Skip to main content

Phytoremediation of Petroleum-Contaminated Soil in Association with Soil Bacteria

  • Chapter
  • First Online:
Phytoremediation

Abstract

Unprecedented progress in industrial activities over the last century has directly contributed to the discharge of huge amounts of petroleum hydrocarbons into the environment. It has been estimated that about 1.7–8.8 million metric tons of oil is released into the environment every year. More than 90% of this oil pollution is caused by accidents due to human errors and also deliberate disposal of the waste containing hydrocarbons. Generally, petroleum and its products get into the environment through natural seepages, transportation, accidental spills, deliberate disposal, offshore production, and breakage of pipelines. Presence of petroleum hydrocarbon compounds in the environment can affect both on human health and the environment. Therefore, their presence in nature is of great concern today, and they need to be cleaned from the environment in the best possible way. Many research works have been carried out to determine the eco-toxicity of these pollutants but biological method has been reported to be more suitable to determine the possible hazards of pollutants in soil on the ecological and environmental bases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37:1362–1375

    Article  CAS  PubMed  Google Scholar 

  2. Rodrigues RV, Miranda-Filho KC, Gusmão EP, Moreira CB, Romano LA, Sampaio LA (2010) Deleterious effects of water-soluble fraction of petroleum, diesel and gasoline on marine pejerrey Odontesthes argentinensis larvae. Sci Total Environ 408:2054–2059

    Article  CAS  PubMed  Google Scholar 

  3. Tang J, Lu X, Sun Q, Zhu W (2012) Aging effect of petroleum hydrocarbons in soil under different attenuation conditions. Agric Ecosyst Environ 149:109–117

    Article  CAS  Google Scholar 

  4. McAlexander BL (2014) A suggestion to assess spilled hydrocarbons as a greenhouse gas source. Environ Impact Assess Rev 49:57–58

    Article  Google Scholar 

  5. Rojo-Nieto E, Perales-Vargas-Machuca JA (2012) Microbial degradation of PAHs: organisms and environmental compartments. In: Singh SN (ed) Microbial degradation of xenobiotics. Springer, Berlin, pp 263–290

    Chapter  Google Scholar 

  6. Tang J, Wang M, Wang F, Sun Q, Zhou Q (2011) Eco-toxicity of petroleum hydrocarbon contaminated soil. J Environ Sci 23:845–851

    Article  CAS  Google Scholar 

  7. Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15:225–230

    Article  CAS  PubMed  Google Scholar 

  8. Nie M, Wang Y, Yu J, Xiao M, Jiang L, Yang J, Fang C, Chen J, Li B (2011) Understanding plant–microbe interactions for phytoremediation of petroleumpolluted soil. PLoS One 6:e17961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kirk JL, Klironomos JN, Lee H, Trevors JT (2005) The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environ Pollut 133:455–465

    Article  CAS  PubMed  Google Scholar 

  10. Kechavarzi C, Pettersson K, Leeds-Harrison P, Ritchie L, Ledin S (2007) Root establishment of perennial ryegrass (L. perenne) in diesel contaminated subsurface soil layers. Environ Pollut 145:68–74

    Article  CAS  PubMed  Google Scholar 

  11. Bartha R (1986) Biotechnology of petroleum pollutant biodegradation. Microb Ecol 12:155–172

    Article  CAS  PubMed  Google Scholar 

  12. Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    Article  CAS  Google Scholar 

  13. Christensen LB, Larsen TH (1993) Method for determining the age of diesel oil spills in the soil. Ground Water Monit Remediat 13:142–149

    Article  CAS  Google Scholar 

  14. Young LY, Cerniglia CE (1995) Microbial transformation and degradation of toxic organic chemicals. Wiley-Liss, New York

    Google Scholar 

  15. Kuhad RC, Gupta R (2009) Biological remediation of petroleum contaminants. In: Singh A, Kuhad RC, Ward OP (eds) Advances in applied bioremediation. Springer, Berlin, pp 173–187

    Chapter  Google Scholar 

  16. Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18:647–658

    Article  Google Scholar 

  17. Sarkar D, Ferguson M, Datta R, Birnbaum S (2005) Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environ Pollut 136:187–195

    Article  CAS  PubMed  Google Scholar 

  18. Fritsche W, Hofrichter M (2008) Aerobic degradation by microorganisms. In: Rehm H-J, Reed G (eds) Biotechnology: environmental processes II. Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  19. Chouychai W, Thngkukiatkul A, Upatham S, Lee H, Pokethitiyook P, Kruatrachue M (2009) Plant-enhanced phenanthrene and pyrene biodegradation in acidic soil. J Environ Biol 30:139–144

    CAS  PubMed  Google Scholar 

  20. Teng Y, Shen Y, Luo Y, Sun X, Sun M, Fu D, Li Z, Christie P (2011) Influence of Rhizobium meliloti on phytoremediation of polycyclic aromatic hydrocarbons by alfalfa in an aged contaminated soil. J Hazard Mater 186:1271–1276

    Article  CAS  PubMed  Google Scholar 

  21. Yousaf S, Afzal M, Reichenauer TG, Brady CL, Sessitsch A (2011) Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains. Environ Pollut 159:2675–2683

    Article  CAS  PubMed  Google Scholar 

  22. Jampasri K, Pokethitiyook P, Kruatrachue M, Ounjai P, Kumsopa A (2016) Phytoremediation of fuel oil and lead co-contaminated soil by Chromolaena odorata in association with Micrococcus luteus. Int J Phytoremediat 18:994–1001

    Article  CAS  Google Scholar 

  23. Robert FM, Sun WH, Toma M, Jones RK, Tang C-S (2008) Interactions among buffelgrass, phenanthrene and phenanthrene-degrading bacteria in gnotobiotic microcosms. J Environ Sci Health 43:1035–1041

    Article  CAS  Google Scholar 

  24. Cookson JT (1995) Bioremediation engineering: design and application. McGraw-Hill, New York

    Google Scholar 

  25. USEPA (2000) Introduction to phytoremediation EPA/600/R-99/107. Office of Research and Development. United States Environmental Protection Agency, Cincinnati, OH

    Google Scholar 

  26. Pala DM, Carvalho DD, Pinto JC, Sant’Anna GL Jr (2006) A suitable model to describe bioremediation of a petroleum-contaminated soil. Int Biodeter Biodegr 58:254–260

    Article  CAS  Google Scholar 

  27. Arthur EL, Rice PJ, Rice PJ, Anderson TA, Baladi SM, Henderson KLD, Coats JR (2005) Phytoremediation—an overview. Crit Rev Plant Sci 24:2

    Article  CAS  Google Scholar 

  28. Van Epps A (2006) Phytoremediation of petroleum hydrocarbons. https://clu-in.org/download/studentpapers/A_Van_Epps-Final.pdf

  29. Macek T, Mackova M, Kas J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34

    Article  CAS  PubMed  Google Scholar 

  30. Palmroth MRT, Pichtel J, Puhakka JA (2002) Phytoremediation of subarctic soil contaminated with diesel fuel. Bioresour Technol 84:221–228

    Article  CAS  PubMed  Google Scholar 

  31. Peña-Castro JM, Barrera-Figueroa BE, Fernández-Linares L, Ruiz-Medrano R, Xoconostle-Cázares B (2006) Isolation and identification of up-regulated genes in bermudagrass roots (Cynodon dactylon L.) grown under petroleum hydrocarbon stress. Plant Sci 170:724–731

    Article  CAS  Google Scholar 

  32. Ying X, Dongmei G, Judong L, Zhenyu W (2011) Plant–microbe interactions to improve crude oil degradation. Energy Procedia 5:844–848

    Article  CAS  Google Scholar 

  33. Sheng X, Chen X, He L (2008) Characteristics of an endophytic pyrene-degrading bacterium of Enterobacter sp. 12 J1 from Allium macrostemon Bunge. Int Biodeter Biodegr 62:88–95

    Article  CAS  Google Scholar 

  34. Lu S, Teng Y, Wang J, Sun Z (2010) Enhancement of pyrene removed from contaminated soils by Bidens maximowicziana. Chemosphere 81:645–650

    Article  CAS  PubMed  Google Scholar 

  35. McCrady J, McFarlane C, Lindstrom F (1987) The transport and affinity of substituted benzenes in soybeans stems. J Exp Bot 38:1875–1890

    Article  CAS  Google Scholar 

  36. Sandermann H Jr (1992) Plant metabolism of xenobiotics. Trends Biochem Sci 17:82–84

    Article  CAS  PubMed  Google Scholar 

  37. Meng L, Qiao M, Arp H (2011) Phytoremediation efficiency of a PAH-contaminated industrial soil using ryegrass, white clover, and celery as mono- and mixed cultures. J Soil Sediment 11:482–490

    Article  CAS  Google Scholar 

  38. Smiley RW (1974) Rhizosphere pH as influenced by plants, soils and nitrogen fertilizers. Soil Sci Soc Am J 38:795–799

    Article  CAS  Google Scholar 

  39. Donnelly PK, Hegde RS, Fletcher JS (1994) Growth of PCB-degrading bacteria on compounds from photosynthetic plants. Chemosphere 28:981–988

    Article  Google Scholar 

  40. Muratova AY, Turkovskaya O, Hubner T, Kuschk P (2003) Studies of the efficacy of alfalfa and reed in the phytoremediation of hydrocarbon-polluted soil. Appl Biochem Microbiol 39:599–605

    Article  CAS  Google Scholar 

  41. Juhanson J, Truu J, Heinaru E, Heinaru A (2007) Temporal dynamics of microbial community in soil during phytoremediation field experiment. J Environ Eng Landsc Manage 15:213–220

    Google Scholar 

  42. Nie M, Zhang X, Wang J, Jiang L, Yang J, Quan Z, Cui X, Fang C, Li B (2009) Rhizosphere effects on soil bacterial abundance and diversity in the Yellow River Deltaic ecosystem as influenced by petroleum contamination and soil salinization. Soil Biol Biochem 41:2535–2542

    Article  CAS  Google Scholar 

  43. Kaimi E, Mukaidani T, Miyoshi S, Tamaki M (2006) Ryegrass enhancement of biodegradation in diesel-contaminated soil. Environ Exp Bot 55:110–119

    Article  CAS  Google Scholar 

  44. Yousaf S, Ripka K, Reichenauer T, Andria V, Afzal M, Sessitsch A (2010) Hydrocarbon degradation and plant colonization by selected bacterial strains isolated from Italian ryegrass and birdsfoot trefoil. J Appl Microbiol 109:1389–1401

    Article  CAS  PubMed  Google Scholar 

  45. Hall J, Soole K, Bentham R (2011) Hydrocarbon phytoremediation in the family Fabacea – a review. Int J Phytoremediat 13:317–332

    Article  CAS  Google Scholar 

  46. Afzal M, Yousaf S, Reichenauer TG, Sessitsch A (2012) The inoculation method affetcs colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. Int J Phytoremediat 14:35–47

    Article  Google Scholar 

  47. Wang Z, Xu Y, Zhao J, Li F, Gao D, Xing B (2011) Remediation of petroleum contaminated soils through composting and rhizosphere degradation. J Hazard Mater 190:677–685

    Article  CAS  PubMed  Google Scholar 

  48. Muratova AY, Golubev SN, Dubrovskaya EV, Pozdnyakova NN, Panchenko LV, Pleshakova EV, Chernyshova MP, Turkovskaya OV (2012) Remediating abilities of different plant species grown in diesel-fuel-contaminated leached chernozem. Appl Soil Ecol 56:51–57

    Article  Google Scholar 

  49. Van Hecke MM, Treonis AM, Kaufman JR (2005) How does the fungal endophyte Neotyphodium coenophialum affect tall fescue (Festuca arundinacea) rhizodeposition and soil microorganisms? Plant Soil 275:101–109

    Article  CAS  Google Scholar 

  50. Hrynkiewicz K, Baum C (2012) The potential of rhizosphere microorganisms to promote the plant growth in disturbed soils. In: Malik A, Grohmann E (eds) Environmental protection strategies for sustainable development. Springer Science + Business Media B.V, Dordrecht

    Google Scholar 

  51. Leigh MB, Fletcher JS, Fu X, Schmitz FJ (2002) Root turnover: an important source of microbial substrates in rhizosphere remediation of recalcitrant contaminants. Environ Sci Technol 36:1579–1583

    Article  CAS  PubMed  Google Scholar 

  52. Olson PE, Reardon KF, Pilon-Smits EAH (2003) Ecology of rhizosphere bioremediation. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. Wiley, Hoboken, NJ, pp 317–353

    Chapter  Google Scholar 

  53. Toyama T, Furukawa T, Maeda N, Inoue D, Sei K, Mori K, Kikuchi S, Ike M (2011) Accelerated biodegradation of pyrene and benzo[a]pyrene in the Phragmites australis rhizosphere by bacteria-root exudate interactions. Water Res 45:1629–1638

    Article  CAS  PubMed  Google Scholar 

  54. Morgan JAW, Bending GD, White PJ (2005) Biological costs and benefits to plant–microbe interactions in the rhizosphere. J Exp Bot 56:1729–1739

    Article  CAS  PubMed  Google Scholar 

  55. Fan S, Li P, Gong Z, Ren W, He N (2008) Promotion of pyrene degradation in rhizosphere of alfalfa (Medicago sativa L.). Chemosphere 71:1593–1598

    Article  CAS  PubMed  Google Scholar 

  56. Cheema SA, Khan MI, Tang X, Zhang C, Shen C, Malik Z, Ali S, Yang J, Shen K, Chen X (2009) Enhancement of phenanthrene and pyrene degradation in rhizosphere of tall fescue (Festuca arundinacea). J Hazard Mater 166:1226–1231

    Article  CAS  PubMed  Google Scholar 

  57. Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant–microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591–598

    Article  CAS  PubMed  Google Scholar 

  58. Soleimani M, Afyuni M, Hajabbasi MA, Nourbakhsh F, Sabzalian MR, Christensen JH (2010) Phytoremediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses. Chemosphere 81:1084–1090

    Article  CAS  PubMed  Google Scholar 

  59. Brimecombe MJ, De Leij FAAM, Lynch JM (2007) Rhizodeposition and microbial populations. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil–plant interface. CRC, Taylor & Francis Group, Boca Raton, FL, pp 73–109

    Google Scholar 

  60. Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  61. Robinson D, Griffiths B, Ritz K, Wheatley R (1989) Root-induced nitrogen mineralisation: a theoretical analysis. Plant Soil 117:185–193

    Article  CAS  Google Scholar 

  62. Perotto S, Bonfante P (1997) Bacterial associations with mycorrhizal fungi: close and distant friends in the rhizosphere. Trends Microbiol 5:496–501

    Article  CAS  PubMed  Google Scholar 

  63. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  64. Smalla K, Wieland G, Buchner A, Zock A, Pary J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts reveald. Appl Environ Microbiol 67:4742–4251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Barriuso J, Pereyra MT, Lucas Garcia JA, Megias M, Gutierrez Manero FJ, Ramos B (2005) Screening for putative PGPR to improve establishment of the symbiosis Lactarius deliciosus-Pinus sp. Microb Ecol 50:82–89

    Article  CAS  PubMed  Google Scholar 

  66. Hrynkiewicz K, Ciesielska A, Haug I, Baum C (2010) Conditionality of ectomycorrhiza formation and willow growth promotion by associated bacteria: role of microbial metabolites and use of C sources. Biol Fertil Soil 46:139–150

    Article  CAS  Google Scholar 

  67. Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth promoting rhizobacteria for bioremediation. Environ Int 33:406–413

    Article  PubMed  Google Scholar 

  68. Ahmad F, Iqbal S, Anwar S, Afzal M, Islam E, Mustifa T, Khan QM (2012) Enhanced remediation of chlorpyrifos from soil using ryegrass (Lollium multiflorum) and chlorpyrifos-degrading bacterium Bacillus pumilus C2A1. J Hazard Mater 237–238:110–115

    Article  PubMed  CAS  Google Scholar 

  69. Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation in the rhizosphere: plant roots and associated microbes clean contaminated soil. Environ Sci Technol 27:2630–2636

    Article  CAS  Google Scholar 

  70. Whiting SN, de Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35:3144–3150

    Article  CAS  PubMed  Google Scholar 

  71. Hiifte M, Vande Woestyne M, Verstraete W (1994) Role of siderophores in plant growth promotion and plant protection by fluorescent pseudomonads. In: Manthey JA, Crowley DE, Luster DG (eds) Biochemistry of metal micronutrients in the rhizosphere. Lewis, Boca Raton, FL, pp 81–92

    Google Scholar 

  72. Johansen JE, Binnerup SJ (2002) Contribution of Cytophaga-like bacteria to the potential of turnover of carbon, nitrogen, and phosphorus by bacteria in the rhizosphere of barley (Hordeum vulgare L.). Microb Ecol 43:298–306

    Article  CAS  PubMed  Google Scholar 

  73. Tarkka M, Schrey S, Hampp R (2008) Plant associated micro-organisms. In: Nautiyal CS, Dion P (eds) Molecular mechanisms of plant and microbe coexistence. Springer, New York, pp 3–51

    Chapter  Google Scholar 

  74. Wang Y, Dai C-C (2011) Endophytes: a potential resource for biosynthesis, biotransformation, and biodegradation. Ann Microbiol 61:207–215

    Article  CAS  Google Scholar 

  75. Gurska J, Wang W, Gerhardt KE, Khalid AM, Isherwood DM, Huang X-D, Glick BR, Greenberg BM (2009) Three year field test of a plant growth promoting rhizobacteria enhanced phytoremediation system at a land farm for treatment of hydrocarbon waste. Environ Sci Technol 43:4472–4479

    Article  CAS  PubMed  Google Scholar 

  76. Ali N, Sorkhoh N, Salamah S, Eliyas M, Radwan S (2012) The potential of epiphytic hydrocarbon-utilizing bacteria on legume leaves for attenuation of atmospheric hydrocarbon pollutants. J Environ Manage 93:113–120

    Article  CAS  PubMed  Google Scholar 

  77. Read DJ (2002) Towards ecological relevance—progress and pitfalls in the path towards an understanding of mycorrhizal functions in nature. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin, pp 3–29

    Google Scholar 

  78. Torsvik V, Øvreås L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245

    Article  CAS  PubMed  Google Scholar 

  79. Tibbett M, Sanders FE, Cairney JWG (1998) The effect of temperature and inorganic phosphorus supply on growth and acid phosphatase production in arctic and temperate strains of ectomycorrhizal Hebeloma spp. in axenic culture. Mycol Res 102:129–135

    Article  CAS  Google Scholar 

  80. Andrews JH, Harris RF (2000) The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38:145–180

    Article  PubMed  Google Scholar 

  81. An QL, Yang XJ, Dong YM, Feng LJ, Kuang BJ, Li JD (2001) Using confocal laser scanning microscope to visualize the infection of rice roots by GFP-labelled Klebsiella oxytoca SA2, an endophytic diazotroph. Acta Bot Sin 43:558–564

    CAS  Google Scholar 

  82. Huang XD, El-Alawi Y, Gurska J, Glick BR, Greenberg BM (2004) A multiprocess phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut 130:465–476

    Article  CAS  PubMed  Google Scholar 

  83. Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant–microbe interaction. Mol Plant Microbe Interact 17:6–15

    Article  CAS  PubMed  Google Scholar 

  84. Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  85. Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  PubMed  Google Scholar 

  86. Newman LA, Reynolds CM (2005) Bacteria and phytoremediation: new uses for endophytic bacteria in plants. Trends Biotechnol 23:6–8

    Article  CAS  PubMed  Google Scholar 

  87. Juwarkar A, Singh S, Mudhoo A (2010) A comprehensive overview of elements in bioremediation. Rev Environ Sci Biotechnol 9:215–288

    Article  CAS  Google Scholar 

  88. Chouychai W, Thongkukiatkul A, Upatham S, Pokethitiyook P, Kruatrachue M, Lee H (2012) Effect of corn plant on survival and phenanthrene degradation capacity of Pseudomonas sp. UG14Lr in two soils. Int J Phytoremediat 14:585–595

    Article  CAS  Google Scholar 

  89. Hong SH, Ryu HW, Kim J, Cho KS (2011) Rhizoremediation of dieselcontaminated soil using the plant growth-promoting rhizobacterium Gordonia sp. S2RP-17. Biodegradation 22:593–601

    Article  CAS  PubMed  Google Scholar 

  90. Golubev SN, Muratova AY, Wittenmayer L, Bondarenkova AD, Hirche F, Matora LY, Merbach W, Turkovskaya OV (2011) Rhizosphere indole-3-acetic acid as a mediator in the Sorghum bicolor–phenanthrene–Sinorhizobium meliloti interactions. Plant Physiol Biochem 49:600–608

    Article  CAS  PubMed  Google Scholar 

  91. Yu XZ, Wu SC, Wu FY, Wong MH (2011) Enhanced dissipation of PAHs from soil using mycorrhizal ryegrass and PAH-degrading bacteria. J Hazard Mater 186:1206–1217

    Article  CAS  PubMed  Google Scholar 

  92. Muratova AY, Bondarenkova A, Panchenko L, Turkovskaya O (2010) Use of integrated phytoremediation for cleaning-up of oil-sludge-contaminated soil. Appl Biochem Microbiol 46:789–794

    Article  CAS  Google Scholar 

  93. Andria V, Reichenauer TG, Sessitsch A (2009) Expression of alkane monooxygenase (alkB) genes by plant-associated bacteria in the rhizosphere and endosphere of Italian ryegrass (Lolium multiflorum L.) grown in diesel contaminated soil. Environ Pollut 157:3347–3350

    Article  CAS  PubMed  Google Scholar 

  94. Muratova AY, Golubev S, Wittenmayer L, Dmitrieva T, Bondarenkova A, Hirche F, Merbach W, Turkovskaya O (2009) Effect of the polycyclic aromatic hydrocarbon phenanthrene on root exudation of Sorghum bicolor (L.) Moench. Environ Exp Bot 66:514–521

    Article  CAS  Google Scholar 

  95. Li JH, Gao Y, Wu SC, Cheung KC, Wang XR, Wong MH (2008) Physiological and biochemical responses of rice (Oryza sativa L.) to phenanthrene and pyrene. Int J Phytoremediat 10:106–118

    Article  CAS  Google Scholar 

  96. Child R, Anderson A, Miller C, Liang Y, Sims R (2007a) Pyrene mineralization by sp. strain KMS in a barley rhizosphere. J Environ Qual 36:1260–1265

    Article  CAS  PubMed  Google Scholar 

  97. Child R, Miller C, Liang Y, Narasimham G, Chatterton J, Harrison P, Sims R, Britt D, Anderson A (2007b) Polycyclic aromatic hydrocarbon-degrading Mycobacterium isolates: their association with plant roots. Appl Microbiol Biotechnol 75:655–663

    Article  CAS  PubMed  Google Scholar 

  98. Sheng XF, Gong JX (2006) Increased degradation of phenanthrene in soil by Pseudomonas sp. GF3 in the presence of wheat. Soil Biol Biochem 38:2587–2592

    Article  CAS  Google Scholar 

  99. Muratova AY, Turkovskaya OV, Antonyuk LP, Makarov OE, Pozdnyakova LI, Ignatov VV (2005) Oil-oxidizing potential of associative rhizobacteria of the genus Azospirillum. Microbiology 74:210–215

    Article  CAS  Google Scholar 

  100. Reed MLE, Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 51:1061–1069

    Article  CAS  PubMed  Google Scholar 

  101. Johnson DL, Maguire KL, Anderson DR, McGrath SP (2004) Enhanced dissipation of chrysene in planted soil: the impact of a rhizobial inoculum. Soil Biol Biochem 36:33–38

    Article  CAS  Google Scholar 

  102. Anokhina TO, Kochetkov VV, Zelenkova NF, Balakshina VV, Boronin AM (2004) Biodegradation of phenanthrene by Pseudomonas bacteria bearing rhizospheric plasmids in model plant–microbial associations. Appl Biochem Microbiol 40:568–572

    Article  CAS  Google Scholar 

  103. Kuiper I, Bloemberg GV, Lugtenberg BJJ (2001) Selection of a plant–bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbondegrading bacteria. Mol Plant Microbe Interact 14:1197–1205

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prayad Pokethitiyook Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pokethitiyook, P. (2017). Phytoremediation of Petroleum-Contaminated Soil in Association with Soil Bacteria. In: Ansari, A., Gill, S., Gill, R., R. Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-52381-1_4

Download citation

Publish with us

Policies and ethics