Fladen Ground and other parts of the North Sea. I “Meteor” Forschungsergebnisse, Reihe A, No 22:165–185

    Google Scholar 

  • Gao Z, Li B, Zheng C, Wang G (2008) Molecular detection of fungal communities in the Hawaiian marine sponges Suberites zeteki and Mycale armata. Appl Environ Microbiol 74:6091–6101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Z, Johnson ZI, Wang G (2010) Molecular characterization of the spatial diversity and novel lineages of mycoplankton in Hawaiian coastal waters. ISME J 4:111–120

    Article  PubMed  Google Scholar 

  • Gleason FH, Kagami M, Lefevre E, Sime-Ngando T (2008) The ecology of chytrids in aquatic ecosystems: roles in food web dynamics. Fungal Biol Rev 22:17–25

    Article  Google Scholar 

  • Gleason FH, Frithjof CK, Glöckling SL (2012a) Zoosporic true fungi. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. Walter de Gruyter, Berlin/Boston, pp 101–114

    Google Scholar 

  • Gotelli D (1974) The morphology of Lagenidium callinectes I vegetative development. Mycologia 66:639–647

    Article  Google Scholar 

  • Gutiérrez M, Pantoja S, Quiňones R, González R (2010) First record of filamentous fungi in the coastal upwelling ecosystem off central Chile. Gayana 74:66–73

    Google Scholar 

  • Gutiérrez MH, Pantoja S, Tejos E, Quiňones RÃ (2011) The role of fungi in processing marine organic matter in the upwelling ecosystem off Chile. Mar Biol 158:205–219

    Article  Google Scholar 

  • Gutiérrez MH, Jara AM, Pantoja S (2016) Fungal parasites infect marine diatoms in the upwelling ecosystem of the Humboldt current system off central Chile. Environ Microbiol 18:1646–1653

    Article  PubMed  Google Scholar 

  • Hanic LA, Sekimoto S, Bates SS (2009) Oomycete and chytrid infections of the marine diatom Pseudonitzschia pungens (Bacillariophyceae) from Prince Edward Island, Canada. Botany 87:1096–1105

    Article  CAS  Google Scholar 

  • Hasle GR, Lange CB, Syvertsen EE (1996) A review of Pseudonitzschia, with special reference to the Skagerrak, North Atlantic, and adjacent waters. Helgoländer Meeresun 50:131–175

    Article  Google Scholar 

  • Huckabone SE, Gulland FMD, Johnson SM, Colegrove KM, Dodd EM et al (2015) Coccidiomycosis and other systemic mycoses of marine mammals stranding along the Central California, USA Coast: 1998–2012. J Wildl Dis 51:295–308

    Article  PubMed  Google Scholar 

  • Jones EBG, Fell JW (2012) Basidiomycota. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. Walter de Gruyter GmbH & Co KG, Berlin/Boston, pp 49–63

    Chapter  Google Scholar 

  • Kagami M, de Bruin A, Ibelings BW, Van Donk E (2007) Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578:113–129

    Article  Google Scholar 

  • Karl DM (1999) A sea of change: biogeochemical variability in the North Pacific Subtropical Gyre. Ecosystems 2:181–214

    Article  CAS  Google Scholar 

  • Kimura H, Fukura T, Naganuma T (1999) Biomass of thraustochytrid protoctists in coastal water. Mar Ecol Prog Ser 189:27–33

    Article  CAS  Google Scholar 

  • Kimura H, Sato M, Sugiyama C, Naganuma T (2001) Coupling of thraustochytrids and POM, and of bacterio- and phytoplankton in a semi-enclosed coastal area: implication for different substrate preference by the planktonic decomposers. Aquat Microb Ecol 25:293–300

    Article  Google Scholar 

  • Kiørboe T (2001) Formation and fate of marine snow: small-scale processes with large-scale implications. Sci Mar 65:57–71

    Article  Google Scholar 

  • Kühn S, Medlin L, Eller G (2004) Phylogenetic position of the parasitoid nanoflagellate Pirsonia inferred from nuclear-encoded small subunit ribosomal DNA and a description of Pseudopirsonia n. gen. and Pseudopirsonia mucosa (Drebes) comb. nov. Protist 155:143–156

    Article  PubMed  Google Scholar 

  • Kutty SN, Philip R (2008) Marine yeasts-a review. Yeast 25:465–483

    Article  CAS  PubMed  Google Scholar 

  • Lalli CM, Parsons TR (1997) Biological oceanography: an introduction, 2nd edn. Elsevier Butterworth-Heinemann, Oxford

    Google Scholar 

  • Leaño EM, Damare V (2012) Labyrinthulomycota. In: Jones EBG, Pang K-L (eds) Marine fungi and fungal-like organisms. de Gruyter, Berlin, Boston, pp 245–249

    Google Scholar 

  • Li W, Zhang T, Tang X, Wang B (2010) Oomycetes and fungi: important parasites on marine algae. Acta Oceanol Sin 29:74–81

    Article  CAS  Google Scholar 

  • Li Q, Wang X, Liu X, Jiao N, Wang G (2013) Abundance and novel lineages of thraustochytrids in Hawaiian waters. Microb Ecol 66:823–830

    Article  PubMed  Google Scholar 

  • Madhupratap M, Prasanna Kumar S, Bhattahiri PMA, Dileep Kumar M, Raghukumar S, Nair KKC, Ramaiah N (1996) Mechanisms of the biololgical response to winter cooling in the northeastern Arabian Sea. Nature 384:549–552

    Article  CAS  Google Scholar 

  • Massana R, Pedrós-Alió C (2008) Unveiling new microbial eukaryotes in the surface ocean. Curr Opin Microbiol 11:213–218

    Article  PubMed  Google Scholar 

  • Massana R, Castresana J, Balague V, Guillou L, Romari K, Groisillier A, Valentin K, Pedrós-Alió C (2004a) Phylogenetic and ecological analysis of novel marine stramenopiles. Appl Environ Microbiol 70:3528–3534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massana R, Balague V, Guillou L, Pedros-Alio C (2004b) Picoeukaryotic diversity in an oligotrophic coastal site studied by molecular and culturing approaches. FEMS Microbiol Ecol 50:231–243

    Article  CAS  PubMed  Google Scholar 

  • Meyers SP, Ahearn DG, Grunkel W, Roth FJ Jr (1967) Yeasts from the North Sea. Mar Biol 1:118–123

    Article  Google Scholar 

  • Morrison JM, Codispoti LA, Gaurin S, Jones B, Manghnani V, Zheng Z (1998) Seasonal variation of hydrographic and nutrient fields during the US JGOFS Arabian Sea process study. Deep-Sea Res II 45:2053–2101

    Article  CAS  Google Scholar 

  • Muehlstein LK, Porter D, Short FT (1988) Labyrinthula sp, a marine slime mold producing the symptoms of wasting disease in eelgrass, Zostera marina. Mar Biol 99:465–472

    Article  Google Scholar 

  • Munn CB (2011) Marine microbiology: ecology and applications, 2nd edn. Garland Science, Taylor & Francis Group, New York & London

    Google Scholar 

  • Naganuma T, Takasugi H, Kimura H (1998) Abundance of thraustochytrids in coastal plankton. Mar Ecol Prog Ser 162:105–110

    Article  Google Scholar 

  • Naganuma T, Kimura H, Karimoto R, Pimenov NV (2006) Abundance of planktonic thraustochytrids and bacteria and the concentration of particulate ATP in the Greenland and Norwegian Seas. Polar Biosci 20:37–45

    CAS  Google Scholar 

  • Nakagaki K, Hata K, Iwata E, Takeo K (2000) Malassezia pachydermatis isolated from a South American sea lion (Otaria byronia) with dermatitis. J Vet Med Sci 62:901–903

    Article  CAS  PubMed  Google Scholar 

  • Nakai R, Nakamura K, Jadoon WA, Kashihara K, Naganuma T (2013) Genus-specific quantitative PCR of thraustochytrid protists. Mar Ecol Prog Ser 486:1–12

    Article  CAS  Google Scholar 

  • Newell SY (1984) Bacterial and fungal productivity in the marine environment: a contrastive overview. Colloque Int Cent Natn Rech Scient (Marseille) 331:133–139

    Google Scholar 

  • Newell SY (1996a) Established and potential impacts of eukaryotic mycelial decomposers in marine/terrestrial ecotones. J Exp Mar Biol Ecol 200:187–206

    Article  Google Scholar 

  • Perhar G, Arhonditsis GB, Brett MT (2013) Modelling the role of highly unsaturated fatty acids in planktonic food web processes: sensitivity analysis and examination of contemporary hypotheses. Eco Inform 13:77–98

    Article  Google Scholar 

  • Raghukumar C (1980a) An ultrastructural study of the marine diatom Licmophora hyalina and its parasite Ectrogella perforans. I. Infection of host cells. Can J Bot 58:1280–1290

    Article  Google Scholar 

  • Raghukumar C (1980b) An ultrastructural study of the marine diatom Licmophora hyalina and its parasite Ectrogella perforans. II. Development of the fungus in the host. Can J Bot 58:2557–2574

    Article  Google Scholar 

  • Raghukumar S (1985) Enumeration of the thraustochytrids (heterotrophic microorganisms) from the Arabian Sea. Mahasagar, Bull Natl Inst Oceanogr 18:457–465

    Google Scholar 

  • Raghukumar S (1990) Speculations on niches occupied by fungi in the sea with relation to bacteria. Proc Indian Acad Sci Earth Planet Sci 100:129–138

    Google Scholar 

  • Raghukumar S (2002) Ecology of the marine protists, the Labyrinthulomycetes (Thraustochytrids and Labyrinthulids). Eur J Protistol 38:127–136

    Article  Google Scholar 

  • Raghukumar S (2007) Marine eukaryote diversity, with particular reference to fungi: lessons learnt from prokaryotes. Indian J Mar Sci 35:388–398

    Google Scholar 

  • Raghukumar C (2008) Marine fungal biotechnology: an ecological perspective. Fungal Divers 31:19–35

    Google Scholar 

  • Raghukumar S (2009) Thraustochytrid marine protists: production of PUFAs and other emerging technologies. Mar Biotechnol 10:631–640

    Article  Google Scholar 

  • Raghukumar S, Balasubramanian R (1991) Occurrence of thraustochytrid fungi in corals and coral mucus Indian. J Mar Sci 20:176–181

    Google Scholar 

  • Raghukumar S, Damare V (2011) Increasing evidence for the important role of Labyrinthulomycetes in marine ecosystems. Bot Mar 54:3–11

    Article  Google Scholar 

  • Raghukumar S, Gaertner A (1980) Ecology of the thraustochytrids (lower marine fungi) in the Fladen Ground and other parts of the North Sea II. Veröff Inst Meeresforsch Bremerh 18:289–308

    Google Scholar 

  • Raghukumar S, Raghukumar C (1999) Thraustochytrid fungoid protists in faecal pellets of the tunicate Pegea confoederata, their tolerance to deep-sea conditions and implication in degradation processes. Mar Ecol Prog Ser 190:133–140

    Article  Google Scholar 

  • Raghukumar S, Schaumann K (1993) An epifluorescence microscopy method for direct detection and enumeration of the fungi-like marine protists, the thraustochytrids. Limnol Oceanogr 38:182–187

    Article  Google Scholar 

  • Raghukumar S, Ramaiah N, Raghukumar C (2001) Dynamics of thraustochytrid protists in the water column of the Arabian Sea. Aquat Microb Ecol 24:175–186

    Article  Google Scholar 

  • Richards TA, Jones MDM, Leonard G, Bass D (2012) Marine fungi: their ecology and molecular diversity. Annu Rev Mar Sci 4:495–522

    Article  Google Scholar 

  • Roth FJ, Orpurt PA, Ahearn DG (1964) Occurrence and distribution of fungi in a subtropical marine environment. Can J Bot 42:375–383

    Article  Google Scholar 

  • Santangelo G, Bongiorni L, Pignataro L (2000) Abundance of thraustochytrids and ciliated protozoans in a Mediterranean sandy shore determined by an improved, direct method. Aquat Microb Ecol 23:55–61

    Article  Google Scholar 

  • Schnepf E, Drebes G (1977) Über die Entwicklung des marinen parasitischen Phycomyceten Lagenisma coscinodisci (Lagenidiales). Helgoländer Meeresun 29:291–301

    Article  Google Scholar 

  • Schnepf E, Deichgräber G, Drebes G (1978a) Development and ultrastructure of the marine parasitic oomycete Lagenisma coscinodisci Drebes (Lagenidiales) Thallus, zoosporangium, mitosis and meiosis. Arch Microbiol 116:121–132

    Article  Google Scholar 

  • Schnepf E, Deichgräber G, Drebes G (1978b) Development and ultrastructure of the marine, parasitic oomcete, Lagenisma coscinodisci (Lagenidiales) Sexual reproduction. Can J Bot 56:1315–1325

    Article  Google Scholar 

  • Scholz B, Guillouc L, Marano AV, Neuhauser S, Sullivan B, Karsten U, Küpper C, Gleason FH (2015) Zoosporic parasites infecting marine diatoms: A black box that needs to be opened. Fungal Ecol 19:59–76

    Article  Google Scholar 

  • Schweikert M (2015) Biology of parasitic heterotrophic nanoflagellates: parasitoids of diatoms. In: Ohtsuka S, Suzaki T, Horiguchi T, Suzuki N, Not F (eds) Marine Protists. Springer, Japan, pp 519–530

    Chapter  Google Scholar 

  • Seki H, Fulton J (1969) Infection of marine copepods by Metschnikowia sp. Mycopathol Mycol Appl 38:61–70

    Article  CAS  Google Scholar 

  • Shetye SR, Gouveia AD, Shenoi SSC (1994) Circulation and water masses of the Arabian Sea. Proc Indian Acad Sci Earth Planet Sci 103:107–123

    Google Scholar 

  • Simon M, Alldredge AL, Azam F (1990) Bacterial carbon dynamics on marine snow. Mar Ecol Prog Ser 65:205–211

    Article  CAS  Google Scholar 

  • Smith DC, Simon M, Alldredge AL, Azam F (1992) Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359:139–142

    Article  CAS  Google Scholar 

  • Sparrow FK Jr (1969) Zoosporic marine fungi from the Pacific Northwest (USA). Arch Microbiol 66:129–146

    Google Scholar 

  • Taylor JD, Cunliffe M (2016) Multi-year assessment of coastal planktonic fungi reveals environmental drivers of diversity and abundance. ISME J 10:2118–2128

    Article  CAS  PubMed  Google Scholar 

  • Tillmann U, Hesse KJ, Tillmann A (1999) Large scale parasitic infection of diatoms in the Northfrisian Wadden Sea. J Sea Res 42:255–261

    Article  Google Scholar 

  • Van Uden N, Branco RC (1963) Distribution and population densities of yeast species in Pacific water, air, animals, and kelp off Southern California. Limnol Oceanogr 8:323–329

    Article  Google Scholar 

  • Walsh J (1983) Death in the sea: enigmatic phytoplankton losses. Prog Oceanogr 12:1–86

    Article  Google Scholar 

  • Wang G, Johnson ZI (2009) Impact of parasitic fungi on the diversity and and functional ecology of marine phytoplankton. In: Columbus F (ed) Marine phytoplankton. Nova Science, Hauppauge, NY, pp 215–222

    Google Scholar 

  • Wang G, Wang X, Liu X, Li Q (2012) Diversity and biogeochemical function of planktonic fungi in the ocean. In: Raghukumar C (ed) Biology of marine fungi. Springer, Berlin, Heidelberg, pp 71–88

    Chapter  Google Scholar 

  • Wang X, Singh P, Gao Z, Zhang X, Johnson ZI (2014) Distribution and diversity of planktonic fungi in the West Pacific Warm Pool. PLoS One 9(7):e101523

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Raghukumar, S. (2017). The Pelagic Ecosystem. In: Fungi in Coastal and Oceanic Marine Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-54304-8_11

Download citation

Publish with us

Policies and ethics