Skip to main content

Successful Integrated Bioremediation System of Hydrocarbon-Contaminated Soil at a Former Oil Refinery Using Autochthonous Bacteria and Rhizo-Microbiota

  • Chapter
  • First Online:
Phytoremediation

Abstract

The development of industrialized global economy have produced a strong contamination by the petroleum-based products resulting from the activities related to the petrochemical industry; in the last years, the hydrocarbons become one of the major environmental problems. Bioremediation is a new approach based on the use of microorganisms (bacteria and fungi) and plants, and it has been researched extensively for possible applications related to hydrocarbon degradation in the petroleum industry.

The scope of the application of this technology on soil of a former oil refinery is the production in situ of strong and diverse enzymatic activity such as to attack the hydrocarbon molecules through various routes of enzymatic degradation. The application of a remediation based on the biological degradation process by means of a strategy of action based on in situ degradation principles of aerobic bacteria, fungi, and plants either through biostimulation actions of the indigenous microbial population, both by increasing the content of the same flora through further introduction of native bacteria, fungi, and plants has the advantage of reducing the risks of residual contaminants and/or inverse transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seo JS, Keum YS, Li QX (2009) Bacterial degradation of aromatic compounds. Int J Environ Res Public Health 6:278–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mittal A, Singh P (2009) Isolation of hydrocarbon degrading bacteria from soils contaminated with crude oil spills. Ind J Exp Biol 47:760–765

    Google Scholar 

  3. Shen W, Zhu N, Cui J, Wang H, Dang Z, Wu P, Luo Y, Shi C (2016) Ecotoxicity monitoring and bioindicator screening of oil-contaminated soil during bioremediation. Ecotoxicol Environ Saf 124:120–128

    Article  CAS  PubMed  Google Scholar 

  4. Talley WF, Sleeper PM (2006) Roadblocks to the implementation of biotreatment strategies. Ann NY Acad Sci 829:16–29

    Article  Google Scholar 

  5. Agnello AC, Bagard M, van Hullebusch ED, Esposito G, Huguenot D (2016) Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci Total Environ 563–564:693–703

    Article  PubMed  Google Scholar 

  6. Adams GO, Fufeyin PT, Okoro SE, Ehinomen I (2015) Bioremediation, biostimulation and bioaugmention: a review. Int J Environ Bioremediat Biodegrad 3:28–39

    Google Scholar 

  7. Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 161:1–15

    Article  Google Scholar 

  8. Guarino C, Conte B, Spada V, Arena S, Sciarrillo R, Scaloni A (2014) Proteomic analysis of eucalyptus leaves unveils putative mechanisms involved in the plant response to a real condition of soil contamination by multiple heavy metals in the presence or absence of mycorrhizal/rhizobacterial additives. Environ Sci Technol 48:11487–11496

    Article  CAS  PubMed  Google Scholar 

  9. Kavamura VN, Esposito E (2010) Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol Adv 28:61–69

    Article  CAS  PubMed  Google Scholar 

  10. Cobbett CS, Meagher RB (2002) Arabidopsis and the genetic potential for the phytoremediation of toxic elemental and organic pollutants. Arabidopsis Book 1:e0032

    Article  PubMed  PubMed Central  Google Scholar 

  11. Miransari M (2011) Interactions between arbuscular mycorrhizal fungi and soil bacteria. Review. Appl Microbiol Biotechnol 89:917–930

    Article  CAS  PubMed  Google Scholar 

  12. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444

    Article  CAS  PubMed  Google Scholar 

  13. Jasmine J, Mukherji S (2014) Evaluation of bioaugmentation and biostimulation effects on the treatment of refinery oily sludge using 2(n) full factorial design. Environ Sci Process Impacts 16:1889–1896

    Article  CAS  PubMed  Google Scholar 

  14. Glick BR, Pattern CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London

    Book  Google Scholar 

  15. Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Article  CAS  PubMed  Google Scholar 

  16. Cheng Z, McConkey BJ, Glick BR (2010) Proteomic studies of plantebacterial interactions. Soil Biol Biochem 42:1673–1684

    Article  CAS  Google Scholar 

  17. Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Review. Biotechnol Adv 28:367–374

    Article  CAS  PubMed  Google Scholar 

  18. Gogoi BK, Dutta NN, Goswami P, Krishna Mohan TR (2003) A case study of bioremediation of petroleum-hydrocarbon contaminated soil at a crude oils pill site. Adv Environ Res 7:767–782

    Article  CAS  Google Scholar 

  19. Adetutu E, Weber J, Aller S, Dandie CE, Aburto-Medina A, Ball AS, Juhasz AL (2013) Assessing impediments to hydrocarbon biodegradation in weathered contaminated soils. J Hazard Mater 261:847–853

    Article  CAS  PubMed  Google Scholar 

  20. Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, Tian YS, Yao QH (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32:927–955

    Article  CAS  PubMed  Google Scholar 

  21. Chaudhary P, Sahay H, Sharma R, Pandey AK, Singh SB, Saxena AK, Nain L (2015) Identification and analysis of polyaromatic hydrocarbons (PAHs)-biodegrading bacterial strains from refinery soil of India. Environ Monit Assess 187:391

    Article  PubMed  Google Scholar 

  22. Sakthipriya N, Doble M, Sangwai JS (2016) Systematic investigations on the biodegradation and viscosity reduction of long chain hydrocarbons using Pseudomonas aeruginosa and Pseudomonas fluorescens. Environ Sci Process Impacts 18:386–397

    Article  CAS  PubMed  Google Scholar 

  23. Bento FM, Camargo FA, Okeke BC, Frankenberger WT (2005) Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour Technol 96:1049–1055

    Article  CAS  PubMed  Google Scholar 

  24. Couto MN, Monteiro E, Vasconcelos MT (2010) Mesocosm trials of bioremediation of contaminated soil of a petroleum refinery: comparison of natural attenuation, biostimulation and bioaugmentation. Environ Sci Pollut Res Int 17:1339–1346

    Article  CAS  PubMed  Google Scholar 

  25. Afzal M, Yousaf S, Reichenauer TG, Sessitsch A (2012) The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. Int J Phytorem 14:35–47

    Article  Google Scholar 

  26. Silva ÍS, Santos EC, Menezes CR, Faria AF, Franciscon E, Grossman M (2009) Bioremediation of a polyaromatic hydrocarbon contaminated soil by native soil microbiota and bioaugmentation with isolated microbial consortia. Bioresour Technol 100:4669–4675

    Article  CAS  PubMed  Google Scholar 

  27. Hou J, Liu W, Wang B, Wang Q, Luo Y, Franks AE (2015) PGPR enhanced phytoremediation of petroleum contaminated soil and rhizosphere microbial community response. Chemosphere 138:592–598

    Article  CAS  PubMed  Google Scholar 

  28. Macci C, Peruzzi E, Doni S, Poggio G, Masciandaro G (2016) The phytoremediation of an organic and inorganic polluted soil: a real scale experience. Int J Phytoremediat 18:378–386

    Article  CAS  Google Scholar 

  29. Cicero-Fernández D, Peña-Fernández M, Expósito-Camargo JA, Antizar-Ladislao B (2016) Role of Phragmites australis (common reed) for heavy metalsphytoremediation of estuarine sediments. Int J Phytoremediat 18:575–582

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmine Guarino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Spada, V., Iavazzo, P., Sciarrillo, R., Guarino, C. (2017). Successful Integrated Bioremediation System of Hydrocarbon-Contaminated Soil at a Former Oil Refinery Using Autochthonous Bacteria and Rhizo-Microbiota. In: Ansari, A., Gill, S., Gill, R., R. Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-52381-1_3

Download citation

Publish with us

Policies and ethics