Skip to main content

Phytoremediation Using Aquatic Macrophytes

  • Chapter
  • First Online:
Phytoremediation

Abstract

Phytoremediation is a plant-based technology that is also called green technology. After the discovery of hyperaccumulating plants, this technology gained increasing attention. These hyperaccumulating plants are having the ability to uptake, store, transport, and focus on large quantity of specific poisonous elements in their body parts such as aboveground parts and harvestable parts. Phytoremediation has a number of processes that are phytoextraction, rhizofiltration, phytovolatilization, etc. Both type of plants (terrestrial and aquatic) have been tested, and these are having characteristics to treat polluted soils and waters. A number of aquatic macrophytes have been found that are used for the removal of toxic contaminants such as arsenic, zinc, cadmium, copper, lead, chromium, and mercury. Some of these aquatic macrophytes are water hyacinth, water spinach, water ferns, hydrilla, and watercress. Metal uptake ability and mechanisms of many other macrophytes have been studied or investigated. Many of these studies proved that aquatic macrophytes have potential for phytoremediation. Phytoremediation is cost-effective, environment-friendly, and has gained rising appreciation. More than 400 plant species have been known that are having the ability to remediate soil and water. This chapter provides a look into new developments in research and practical applications of phytoremediation by using aquatic macrophytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Preetha SS, Kaladevi V (2014) Phytoremediation of heavy metals using aquatic macrophytes. World J Environ Biosci 3(1):34–41

    Google Scholar 

  2. Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, Berkum P, Moawad H, Ghanem K, Ghozlan HA (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Physician 158(1):219–224

    Article  CAS  Google Scholar 

  3. Volesky B (2001) Detoxification of metal-bearing effluents: biosorption for the next century. Hydrobiologia 59:203–216

    CAS  Google Scholar 

  4. Rai PK (2009) Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Crit Rev Environ Sci Technol 39:697–753

    Article  CAS  Google Scholar 

  5. USEPA (1997) Exposure factors handbook (1997 final report). United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  6. Prasad MNV, Freitas H (2003) Metal hyperaccumulation in plants biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:285–321

    Article  Google Scholar 

  7. USEPA (2000) Introduction to phytoremediation. United States Environmental Protection Agency, Office of Research and Development, Cincinnati

    Google Scholar 

  8. Greipsson S (2011) Phytoremediation. Nat Educ Knowledge 3(10):7–8

    Google Scholar 

  9. Arora A, Saxena S, Sharma DK (2006) Tolerance and phytoaccumulation of chromium by three Azolla species. World J Microbiol Biotechnol 22:97–100

    Article  CAS  Google Scholar 

  10. Umali LJ, Duncan JR, Burgess JE (2006) Performance of dead Azollafiliculoides biomass in biosorption of Au from wastewater. Biotechnol Lett 28:45–49

    Article  CAS  PubMed  Google Scholar 

  11. Khan MA, Sarwar M, Sajjad Khan MM (2004) Feeding value of urea treated corncobs ensiled with or without enzose (corn dextrose) for lactating crossbred cows. Asian Aust J Anim Sci 17(8):1093–1097

    Article  CAS  Google Scholar 

  12. Sarma (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4:118–138

    Article  CAS  Google Scholar 

  13. Vithanage M, Dabrowska BB, Mukherjee B, Sandhi A, Bhattacharya P (2012) Arsenic uptake by plants and possible phytoremediation applications: a brief overview. Environ Chem Lett 10:217–224

    Article  CAS  Google Scholar 

  14. Suresh B, Ravishankar GA (2004) Phytoremediation-a novel and promising approach for environmental clean-up. Crit Rev Biotechnol 24(2–3):97–124

    Article  CAS  PubMed  Google Scholar 

  15. LeDuc DL, Terry N (2005) Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environ Sci Technol 39(6):1771–1777

    Article  PubMed  Google Scholar 

  16. Hettiarachchi GM, Nelson NO, Agudelo-Arbelaez SC, Mulisa YA, Lemunyon JL (2012) Phytoremediation: protecting the environment with plants. Kansas State University, Kansas, pp 1–7

    Google Scholar 

  17. Schmidt U (2003) Enhancing phytoextraction: the effects of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. J Environ Qual 32:1939–1954

    Article  CAS  PubMed  Google Scholar 

  18. Tang SL, Zheng X, Li H (2003) Response to elevated CO2 of Indian mustard and sunflower growing on copper contaminated soil. Bull Environ Contam Toxicol 71:988–997

    Article  CAS  PubMed  Google Scholar 

  19. Gardea-Torresdey JL, Tiemann KJ, Gamez G, Dokken K, Cano-Aguilera I, Renner MW, Furenlid LR (2000) Reduction and accumulation of gold (III) by Medicago sativa alfalfa biomass: x-ray absorption spectroscopy, pH, and temperature dependence. Environ Sci Technol 34:4392–4396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Karkhanis M, Jadia CD, Fulekar MH (2005) Rhizofilteration of metals from coal ash leachate. Asian J Water Environ Pollut 3(1):91–94

    Google Scholar 

  21. Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579–579

    Article  CAS  PubMed  Google Scholar 

  22. Alkorta I, Hernandez-Allica J, Becerril JM, Amezaga I, Albizu I, Onaindia M, Garbisu C (2004) Chelate enhanced phytoremediation of soils polluted with heavy metals. Rev Environ Sci Biotechnol 3:55–70

    Article  CAS  Google Scholar 

  23. Rafati M, Khorasani N, Moattar F, Shirvany A, Moraghebi F, Hosseinzadeh S (2011) Phytoremediation potential of Populus alba and Morus alba for cadmium, chromuim and nickel absorption from polluted soil. Int J Environ Res 5(4):961–970

    CAS  Google Scholar 

  24. Blaylock MJ, Huang JW (2000) Phytoextraction of metals. Phytoremediation of toxic metals: using plants to clean-up the environment. New York, Wiley, pp 53–70

    Google Scholar 

  25. Paulo JC, Favas, Pratas J, Varun M, Souza RD, Paul MS (2014) Phytoremediation of soils contaminated with metals and metalloids at mining areas: potential of native flora. In: Environmental risk assessment of soil contamination. pp 5884–5990

    Google Scholar 

  26. Singh D, Tiwari A, Gupta R (2012) Phytoremediation of lead from wastewater using aquatic plants. J Agric Technol 8(1):1–11

    Google Scholar 

  27. Berti WR, Cunningham SD (2000) Phytostabilization of metals. Phytoremediation of toxic metals: using plants to clean-up the environment. New York, Wiley, pp 71–88

    Google Scholar 

  28. Schnoor JL (2000) Phytostabilization of metals using hybrid poplar trees. Phytoremediation of toxic metals: using plants to clean-up the environment. New York, Wiley, pp 133–150

    Google Scholar 

  29. Erakhrumen, Agbontalor A (2007) Review phytoremediation: an environmentally sound technology for pollution prevention, control and remediation in developing countries. Educ Res Rev 2(7):151–156

    Google Scholar 

  30. Etim EE (2012) Review: phytoremediation and its mechanisms. Int J Environ Bioenergy 2(3):120–136

    Google Scholar 

  31. Rawat K, Fulekar MH, Pathak B (2012) Rhizofiltration: a green technology for remediation of heavy metals. Int J Innov in Biosci 2(4):193–199

    Google Scholar 

  32. IGECE (2013) Phytovolatilization. Institute of Green Energy & Clean Environment, Charlottesville

    Google Scholar 

  33. Ensley BD (2000) Rationale for the use of phytoremediation. In: Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, New York, pp 205–210

    Google Scholar 

  34. Banuelos GS, Lin ZQ, Wu L, Terry N (2002) Phytoremediation of selenium-contaminated soils and waters: fundamentals and future prospects. Rev Environ Health 17(4):291–306

    Article  CAS  PubMed  Google Scholar 

  35. Liu P, Qiu GL, Shang LH (2007) Phytoremediation of mercury contaminated soil: a review. Chinese J Ecol 6:27

    Article  CAS  Google Scholar 

  36. Rajiv KS, Dalsukh V, Shanu S, Shweta S, Sunil H (2009) Bioremediation of contaminated sites: a low-cost nature’s biotechnology for environmental clean up by versatile microbes, plants & earthworms. Nova Science, New York

    Google Scholar 

  37. Rugh C, Bizily SP, Meagher RB (2000) Phytoreduction of environmental mercury pollution. Phytoremediation of toxic metals: using plants to clean-up the environment. New York, Wiley, pp 151–170

    Google Scholar 

  38. Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyperaccumulation metals in plants. Water Air Soil Pollut 184:105–126

    Article  CAS  Google Scholar 

  39. Schnoor JL (1996) Environmental modeling—fate and transport of pollutants in water, air, and soil. Wiley, New York, p 682

    Google Scholar 

  40. Dhote S, Dixit S (2009) Water quality improvement through macrophytes a review. Environ Monit Assess 152:149–153

    Article  CAS  PubMed  Google Scholar 

  41. Mishra S, Sharma S, Vasudevan P (2008) Comparative effect of biofertilizers on fodder production and quality in guinea grass (Panicum maximum Jacq.). J Sci Food Agric 88(9):1667–1673

    Article  CAS  Google Scholar 

  42. Rai PK, Tripathi BD (2009) Comparative assessment of Azolla pinnata and Vallisneria spiralis in Hg removal from G.B. Pant Sagar of Singrauli Industrial region, India. Environ Monit Assess 148:75–84

    Article  CAS  PubMed  Google Scholar 

  43. Ebel A, Memmesheimer M, Jakobs HJ, Feldmann H (2007) Advanced air pollution models and their application to risk and impact assessment. In: Ebel A, Davitashvili T (eds) Air, water and soil quality modelling for risk and impact assessment. Springer, Dordrecht, pp 83–92

    Google Scholar 

  44. Fang YY, Yang XE, Chang HQ, Pu PM, Ding XF, Rengel Z (2007) Phytoremediation of nitrogen-polluted water using water hyacinth. J Plant Nutr 30(11):1753–1765

    Article  CAS  Google Scholar 

  45. Giraldo E, Garzon A (2002) The potential for water hyacinth to improve the quality of bogota river water in the muna reservoir: comparison with the performance of waste stabilization ponds. Water Sci Technol 42:103–110

    Google Scholar 

  46. David GK, Blondeau M, Schiltz S, Penel A, Lewit-Bentley (2003) YodA from Escherichia coli is a metal-binding, lipocalin-like protein. J Biol Chem 278:43728–43735

    Article  CAS  PubMed  Google Scholar 

  47. Irfan R (2012) Removal efficiency of toxic metals by aquatic macrophytes Eichhornia crassipes and Pistia stratiotes. (work of one of our collegue Rabia Irfan).

    Google Scholar 

  48. Miretzky P, Saralegui A, Fernandez Cirelli A (2004) Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere 57:997–1005

    Article  CAS  PubMed  Google Scholar 

  49. Chong Y, Hu H, Qian Y (2003) Effects of inorganic nitrogen compounds and pH on the growth of duckweed. J Environ Sci 24:35–40

    Google Scholar 

  50. Denny H, Wilkins D (1987) Zinc tolerance in Betula spp. II. Microanalytical studies of zinc uptake into root tissues. New Physician 106:525–534

    CAS  Google Scholar 

  51. Gallardo T, Maria, Benson F, Robert and Martin F (1999) Lead accumulation by three aquatic plants. Symposia papers presented before the division of environmental chemistry. Am Chem Soc 39(2):46–47.

    Google Scholar 

  52. Cardwell AJ, Hawker DW, Greenway M (2002) Metal accumulation in aquatic macrophytes from Southeast Queensland, Australia. Chemosphere 48:653–663

    Article  CAS  PubMed  Google Scholar 

  53. Hammouda O, Gaber A, Abdel-Raouf N (1995) Microalgae and wastewater treatment. Ecotoxicol Environ Saf 31(3):205–210

    Article  CAS  PubMed  Google Scholar 

  54. Arreghini S, Cabo LD, Iorio AFD (2006) Phytoremediation of two types of sediment contaminated with Zn by Schoenoplectus americanus. Int J Phytoremediation 8:223–232

    Article  CAS  PubMed  Google Scholar 

  55. Samecka-Cymerman A, Kempers J (1996) Bioaccumulation of heavy metals by aquatic macrophytes around Wrocław, Poland. Ecotoxicology and Environmental Safety 43:242–247

    Article  Google Scholar 

  56. Mishra VK, Tripathi BD (2008) Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresour Technol 99(15):7091–7097

    Article  CAS  PubMed  Google Scholar 

  57. Rashidi O, Ramya R, Baharuddin ZM, Hashim KSH, Yaman M (2015) Response of Lemna minor and Salninia natans as phyroremediation agents towards Fe, Cu and Zn toxicities via in vivo model system. Jurnal Teknologi 77(30):101–109

    Google Scholar 

  58. Saraswat S, Rai J (2011) Prospective application of Leucaena leucocephala for phytoextraction of Cd and Zn and nitrogen fixation in metal polluted soils. Int J Phytoremediation 13(3):271–288

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amtul Bari Tabinda Akhtar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Akhtar, A.B.T., Yasar, A., Ali, R., Irfan, R. (2017). Phytoremediation Using Aquatic Macrophytes. In: Ansari, A., Gill, S., Gill, R., R. Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-52381-1_8

Download citation

Publish with us

Policies and ethics