Skip to main content

Malignant Pleural Mesothelioma: History, Controversy, and Future of a Man-Made Epidemic

  • Chapter
  • First Online:
Asbestos and Mesothelioma

Part of the book series: Current Cancer Research ((CUCR))

Abstract

Asbestos (Greek, inextinguishable) is the term of a family of naturally occurring minerals that have been used in small scale since ancient times. Industrialization demanded increased mining and refining in the twentieth century, and in 1960, Wagner, Sleggs, and Marchand from South Africa linked asbestos to mesothelioma, paving the way to the current knowledge about the epidemiology, etiology, and biology of malignant pleural mesothelioma. Pleural mesothelioma is one of the most lethal cancers with increasing incidence worldwide. This review provides some snapshots of the history of mesothelioma discovery and the body of epidemiological and biological research including some of the controversies and unresolved questions. Molecular high-throughput profiling is currently unravelling novel biomarkers for earlier diagnosis and novel treatment targets. Current breakthrough discoveries of clinically promising non-invasive biomarkers such as mesothelin, the 13-protein signature in serum, fibulin-3, circulating microRNAs and the recently discovered BAP1 cancer syndrome are highlighted. The asbestos history is a lesson not be repeated, but here we also review recent in vivo and in vitro studies showing that man-made carbon nanofibers could pose a similar danger to human health. This should be taken seriously by regulatory bodies to ensure thorough testing of novel materials before release into society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AGGF1:

Angiogenic factor with G patch and FHA domains 1 gene

BAP1:

Breast cancer associated protein 1

BKV:

Human polyoma virus named by the first patient’s initials

BMI:

Body mass index

BRCA2:

Breast cancer 2, early onset gene

CHEK1:

Checkpoint kinase 1 gene

Circadian rhythm genes:

Genes expressed in cycles of 24 hours

CNT:

Carbon nano-tubes, man-made fibers

EGFR:

Epidermal growth factor receptor

GO:

Gene ontology, grouping of genes in functional entities

GSTM1:

Glutathione S-transferase M1 gene

IARC:

International Agency for Research on Cancer

JCV:

Human polyoma virus named by the first patient’s initials

KEGG PATHWAYS:

Computerized system of identifying genes relation to signaling, metabolic and cancer pathways

KEGG:

Kyoto Encyclopedia of Genes and Genomes, a large digital database

MWCNT:

Multi-wall carbon nanotube

NQO1:

NAD(P)H dehydrogenase, quinone 1, gene and protein

OR:

Odds ratio (statistical term)

PCA:

Principal Component Analysis (unsupervised statistical method)

PET-CT:

Positron emission computed tomography

PLS:

Partial Least Squares regression model (statistical method)

RAD21:

RAD21 homolog (S.pombe), involved in double-strand break repair

SMRP:

Soluble mesothelin-related protein

SV40:

Simian (monkey) vacuolating virus 40

SWCNT:

Single-wall carbon nanotube

TYMS:

Thymidylate synthase gene

VP1:

Viral capsid protein of polyoma virus

WHO:

World Health Organization

References

  • Armstrong BK, Musk AW, Baker JE et al (1984) Epidemiology of malignant mesothelioma in Western Australia. Med J Aust 141:86–88

    CAS  PubMed  Google Scholar 

  • Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assoian RK, Yung Y (2008) A reciprocal relationship between Rb and Skp2: implications for restriction point control, signal transduction to the cell cycle and cancer. Cell Cycle 7:24–27

    Article  CAS  PubMed  Google Scholar 

  • Azim HA, Gaafar R, Abdel Salam I et al (2008) Soluble mesothelin-related protein in malignant pleural mesothelioma. J Egypt Natl Canc Inst 20:224–229

    PubMed  Google Scholar 

  • Baris YI, Sahin AA, Ozesmi M et al (1978) An outbreak of pleural mesothelioma and chronic fibrosing pleurisy in the village of Karain/Urgup in Anatolia. Thorax 33:181–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett JC, Lamb PW, Wiseman RW (1989) Multiple mechanisms for the carcinogenic effects of asbestos and other mineral fibers. Environ Health Perspect 81:81–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beyer HL, Geschwindt RD, Glover CL et al (2007) MESOMARK: a potential test for malignant pleural mesothelioma. Clin Chem 53:666–672

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya K, Andón FT, El-Sayed R et al (2013) Mechanisms of carbon nanotube-induced toxicity: focus on pulmonary inflammation. Adv Drug Deliv Rev 65:2087–2097

    Article  CAS  PubMed  Google Scholar 

  • Bianchi C, Bianchi T (2007) Malignant mesothelioma: global incidence and relationship with asbestos. Ind Health 45:379–387

    Article  PubMed  Google Scholar 

  • Bignon J, Jaurand MC (1983) Biological in vitro and in vivo responses of chrysotile versus amphiboles. Environ Health Perspect 51:73–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolen JW, Hammar SP, McNutt MA (1986) Reactive and neoplastic serosal tissue. A light-microscopic, ultrastructural, and immunocytochemical study. Am J Surg Pathol 10:34–47

    Article  CAS  PubMed  Google Scholar 

  • Bonner JC, Silva RM, Taylor AJ et al (2013) Interlaboratory evaluation of rodent pulmonary responses to engineered nanomaterials: the NIEHS Nano GO Consortium. Environ Health Perspect 121:676–678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borczuk AC, Cappellini GC, Kim HK et al (2007) Molecular profiling of malignant peritoneal mesothelioma identifies the ubiquitin-proteasome pathway as a therapeutic target in poor prognosis tumors. Oncogene 26:610–617

    Article  CAS  PubMed  Google Scholar 

  • Botas C, Poulain F, Akiyama J et al (1998) Altered surfactant homeostasis and alveolar type II cell morphology in mice lacking Surfactant protein D. Proc Natl Acad Sci U S A 95:11869–11874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bott M, Brevet M, Taylor BS et al (2011) The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat Genet 43:668–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boulanger G, Andujar P, Pairon JC et al (2014) Quantification of short and long asbestos fibers to assess asbestos exposure: a review of fiber size toxicity. Environ Health 13:59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boutin C, Schlesser M, Frenay C et al (1998) Malignant pleural mesothelioma. Eur Respir J 12:972–981

    Article  CAS  PubMed  Google Scholar 

  • Bridda A, Padoan I, Mencarelli R et al (2007) Peritoneal mesothelioma: a review. Med Gen Med 9:32

    Google Scholar 

  • Bueno R, De Rienzo A, Dong L et al (2010) Second generation sequencing of the mesothelioma tumor genome. PLoS One 5:e10612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:MR17–MR71

    Article  PubMed  Google Scholar 

  • Carbone M, Yang H, Pass HI et al (2013) BAP1 and cancer. Nat Rev Cancer 13:153–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castranova V, Schulte PA, Zumwalde RD (2013) Occupational nanosafety considerations for carbon nanotubes and carbon nanofibers. Acc Chem Res 46:642–649

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Nie H, Gao X et al (2014) Epithelial-mesenchymal transition involved in pulmonary fibrosis induced by multi-walled carbon nanotubes via TGF-beta/Smad signaling pathway. Toxicol Lett 226:150–162

    Article  CAS  PubMed  Google Scholar 

  • Christensen BC, Houseman EA, Godleski JJ et al (2009) Epigenetic profiles distinguish pleural mesothelioma from normal pleura and predict lung asbestos burden and clinical outcome. Cancer Res 69:227–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Creaney J, Dick IM, Robinson BW et al (2014) Comparison of fibulin-3 and mesothelin as markers in malignant mesothelioma. Thorax 69:895–902

    Article  PubMed  PubMed Central  Google Scholar 

  • De Violder MF, Tawfick SH, Baughman RH et al (2013) Carbon nanotubes:present and future commercial applications. Science 339:535–539

    Article  CAS  Google Scholar 

  • Dilek Y, Newcomb S (2003) Geological Society of America Meeting. Ophiolite concept and the evolution of geological thought, vol XII. Geological Society of America, Boulder, CO, 504 pp

    Google Scholar 

  • Dobra K, Nurminen M, Hjerpe A (2003) Growth factors regulate the expression profile of their syndecan co-receptors and the differentiation of mesothelioma cells. Anticancer Res 23:2435–2444

    CAS  PubMed  Google Scholar 

  • Donaldson K, Murphy F, Schinwald A et al (2011) Identifying the pulmonary hazard of high aspect ratio nanoparticles to enable their safety-by-design. Nanomedicine 6:143–156

    Article  CAS  PubMed  Google Scholar 

  • Dvash R, Khatchatouriants A, Solmesky LJ et al (2013) Structural and biological performance of phospholipid-hyalutonan functionalized single-walled carbon nanotubes. J Control Dis 170:295–305

    CAS  Google Scholar 

  • Elgrabli D, Floriani M, Abella-Gallart S et al (2008) Biodistribution and clearance of instilled carbon nanotubes in rat lung. Part Fibre Toxicol 5:20. Rapp GR (2009) Archaeomineralogy, vol. XV. Springer, Berlin/London, 348 pp

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • EU (1999) Commission Directive 1999/77/EC of 26 July 1999. Official Journal of the European Communities [L207/18L207/20]

    Google Scholar 

  • Fennell DA (2011) Genetics and molecular biology of mesothelioma. Recent Results Cancer Res 189:149–167

    Article  CAS  PubMed  Google Scholar 

  • Ferrante D, Bertolotti M, Todesco A et al (2007) Cancer mortality and incidence of mesothelioma in a cohort of wives of asbestos workers in Casale Monferrato, Italy. Environ Health Perspect 115:1401–1405

    PubMed  PubMed Central  Google Scholar 

  • Gaafar RM, Eldin NH (2005) Epidemic of mesothelioma in Egypt. Lung Cancer 49(Suppl 1):S17–S20

    Article  PubMed  Google Scholar 

  • Gao Z, Hiroshima K, Wu X et al (2015) Asbestos textile production linked to malignant peritoneal and pleural mesothelioma in women: analysis of 28 cases in Southeast China. Am J Ind Med 58:1040–1049

    Article  PubMed  Google Scholar 

  • Gee GV, Koestler DC, Christensen BC et al (2010) Downregulated microRNAs in the differential diagnosis of malignant pleural mesothelioma. Int J Cancer 127:2859–2869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gennaro V, Ceppi M, Boffetta P et al (1994) Pleural mesothelioma and asbestos exposure among Italian oil refinery workers. Scand J Work Environ Health 20:213–215

    Article  CAS  PubMed  Google Scholar 

  • Giacinti C, Giordano A (2006) RB and cell cycle progression. Oncogene 25:5220–5227

    Article  CAS  PubMed  Google Scholar 

  • Goodman JE, Nascarella MA, Valberg PA (2009) Ionizing radiation: a risk factor for mesothelioma. Cancer Causes Control 20:1237–1254

    Article  PubMed  Google Scholar 

  • Gordon GJ, Rockwell GN, Godfrey PA et al (2005) Validation of genomics-based prognostic tests in malignant pleural mesothelioma. Clin Cancer Res 11:4406–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grigoriu BD, Scherpereel A, Devos P et al (2007) Utility of osteopontin and serum mesothelin in malignant pleural mesothelioma diagnosis and prognosis assessment. Clin Cancer Res 13:2928–2935

    Article  CAS  PubMed  Google Scholar 

  • Gubbels JA, Belisle J, Onda M et al (2006) Mesothelin-MUC16 binding is a high affinity, N-glycan dependent interaction that facilitates peritoneal metastasis of ovarian tumors. Mol Cancer 5:50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo NL, Murphy F, Schinwald A et al (2012) Multiwalled carbon nanotube-induced gene signatures in the mouse lung: potential predictive value for human lung cancer risk and prognosis. J Toxicol Environ Health A 75:1129–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto K, Araki K, Osaki M et al (2004) MCM2 and Ki-67 expression in human lung adenocarcinoma: prognostic implications. Pathobiology 71:193–200

    Article  CAS  PubMed  Google Scholar 

  • Hassan R, Ho M (2008) Mesothelin targeted cancer immunotherapy. Eur J Cancer 44:46–53

    Article  CAS  PubMed  Google Scholar 

  • Herrick SE, Mutsaers SE (2004) Mesothelial progenitor cells and their potential in tissue engineering. Int J Biochem Cell Biol 36:621–642

    Article  CAS  PubMed  Google Scholar 

  • Hillegass JM, Shukla A, Lathrop SA et al (2010) Inflammation precedes the development of human malignant mesotheliomas in a SCID mouse xenograft model. Ann N Y Acad Sci 1203:7–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillegass JM, Miller JM, MacPherson MB et al (2013) Asbestos and erionite prime and activate the NLRP3 inflammasome that stimulates autocrine cytokine release in human mesothelial cells. Part Fibre Toxicol 10:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinescu ME, Gherghiceanu M, Suciu L et al (2011) Telocytes in pleura: two- and three-dimensional imaging by transmission electron microscopy. Cell Tissue Res 343:389–397

    Article  PubMed  Google Scholar 

  • Hirano S, Kanno S, Furuyama A (2011) Macrophage receptor with collagenous structure (MARCO) is a dynamic adhesive molecule that enhances uptake of carbon nanotubes by CHO-KI cells. Toxicol Appl Pharmacol 259:96–103

    Article  PubMed  CAS  Google Scholar 

  • Hoang CD, D’Cunha J, Kratzke MG et al (2004) Gene expression profiling identifies matriptase overexpression in malignant mesothelioma. Chest 125:1843–1852

    Article  CAS  PubMed  Google Scholar 

  • Hodgson DC, Gilbert ES, Dores GM et al (2007) Long-term solid cancer risk among 5-year survivors of Hodgkin’s lymphoma. J Clin Oncol 25:1489–1497

    Article  PubMed  Google Scholar 

  • Hosako M, Muto T, Nakamura Y et al (2012) Proteomic study of malignant pleural mesothelioma by laser microdissection and two- dimensional difference gel electrophoresis identified cathepsin D as a novel candidate for a differential diagnosis biomarker. J Proteome 75:833–844

    Article  CAS  Google Scholar 

  • Huang H, Regan KM, Wang F et al (2005) Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc Natl Acad Sci U S A 102:1649–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1 nm diameter. Nature 363:603–605

    Article  CAS  Google Scholar 

  • International Agency for Research on Cancer (2009) Asbestos (chrysolite, amosite, crocidolite, tremolite, actinolite, and anthophyllite). In: IARC Monographs. Arsenic, Metals, fibres and dusts. International Agency for Research on Cancer, Lyon, pp 147–167

    Google Scholar 

  • Jackson DE (2003) The unfolding tale of PECAM-1. FEBS Lett 540:7–14

    Article  CAS  PubMed  Google Scholar 

  • Jacquemont C, Taniguchi T (2007) Proteasome function is required for DNA damage response and fanconi anemia pathway activation. Cancer Res 67:7395–7405

    Article  CAS  PubMed  Google Scholar 

  • Jagadeeswaran R, Ma PC, Seiwert TY et al (2006) Functional analysis of c-Met/hepatocyte growth factor pathway in malignant pleural mesothelioma. Cancer Res 66:352–361

    Article  CAS  PubMed  Google Scholar 

  • Jaurand MC, Fleury-Feith J (2005) Pathogenesis of malignant pleural mesothelioma. Respirology 10:2–8

    Article  PubMed  Google Scholar 

  • Jaurand MC, Kheuang L, Magne L et al (1986) Chromosomal changes induced by chrysotile fibres or benzo-3,4-pyrene in rat pleural mesothelial cells. Mutat Res 169:141–148

    Article  CAS  PubMed  Google Scholar 

  • Jean D, Daubriac J, Le Pimpec-Barthes F et al (2011) Molecular changes in mesothelioma with an impact on prognosis and treatment. Arch Pathol Lab Med 136:277–293

    Article  CAS  Google Scholar 

  • Joshi TK, Bhuva UB, Katoch P (2006) Asbestos ban in India: challenges ahead. Ann N Y Acad Sci 1076:292–308

    Article  PubMed  Google Scholar 

  • Jung BH, Beck SE, Cabral J et al (2007) Activin type 2 receptor restoration in MSI-H colon cancer suppresses growth and enhances migration withactivin. Gastroenterology 132:633–644

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Araki M, Goto S et al (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484

    Article  CAS  PubMed  Google Scholar 

  • Kato T, Totsuka Y, Ishino K et al (2013) Genotoxicity of multi-walled carbon nanotubes in both in vitro and in vivo assay systems. Nanotoxicology 7:452–461

    Article  CAS  PubMed  Google Scholar 

  • Kauffmann A, Rosselli F, Lazar V et al (2008) High expression of DNA repair pathways is associated with metastasis in melanoma patients. Oncogene 27:565–573

    Article  CAS  PubMed  Google Scholar 

  • Kennedy RD, D’Andrea AD (2006) DNA repair pathways in clinical practice: lessons from pediatric cancer susceptibility syndromes. J Clin Oncol 24:3799–3808

    Article  CAS  PubMed  Google Scholar 

  • Kettunen E, Nissén AM, Ollikainen T et al (2001) Gene expression profiling of malignant mesothelioma cell lines: cDNA array study. Int J Cancer 91:492–496

    Article  CAS  PubMed  Google Scholar 

  • Kettunen E, Nicholson AG, Nagy B et al (2005) L1CAM, INP10, P-cadherin, tPA and ITGB4 over-expression in malignant pleural mesotheliomas revealed by combined use of cDNA and tissue microarray. Carcinogenesis 26:17–25

    Article  CAS  PubMed  Google Scholar 

  • Kim JC, Badano JL, Sibold S et al (2004) The Bardet-Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression. Nat Genet 36:462–470

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Song KS, Yu IJ (2015) Evaluation of in vitro and in vivo genotoxicity of single-walled carbon nanotubes. Toxicol Ind Health 31:747–757

    Article  CAS  PubMed  Google Scholar 

  • Kirschner MB, Cheng YY, Badrian B et al (2012) Increased circulating miR-625-3p: a potential biomarker for patients with malignant pleural mesothelioma. J Thorac Oncol 7:1184–1191

    Article  CAS  PubMed  Google Scholar 

  • Kirschner MB, Cheng YY, Armstrong NJ et al (2015) MiR-score: a novel 6-microRNA signature that predicts survival outcomes in patients with malignant pleural mesothelioma. Mol Oncol 9:715–726

    Article  CAS  PubMed  Google Scholar 

  • Kjærheim K, Røe OD, Waterboer T et al (2007) Absence of SV40 antibodies or DNA fragments in prediagnostic mesothelioma serum samples. Int J Cancer 120:2459–2465

    Article  PubMed  CAS  Google Scholar 

  • Kothmaier H, Quehenberger F, Halbwedl I et al (2008) EGFR and PDGFR differentially promote growth in malignant epithelioid mesothelioma of short and long term survivors. Thorax 63:345–351

    Article  CAS  PubMed  Google Scholar 

  • Kraemer S, Vaught JD, Bock C et al (2011) From SOMAmer-based biomarker discovery to diagnostic and clinical applications: a SOMAmer-based, streamlined multiplex proteomic assay. PLoS One 6:e26332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krätschmer W, Lamb LD, Fostiropoulos K et al (1990) Solid C60: a new form of carbon. Nature 347:354–358

    Article  Google Scholar 

  • Kwon YK, Tomanek D (1998) Electronic and structural properties of multiwall carbon nanotubes. Phys Rev B 16:001–004

    Google Scholar 

  • Langhoff MD, Kragh-Thomsen MB, Stanislaus S et al (2014) Almost half of women with malignant mesothelioma were exposed to asbestos at home through their husbands or sons. Dan Med J 61:A4902

    PubMed  Google Scholar 

  • Levallet G, Vaisse-Lesteven M, Le Stang N et al (2012) Plasma cell membrane localization of c-MET predicts longer survival in patients with malignant mesothelioma: a series of 157 cases from the MESOPATH Group. J Thorac Oncol 7:599–606

    Article  PubMed  Google Scholar 

  • Light RW, Lee YCG (eds) (2003) Textbook of pleural diseases, 1st edn. Arnold, London

    Google Scholar 

  • Lindberg HK, Falck GC, Suhonen S et al (2009) Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibers in human bronchial epithelial cells in vitro. Toxicol Lett 186:166–173

    Article  CAS  PubMed  Google Scholar 

  • Lippmann M (1994) Deposition and retention of inhaled fibres: effects on incidence of lung cancer and mesothelioma. Occup Environ Med 51:793–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohcharoenkal W, Wang L, Stueckle TA et al (2013) Exposure to carbon nanotubes induces invasion of human mesothelial cells through matrix metalloproteinase-2. ACS Nano 7:7711–7723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Rios F, Chuai S, Flores R et al (2006) Global gene expression profiling of pleural mesotheliomas: overexpression of aurora kinases and P16/CDKN2A deletion as prognostic factors and critical evaluation of microarray-based prognostic prediction. Cancer Res 66:2970–2979

    Article  CAS  PubMed  Google Scholar 

  • Lu F, Lingrong G, Mohammed J et al (2009) Advances in bioapplications of carbon nanotubes. Adv Mater 21:139–152

    Article  CAS  Google Scholar 

  • Luo S, Liu X, Mu S et al (2003) Asbestos related diseases from environmental exposure to crocidolite in Da-yao, China. I. Review of exposure and epidemiological data. Occup Environ Med 60:35–41. discussion 41–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magnani C, Dalmasso P, Biggeri A et al (2001) Increased risk of malignant mesothelioma of the pleura after residential or domestic exposure to asbestos: a case-control study in Casale Monferrato, Italy. Environ Health Perspect 109:915–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mäki-Nevala S, Sarhadi VK, Knuuttila A et al (2016) Driver gene and novel mutations in asbestos-exposed lung adenocarcinoma and malignant mesothelioma detected by exome sequencing. Lung 194:125–135

    Article  PubMed  CAS  Google Scholar 

  • Matullo G, Guarrera S, Betti M et al (2008) Genetic variants associated with increased risk of malignant pleural mesothelioma: a genome-wide association study. PLoS One 8:e61253

    Article  CAS  Google Scholar 

  • McDonald JC, Armstrong BG, Edwards CW et al (2001) Case-referent survey of young adults with mesothelioma: I. Lung fibre analyses. Ann Occup Hyg 45:513–518

    Article  CAS  PubMed  Google Scholar 

  • Mehara NK, Jain NK (2013) Development, characterization and cancer targeting potential of surface engineered carbon nanotubes. J Drug Target 8:745–758

    Article  CAS  Google Scholar 

  • Metintas S, Metintas M, Ucgun I et al (2002) Malignant mesothelioma due to environmental exposure to asbestos: follow-up of a Turkish cohort living in a rural area. Chest 122:2224–2229

    Article  PubMed  Google Scholar 

  • Mirabelli D, Cavone D, Merler E et al (2010) Non-occupational exposure to asbestos and malignant mesothelioma in the Italian National Registry of Mesotheliomas. Occup Environ Med 67:792–794

    Article  CAS  PubMed  Google Scholar 

  • Morinaga K, Kishimoto T, Sakatani M et al (2001) Asbestos-related lung cancer and mesothelioma in Japan. Ind Health 39:65–74

    Article  CAS  PubMed  Google Scholar 

  • Murthy SS, Testa JR (1999) Asbestos, chromosomal deletions, and tumor suppressor gene alterations in human malignant mesothelioma. J Cell Physiol 180:150–157

    Article  CAS  PubMed  Google Scholar 

  • Musk AW, de Klerk NH (2004) Epidemiology of malignant mesothelioma in Australia. Lung Cancer 45(Suppl 1):S21–S23

    Article  PubMed  Google Scholar 

  • Musti M, Pollice A, Cavone D et al (2009) The relationship between malignant mesothelioma and an asbestos cement plant environmental risk: a spatial case-control study in the city of Bari (Italy). Int Arch Occup Environ Health 82:489–497

    Article  CAS  PubMed  Google Scholar 

  • Mutsaers SE (2004) The mesothelial cell. Int J Biochem Cell Biol 36:9–16

    Article  CAS  PubMed  Google Scholar 

  • Neri M, Ugolini D, Dianzani I et al (2008) Genetic susceptibility to malignant pleural mesothelioma and other asbestos-associated diseases. Mutat Res 659:126–136

    Article  CAS  PubMed  Google Scholar 

  • Ostroff RM, Mehan MR, Stewart A et al (2012) Early detection of malignant pleural mesothelioma in asbestos-exposed individuals with a noninvasive proteomics-based surveillance tool. PLoS One 7:e46091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pacurari M (2008) Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NKκB and Akt in normal and malignant human mesothelial cells. Environ Health Perspect 116:121

    Article  CAS  Google Scholar 

  • Pacurari M, Qian Y, Porter DW et al (2011) Multi-walled carbon nanotube-induced gene expression in the mouse lung: association with lung pathology. Toxicol Appl Pharmacol 255:18–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palomaki J, Valimaki E, Sund J (2011) Long, needle-like carbon nanotubes and asbestos activate the NLPR3 inflammasome sensing of asbestos and silica. ACS Nano 5:6861–6870

    Article  CAS  PubMed  Google Scholar 

  • Panou V, Vyberg M, Weinreich UM et al (2015) The established and future biomarkers of malignant pleural mesothelioma. Cancer Treat Rev 41:486–495

    Article  CAS  PubMed  Google Scholar 

  • Pass HI, Lott D, Lonardo F et al (2008) Asbestos exposure, pleural mesothelioma, and serum osteopontin levels. N Engl J Med 53:1564–1573

    Google Scholar 

  • Pass HI, Levin SM, Harbut MR et al (2012) Fibulin-3 as a blood and effusion biomarker for pleural mesothelioma. N Engl J Med 367:1417–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peto J, Decarli A, La Vecchia C et al (1999) The European mesothelioma epidemic. Br J Cancer 79:666–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter DW, Hubbs AF, Mercer RR et al (2010) Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology 269:136–147

    Article  CAS  PubMed  Google Scholar 

  • Prato M, Kostarelos K, Bianco A (2008) Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41:60–68

    Article  CAS  PubMed  Google Scholar 

  • Program NT (2004) NTP 11th report on carcinogens. Rep Carcinog 11:A1–A32

    Google Scholar 

  • Ramos-Nino ME, Timblin CR, Mossman BT (2002) Mesothelial cell transformation requires increased AP-1 binding activity and ERK-dependent Fra-1 expression. Cancer Res 62:6065–6069

    CAS  PubMed  Google Scholar 

  • Ramos-Nino ME, Blumen SR, Sabo-Attwood T et al (2008) HGF mediates cell proliferation of human mesothelioma cells through a PI3K/MEK5/Fra-1 pathway. Am J Respir Cell Mol Biol 38:209–217

    Article  CAS  PubMed  Google Scholar 

  • Rapp GR (2009) Archaeomineralogy, vol XV. Springer, Berlin/London, 348 pp

    Book  Google Scholar 

  • Reid G (2015) MicroRNAs in mesothelioma: from tumour suppressors and biomarkers to therapeutic targets. J Thorac Dis 7:1031–1040

    PubMed  PubMed Central  Google Scholar 

  • Ribak J, Lillis R, Suzuki Y et al (2008) Malignant mesothelioma in a cohort of asbestos insulation workers: clinical presentation, diagnosis, and causes of death. Br J Ind Med 45:182–187

    Google Scholar 

  • Rinkevich Y, Mori T, Sahoo D et al (2012) Identification and prospective isolation of a mesothelial precursor lineage giving rise to smooth muscle cells and fibroblasts for mammalian internal organs, and their vasculature. Nat Cell Biol 14:1251–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson BW, Creaney J, Lake R et al (2003) Mesothelin-family proteins and diagnosis of mesothelioma. Lancet 362:1612–1616

    Article  CAS  PubMed  Google Scholar 

  • Robinson BW, Musk AW, Lake RA (2005) Malignant mesothelioma. Lancet 366:397–408

    Article  CAS  PubMed  Google Scholar 

  • Røe OD, Stella GM (2015) Malignant pleural mesothelioma: history, controversy and future of a manmade epidemic. Eur Respir Rev 24:115–131

    Article  PubMed  Google Scholar 

  • Røe OD, Creaney J, Lundgren S et al (2008) Mesothelin-related predictive and prognostic factors in malignant mesothelioma: a nested case-control study. Lung Cancer 61:235–243

    Article  PubMed  Google Scholar 

  • Røe OD, Anderssen E, Helge E et al (2009) Genome-wide profile of pleural mesothelioma versus parietal and visceral pleura: the emerging gene portrait of the mesothelioma phenotype. PLoS One 4:e6554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Røe OD, Anderssen E, Sandeck H et al (2010) Malignant pleural mesothelioma: genome-wide expression patterns reflecting general resistance mechanisms and a proposal of novel targets. Lung Cancer 67:57–68

    Article  PubMed  Google Scholar 

  • Roushdy-Hammady I, Siegel J, Emri S et al (2001) Genetic-susceptibility factor and malignant mesothelioma in the Cappadocian region of Turkey. Lancet 357:444–445

    Article  CAS  PubMed  Google Scholar 

  • Rump A, Morikawa Y, Tanaka M et al (2004) Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion. J Biol Chem 279:9190–9198

    Article  CAS  PubMed  Google Scholar 

  • Ryman-Rasmussen JP, Cesta MF, Brody AR et al (2009) Inhaled carbon nanotubes reach the subpleura tissue in mice. Nat Nanotechnol 4:747–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakellariou K, Malamou-Mitsi V, Haritou A et al (1996) Malignant pleural mesothelioma from nonoccupational asbestos exposure in Metsovo (north-west Greece): slow end of an epidemic? Eur Respir J 9:1206–1210

    Article  CAS  PubMed  Google Scholar 

  • Salvador-Morales C, Townsendb P, Flahautc E et al (2007) Binding of pulmonary surfactant proteins to carbon nanotubes; potential for damage to lung immune defense mechanisms. Carbon 45:607–617

    Article  CAS  Google Scholar 

  • Sartore-Bianchi A, Gasparri F, Galvani A et al (2007) Bortezomib inhibits nuclear factor-kappaB dependent survival and has potent in vivo activity in mesothelioma. Clin Cancer Res 13:5942–5951

    Article  CAS  PubMed  Google Scholar 

  • Sebastien P, Janson X, Gaudichet A et al (1980) Asbestos retention in human respiratory tissues: comparative measurements in lung parenchyma and in parietal pleura. IARC Sci Publ 30:237–246

    CAS  Google Scholar 

  • Shukla A, Hillegass JM, MacPherson MB et al (2011) ERK2 is essential for the growth of human epithelioid malignant mesotheliomas. Int J Cancer 129:1075–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shulte PA, Kuempel ED, Zumwalde RD et al (2012) Focused actions to protect carbon nanotube workers focused actions to protect carbon nanotube workers. Am J Ind Med 55:395–411

    Article  CAS  Google Scholar 

  • Shvedova AA, Tkach AV, Kisin ER et al (2013) Carbon nanotubes enhance metastatic growth of lung carcinoma via up-regulation of myeloid-derived suppressor cells. Small 9:1691–1695

    Article  CAS  PubMed  Google Scholar 

  • Stanton MF, Wrench C (1972) Mechanisms of mesothelioma induction with asbestos and fibrous glass. J Natl Cancer Inst 48:797–821

    CAS  PubMed  Google Scholar 

  • Stella GM (2011) Carbon nanotubes and pleural damage: perspectives of nanosafety in the light of asbestos experience. Biointerphases 6:P1–17

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Gulyás MM, Hjerpe A et al (2006) Proteasome inhibitor PSI induces apoptosis in human mesothelioma cells. Cancer Lett 232:161–169

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Yuen SR, Ashley R (2005) Short, thin asbestos fibers contribute to the development of human malignant mesothelioma: pathological evidence. Int J Hyg Environ Health 208:201–210

    Article  CAS  PubMed  Google Scholar 

  • Takagi A, Hirose A, Futakuchi M et al (2012) Dose-dependent mesothelioma induction by intraperitoneal administration of multi-wall carbon nanotubes in p53 heterozygous mice. Cancer Sci 103:1440–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Karjalainen A (2003) A cross-country comparative overview of the asbestos situation in ten Asian countries. Int J Occup Environ Health 9:244–248

    Article  PubMed  Google Scholar 

  • Taskinen E, Ahlamn K, Wukeri M (1973) A current hypothesis of the lymphatic transport of inspired dust to the parietal pleura. Chest 64:193–196

    Article  CAS  PubMed  Google Scholar 

  • Testa JR, Cheung M, Pei J et al (2011) Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet 43:1022–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thickett DR, Armstrong L, Millar AB (1999) Vascular endothelial growth factor (VEGF) in inflammatory and malignant pleural effusions. Thorax 54:707–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiele C, Das R (2009) Carbon nanotubes and graphene for electronics applications: technologies, players and opportunities. IDTechEX, Santa Clara, CA

    Google Scholar 

  • Tossavainen A (2004) Global use of asbestos and the incidence of mesothelioma. Int J Occup Environ Health 10:22–25

    Article  PubMed  Google Scholar 

  • Travis LB, Fossa SD, Schonfeld SJ et al (2005) Second cancers among 40,576 testicular cancer patients: focus on long-term survivors. J Natl Cancer Inst 97:1354–1365

    Article  PubMed  Google Scholar 

  • Ugolini D, Neri M, Ceppi M et al (2013) Genetic susceptibility to malignant mesothelioma and exposure to asbestos: the influence of the familial factor. Mutat Res 658:162–171

    Article  CAS  Google Scholar 

  • Ugurluer G, Chang K, Gamez ME et al (2016) Genome-based mutational analysis by next generation sequencing in patients with malignant pleural and peritoneal mesothelioma. Anticancer Res 36:2331–2338

    CAS  PubMed  Google Scholar 

  • Varga C, Szendi K (2010) Carbon nanotubes induce granulomas but not mesotheliomas. In Vivo 24:153–156

    PubMed  Google Scholar 

  • Wagner JC, Sleggs CA, Marchand P (1960) Diffuse pleural mesothelioma and asbestos exposure in the North Western Cape Province. Br J Ind Med 17:260–271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner JC, Berry G, Skidmore JW et al (1974) The effects of the inhalation of asbestos in rats. Br J Cancer 29:252–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson SM, Barbone D, Yang TM et al (2012) mTOR mediates survival signals in malignant mesothelioma grown as tumor fragment spheroids. Am J Respir Cell Mol Biol 39:576–583

    Article  CAS  Google Scholar 

  • Xia T, Hamilton RF, Bonner JC et al (2013) Interlaborator evaluation of in vitro cytotoxicity and inflammatory responses to engineered nanomaterials: the NIEHS Nano GO Consortium. Environ Health Perspect 121:683–690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu J, Alexander DB, Futakuchi M et al (2014) Size- and shape-dependent pleural translocation, deposition, fibrogenesis, and mesothelial proliferation by multiwalled carbon nanotubes. Cancer Sci 105:763–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang CT, You L, Yeh CC et al (2000) Adenovirus-mediated p14(ARF) gene transfer in human mesothelioma cells. J Natl Cancer Inst 92:636–641

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Bocchetta M, Bg K et al (2006) TNF-alpha inhibits asbestos-induced cytotoxicity via a NF-kappaB-dependent pathway, a possible mechanism for asbestos-induced oncogenesis. Proc Natl Acad Sci U S A 103:10397–10402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshikawa Y, Sato A, Tsujimura T et al (2012) Frequent inactivation of the BAP1 gene in epithelioid-type malignant mesothelioma. Cancer Sci 103:868–874

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oluf Dimitri Røe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Røe, O.D., Stella, G.M. (2017). Malignant Pleural Mesothelioma: History, Controversy, and Future of a Man-Made Epidemic. In: Testa, J. (eds) Asbestos and Mesothelioma. Current Cancer Research. Springer, Cham. https://doi.org/10.1007/978-3-319-53560-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53560-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53558-6

  • Online ISBN: 978-3-319-53560-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics