Skip to main content

Xylanases: From Paper to Fuel

  • Chapter
  • First Online:
Microbial Applications Vol.1

Abstract

The multifaceted hydrolytic enzyme xylanase has been found to play a pivotal role in the energy and green technology sectors. Extensive research is being carried out with the aim to produce xylanases that would fulfill industrial parameters, in the paper and pulp and fuel industries. Cellulase-free xylanase with good thermal stability finds promising use for biobleaching in paper manufacturing. In current scenario, it has been found that renewable energy is a burgeoning area, where xylanase finds a major role. Xylanase is synergistically involved with other cooperating enzymes for the deconstruction of lignocellulosic raw material, which ultimately paves way for the production of fuel ethanol. In other words, efficient utilization of lignocellulosic raw materials will positively boost the economics of alternate fuel industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861. doi:10.1016/j.biortech.2009.11.093

    Article  CAS  PubMed  Google Scholar 

  • Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manage 52:858–875. doi:10.1016/j.enconman.2010.08.013

    Article  CAS  Google Scholar 

  • Balat M, Balat H (2009) Recent trends in global production and utilization of bioethanol fuel. Appl Energy 86:2273–2282. doi:10.1016/j.apenergy.2009.03.015

    Article  CAS  Google Scholar 

  • Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338. doi:10.1007/s002530100704

    Article  CAS  PubMed  Google Scholar 

  • Beukes N, Pletschke BI (2011) Effect of alkaline pre-treatment on enzyme synergy for efficient hemicelluloses hydrolysis in sugarcane bagasse. Bioresour Technol 102:5207–5213. doi:10.1016/j.biortech.2011.01.090

    Article  CAS  PubMed  Google Scholar 

  • Bhalla A, Bischoff KM, Sani RK (2015) Highly thermostable xylanase production from a thermophilic Geobacillus sp. strain WSUCF1 utilizing lignocellulosic biomass. Front Bioeng Biotechnol 3:1–8. doi:10.3389/fbioe.2015.00084

    Article  Google Scholar 

  • Birijlall N, Manimaran A, Kumar KS, Permaul K, Singh S (2011) High level expression of a recombinant xylanase by Pichia pastoris NC38 in a 5 L fermenter and its efficiency in biobleaching of bagasse pulp. Bioresour Technol 102:9723–9729. doi:10.1016/j.biortech.2011.07.059

    Article  CAS  PubMed  Google Scholar 

  • Bungay H (1992) Product opportunities for biomass refining. Enzyme Microb Technol 14:501–507. doi:10.1016/0141-0229(92)90145-E

    Article  CAS  Google Scholar 

  • Chapla D, Divecha J, Madamwar D, Shah A (2010) Utilization of agro-industrial waste for xylanase production by Aspergillus foetidus MTCC 4898 under solid state fermentation and its application in saccharification. Biochem Eng J 49:361–369. doi:10.1016/j.bej.2010.01.012

    Article  CAS  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23. doi:10.1016/j.femsre.2004.06.005

    Article  CAS  PubMed  Google Scholar 

  • Dale BE, Leong CK, Pham TK, Esquivel VM, Rios L, Latimer VM (1996) Hydrolysis at low enzyme levels: application of the AFEX process. Bioresour Technol 56:111–116. doi:10.1016/0960-8524(95)00183-2

    Article  CAS  Google Scholar 

  • de Freitas Branco R, dos Santos JC, da Silva SS (2011) A novel use for sugarcane bagasse hemicellulosic fraction: xylitol enzymatic production. Biomass Bioenergy 35:3241–3246. doi:10.1016/j.biombioe.2011.02.014

    Article  Google Scholar 

  • Dodd D, Cann I (2009) Enzymatic deconstruction of xylan for biofuel production. Glob Change Biol Bioenergy 18:2–17. doi:10.1111/j.1757-1707.2009.01004.x

    Article  Google Scholar 

  • Duarte MCT, Silva EC, Gomes IMB, Ponezi AN, Portugal EP, Vicente JR, Davanzo E (2003) Xylan-hydrolyzing enzyme system from Bacillus pumilus CBMAI 0008 and its effects on Eucalyptus grandis kraft pulp for pulp bleaching improvement. Bioresour Technol 88:9–15. doi:10.1016/S0960-8524(02)00270-5

    Article  PubMed  Google Scholar 

  • Fernandez-Bolanos J, Felizon B, Heredia A, Rodriguez R, Guillen R, Jimenez A (2001) Steam-explosion of olive stones: hemicellulose solubilization and enhancement of enzymatic hydrolysis of cellulose. Bioresour Technol 79:53–61. doi:10.1016/S0960-8524(01)00015-3

    Article  CAS  PubMed  Google Scholar 

  • Fillat U, Roncero MB, Sacón VM, Bassa A (2012) Integrating a xylanase treatment into an industrial-type sequence for eucalyptus kraft pulp bleaching. Ind Eng Chem Res 51:2830–2837. doi:10.1021/ie202863d

    Article  CAS  Google Scholar 

  • Garcia SG, Moreira T, Artal G, Maldonado L, Feijoo G (2010) Environmental impact assessment of non-wood based pulp production by soda-anthraquinone pulping process. J Clean Prod 18:137–145. doi:10.1016/j.jclepro.2009.10.008

    Article  Google Scholar 

  • Goldemberg J (2008) Environmental and ecological dimensions of biofuels. In: Proceedings of the conference on the ecological dimensions of biofuels, Washington, DC, 10 March

    Google Scholar 

  • Gopalakrishnan (2010) Studies on marine microbes of west coast of India for their potential to produce industrially important enzymes. PhD Thesis. http://hdl.handle.net/10603/9199

  • Heaton EA, Flavell RB, Mascia PN, Thomas SR, Dohleman FG, Long SP (2008) Herbaceous energy crop development: recent progress and future prospects. Curr Opin Biotechnol 19:202–209. doi:10.1016/j.copbio.2008.05.001

    Article  CAS  PubMed  Google Scholar 

  • Heck JX, Flores SH, Hertz PF, Ayub MAZ (2005) Optimization of cellulase-free xylanase activity produced by Bacillus coagulans BL69 in solid-state cultivation. Process Biochem 40:107–112. doi:10.1016/j.procbio.2003.11.044

    Article  CAS  Google Scholar 

  • Heo S, Kwak J, Oh H-W, Park D-S, Kyung SB, Dong HS, Park H-Y (2006) Characterization of an extracellular xylanase in Paenibacillus sp. HY-8 isolated from an herbivorous longicorn beetle. J Microbiol Biotechnol 16:1753–1759

    CAS  Google Scholar 

  • Jiang L, Zheng A, Zhao Z, He F, Li H, Liu W (2015) Obtaining fermentable sugars by dilute acid hydrolysis of hemicellulose and fast pyrolysis of cellulose. Bioresour Technol 182:364–367. doi:10.1016/j.biortech.2015.01.032

    Article  CAS  PubMed  Google Scholar 

  • Kaar WE, Holtzaple MT (2000) Using lime pretreatment to facilitate the enzymatic hydrolysis of corn stover. Biomass Bioenergy 18:189–199. doi:10.1016/S0961-9534(99)00091-4

    Article  CAS  Google Scholar 

  • Kiddinamoorthy J, Anceno AJ, Haki GD, Rakshit SK (2008) Production, purification and characterization of Bacillus sp. GRE7 xylanase and its application in eucalyptus kraft pulp biobleaching. World J Microbiol Biotechnol 24:605–612. doi:10.1007/s11274-007-9516-2

    Article  CAS  Google Scholar 

  • Kim DY, Han MK, Lee JS, Oh H-W, Park D-S, Shin D-H, Bae KS, Son K-H, Park H-Y (2009) Isolation and characterization of a cellulase-free endo-β-1,4-xylanase produced by an invertebrate-symbiotic bacterium, Cellulosimicrobium sp. HY-13. Process Biochem 44:1055–1059. doi:10.1016/j.procbio.2009.05.005

    Article  CAS  Google Scholar 

  • Ko C-H, Lin Z-P, Tu J, Tsai C-H, Liu C-C, Chen H-T, Wang T-P (2010) Xylanase production by Paenibacillus campinasensis BL11 and its pretreatment of hardwood kraft pulp bleaching. Int Biodeterior Biodegradation 64:13–19. doi:10.1016/j.ibiod.2009.10.001

    Article  CAS  Google Scholar 

  • KocabaÅŸ DS, Güder S, Özben N (2015) Purification strategies and properties of a low-molecular weight xylanase and its application in agricultural waste biomass hydrolysis. J Mol Catal B Enzym 115:66–75. doi:10.1016/j.molcatb.2015.01.012

    Article  Google Scholar 

  • Kumar V, Satyanarayana T (2012) Thermo-alkali-stable xylanase of a novel polyextremophilic Bacillus haloduransTSEV1 and its application in biobleaching. Int Biodeterior Biodegradation 75:138–145. doi:10.1016/j.ibiod.2012.09.007

    Article  CAS  Google Scholar 

  • Laser M, Schulman D, Allen SG, Lichwa J, Antal MJ Jr, Lynd LR (2002) A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresour Technol 81:33–44. doi:10.1016/S0960-8524(01)00103-1

    Article  CAS  PubMed  Google Scholar 

  • Li X, She Y, Sun B, Song H, Zhu Y, Lv Y, Song H (2010) Purification and characterization of a cellulase-free, thermostable xylanase from Streptomyces rameus L2001 and its biobleaching effect on wheat straw pulp. Biochem Eng J 52:71–78. doi:10.1016/j.bej.2010.07.006

    Article  CAS  Google Scholar 

  • Manimaran A, Vatsala TM (2007) Biobleaching of banana fibre pulp using Bacillus subtilis C O1 xylanase produced from wheat bran under solid-state cultivation. J Ind Microbiol Biotechnol 34:745–749. doi:10.1007/s10295-007-0248-y

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin SB, Kszos LA (2005) Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28:515–535. doi:10.1016/j.biombioe.2004.05.006

    Article  Google Scholar 

  • Menon G, Mody K, Keshri J, Jha B (2010a) Isolation, purification, and characterization of haloalkaline xylanase from a marine Bacillus pumilus strain, GESF-1. Biotechnol Bioprocess Eng 15:998–1005. doi:10.1007/s12257-010-0116-x

    Article  CAS  Google Scholar 

  • Menon V, Prakash G, Prabhune A, Rao M (2010b) Biocatalytic approach for the utilization of hemicellulose for ethanol production from agricultural residue using thermostable xylanase and thermotolerant yeast. Bioresour Technol 101:5366–5373. doi:10.1016/j.biortech.2010.01.150

    Article  CAS  PubMed  Google Scholar 

  • Mosier N, Wyman CE, Dale BD, Elander RT, Lee YY, Holtzapple M, Ladisch CM (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686. doi:10.1016/j.biortech.2004.06.025

    Article  CAS  PubMed  Google Scholar 

  • Nie S, Wang S, Qin C, Yao S, Ebonka JF, Song X, Li K (2015) Removal of hexenuronic acid by xylanase to reduce adsorbable organic halides formation in chlorine dioxide bleaching of bagasse pulp. Bioresour Technol 196:413–417. doi:10.1016/j.biortech.2015.07.115

    Article  CAS  PubMed  Google Scholar 

  • Oh H-W, Heo S-Y, Kim D-Y, Park D-S, Bae K-S, Park S-Y (2008) Biochemical characterization and sequence analysis of a xylanase produced by an exo-symbiotic bacterium of Gryllotalpa orientalis, Cellulosimicrobium sp. HY-12. Antonie Van Leeuwenhoek J Microb 93:437–442. doi:10.1007/s10482-007-9210-2

    Article  CAS  Google Scholar 

  • Parrish DJ, Fike JH (2005) The biology and agronomy of Switch-grass for biofuels. Crit Rev Plant Sci 24:423–459. doi:10.1080/07352680500316433

    Article  Google Scholar 

  • Passarini KC, Pereira MA, Farias TMB, Calarge FA, Santana CC (2014) Assessment of the viability and sustainability of an integrated waste management system for the city of Campinas (Brazil), by means of ecological cost accounting. J Clean Prod 65:479–488. doi:10.1016/j.jclepro.2013.08.037

    Article  Google Scholar 

  • Pedersen M, Johansen KS, Meyer AS (2011) Low temperature lignocellulose pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw. Biotechnol Biofuels 4:1–10. doi:10.1186/1754-6834-4-11

    Article  Google Scholar 

  • Qing Q, Wyman CE (2011) Supplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover. Biotechnol Biofuels 4:18. doi:10.1186/1754-6834-4-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rémond C, Aubry N, Crônier D, Noël S, Martel F, Roge B, Rakotoarivonina H, Debeire P, Chabbert B (2010) Combination of ammonia and xylanase pretreatments: impact on enzymatic xylan and cellulose recovery from wheat straw. Bioresour Technol 101:6712–6717. doi:10.1016/j.biortech.2010.03.115

    Article  PubMed  Google Scholar 

  • Sadhasivam S, Savitha S, Swaminathan K (2010) Deployment of Trichoderma harzianum WL1 laccase in pulp bleaching and paper industry effluent treatment. J Clean Prod 18:799–806. doi:10.1016/j.jclepro.2009.11.014

    Article  CAS  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion: a review. J Ind Microbiol Biotechnol 30:279–291. doi:10.1007/s10295-003-0049-x

    Article  CAS  PubMed  Google Scholar 

  • Saha BC, Bothast RJ (1997) Enzymes in lignocellulosic biomass conversion. In: Saha BC, Woodward J (eds) Fuels and chemicals from biomass. American Chemical Society, Washington, DC, pp 46–56

    Chapter  Google Scholar 

  • Saha BC, Bothast RJ (1999) Pretreatment and enzymatic saccharification of corn fiber. Appl Biochem Biotechnol 76:65–77. doi:10.1385/ABAB:76:2:65

    Article  CAS  PubMed  Google Scholar 

  • Saleem M, Tabassum MR, Yasmin R, Imran M (2009) Potential of xylanase from thermophilic Bacillus sp. XTR-10 in biobleaching of wood kraft pulp. Int Biodeterior Biodegrad 63:1119–1124. doi:10.1016/j.ibiod.2009.09.009

    Article  CAS  Google Scholar 

  • Saleem M, Aslam F, Akhtar MS, Tariq M, Rajoka MI (2012) Characterization of a thermostable and alkaline xylanase from Bacillus sp. and its bleaching impact on wheat straw pulp. World J Microbiol Biotechnol 28:513–522. doi:10.1007/s11274-011-0842-z

    Article  CAS  PubMed  Google Scholar 

  • Sasson A (2005) Industrial and environmental biotechnology: achievements, prospects, and perceptions, UNU-IAS Report, pp 1–26

    Google Scholar 

  • Schmidt AS, Thomsen AB (1998) Optimization of wet oxidation pretreatment of wheat straw. Bioresour Technol 64:139–151. doi:10.1016/S0960-8524(97)00164-8

    Article  CAS  Google Scholar 

  • Senthilkumar SR, Dempsey M, Krishnan C, Gunasekaran P (2008) Optimization of biobleaching of paper pulp in an expanded bed bioreactor with immobilized alkali stable xylanase by using response surface methodology. Bioresour Technol 99:7781–7787. doi:10.1016/j.biortech.2008.01.058

    Article  CAS  PubMed  Google Scholar 

  • Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228. doi:10.1016/S1369-5274(03)00056-0

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Thakur VV, Shrivastava A, Jain RK, Mathur RM, Gupta R, Kuhad RC (2014) Xylanase and laccase based enzymatic kraft pulp bleaching reduces adsorbable organic halogen (AOX) in bleach effluents: a pilot scale study. Bioresour Technol 169:96–102. doi:10.1016/j.biortech.2014.06.066

    Article  CAS  PubMed  Google Scholar 

  • Sharma AK, Anupam K, Swaroop V, Lal PS, Bist V (2015a) Pilot scale soda anthraquinone pulping of palm oil empty fruit bunches and elemental chlorine free bleaching of resulting pulp. J Clean Prod 106:422–429. doi:10.1016/j.jclepro.2014.03.095

    Article  CAS  Google Scholar 

  • Sharma P, Sood S, Singh G, Capalash N (2015b) An eco-friendly process for biobleaching of eucalyptus kraft pulp with xylanase producing Bacillus halodurans. J Clean Prod 87:966–970. doi:10.1016/j.jclepro.2014.09.083

    Article  CAS  Google Scholar 

  • Somerville C (2007) Biofuels. Curr Biol 17:R115–R119. doi:10.1016/j.cub.2007.01.010

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11. doi:10.1016/S0960-8524(01)00212-7

    Article  CAS  PubMed  Google Scholar 

  • Thakur VV, Jain RK, Mathur RM (2012) Studies on xylanase and laccase enzymatic prebleaching to reduce chlorine-based chemicals during CEH and ECF bleaching. BioResources 7:2220–2235

    Article  CAS  Google Scholar 

  • Viikari L, Kantelinen A, Sundquist J, Linko M (1994) Xylanases in bleaching: from an idea to the industry. FEMS Microbiol Rev 13:335–350. doi:10.1111/j.1574-6976.1994.tb00053.x

    Article  CAS  Google Scholar 

  • Wang G, Luo H, Wang Y, Huang H, Shi P, Yang P, Meng K, Bai Y, Yao B (2011) A novel cold-active xylanase gene from the environmental DNA of goat rumen contents: direct cloning, expression and enzyme characterization. Bioresour Technol 102:3330–3336. doi:10.1016/j.biortech.2010.11.004

    Article  CAS  PubMed  Google Scholar 

  • Weil J, Westgate P, Kohlmann K, Ladisch MR (1994) Cellulose pretreatments of lignocellulosic substrates. Enzyme Microb Technol 16:1002–1004. doi:10.1016/0141-0229(94)90012-4

    Article  CAS  PubMed  Google Scholar 

  • Wyman CE (1994) Ethanol from lignocellulosic biomass: technology, economics, and opportunities. Bioresour Technol 50:3–16. doi:10.1016/0960-8524(94)90214-3

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumitra Datta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Menon, G., Datta, S. (2017). Xylanases: From Paper to Fuel. In: Kalia, V., Kumar, P. (eds) Microbial Applications Vol.1. Springer, Cham. https://doi.org/10.1007/978-3-319-52666-9_7

Download citation

Publish with us

Policies and ethics