Skip to main content

Genetic Control of Metal Sequestration in Hyper-Accumulator Plants

  • Chapter
  • First Online:
Phytoremediation

Abstract

Heavy metal contamination is an emergent environmental dilemma all over the world, posing serious threat to environment as well as human being by disturbing the ecological balance. There are a number of physical, chemical, and biological techniques applicable worldwide for wastewater treatment, but the phytoremediation techniques are the green, sustainable, and promising solutions to problem of environmental contamination. Studies revealed that there are certain hyper-accumulator genes present in plants, which make them more metal tolerant than non-hyper-accumulator plants species where those genes are absent. In addition, hyper-accumulator plants tackle with heavy metals by activating their responsive genes for chelation, trafficking, and sequestration. Therefore, studying such hyper-accumulator genes opens a gateway for the thorough understanding of phytoremediation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Al:

Aluminum

BjMT:

Brassica juncea metallothioneins

Ca:

Calcium

CaM:

Calmodulin

CBL:

Calcineurin B-like protein

CIPK:

Calcium-interacting protein kinase

CRKs:

Cysteine-rich receptor-like kinases

DHAR:

Dehydroascorbate reductase

DNA:

Deoxyribonucleic acid

GR:

Glutathione reductase

GSH:

Glutathione

H2O2 :

Hydrogen peroxide

K:

Kalium (potassium)

MAPK:

Mitogen-activated protein kinase

MDHAR:

Monodehydroascorbate reductase

MV:

Methyl viologen

MTs:

Metallothioneins

OSMT:

Oryza sativa metallothioneins

PCs:

Phytochelatins

RLKs:

Receptor-like kinases

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

tApx:

Tobacco ascorbate peroxidase

References

  1. Annan K, Dickson RA, Amponsah IK, Nooni IK (2013) The heavy metal contents of some selected medicinal plants sampled from different geographical locations. Pharmacognosy Res 5(2):103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Mirza N, Pervez A, Mahmood Q, Ahmed SS (2010) Phytoremediation of Arsenic (As) and Mercury (Hg) from contaminated soil. World Appl Sci J 8(1):113–118

    CAS  Google Scholar 

  3. Favas PJ, Varun M, DSouza R, Paul MS (2014) Phytoremediation of soils contaminated with metals and metalloids at mining areas: potential of native flora. In: Hernández-Soriano MC (ed) Environmental risk assessment of soil contamination. InTech, Croatia, pp 485–517

    Google Scholar 

  4. Shabani N, Sayadi MH (2012) Evaluation of heavy metals accumulation by two emergent macrophytes from the polluted soil: an experimental study. Environmentalist 32(1):91–98

    Article  Google Scholar 

  5. Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180(2):169–181

    Article  CAS  PubMed  Google Scholar 

  6. He J, Qin J, Long L, Ma Y, Li H, Li K, Jiang X, Liu T, Polle A, Liang Z et al (2011) Net cadmium flux and accumulation reveal tissue-specific oxidative stress and detoxification in Populus × canescens. Physiol Plant 143:50–63

    Article  CAS  PubMed  Google Scholar 

  7. Carrasco-Gil S, Estebaranz-Yubero M, Medel-Cuesta D, Millan R, Hernandez LE (2012) Influence of nitrate fertilization on Hg uptake and oxidative stress parameters in alfalfa plants cultivated in a Hg-polluted soil. Environ Exp Bot 75:16–24

    Article  CAS  Google Scholar 

  8. Chen F, Gao J, Zhou Q (2012) Toxicity assessment of simulated urban runoff containing polycyclic musks and cadmium in Carassiusauratus using oxidative stress biomarkers. Environ Pollut 162:91–97

    Article  CAS  PubMed  Google Scholar 

  9. Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77(3):229–236

    Article  CAS  PubMed  Google Scholar 

  10. Tang K, Zhan JC, Yang HR, Huang WD (2010) Changes of resveratrol and antioxidant enzymes during UV-induced plant defense response in peanut seedlings. J Plant Physiol 167:95–102

    Article  CAS  PubMed  Google Scholar 

  11. Alvarez R, Hoyo AD, Garcia-Breijo F, Reig-Arminana J, del Campo EM, Guera A, Barreno E, Casano LM (2012) Different strategies to achieve Pb-tolerance by the two Trebouxia algae coexisting in the lichen Ramalinafarinacea. J Plant Physiol 169(18):1797–1806

    Article  CAS  PubMed  Google Scholar 

  12. Manara A (2012) Plant responses to heavy metal toxicity. In: Furini A (ed) Plants and heavy metals. Springer briefs in molecular science. Springer, Dordrecht, pp 27–53

    Google Scholar 

  13. Viehweger K (2014) How plants cope with heavy metals. Bot Stud 55(1):35

    Article  CAS  Google Scholar 

  14. Patra M, Bhowmik N, Bandopadhyay B, Sharma A (2004) Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot 52(3):199–223

    Article  CAS  Google Scholar 

  15. Dalvi AA, Bhalerao SA (2013) Response of plants towards heavy metal toxicity: an overview of avoidance, tolerance and uptake mechanism. Ann Plant Sci 2(9):362–368

    Google Scholar 

  16. Pellet DM, Grunes DL, Kochian LV (1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.). Planta 196(4):788–795

    Article  CAS  Google Scholar 

  17. Pinto AP, Simões I, Mota AM (2008) Cadmium impact on root exudates of sorghum and maize plants: a speciation study. J Plant Nutr 31(10):1746–1755

    Article  CAS  Google Scholar 

  18. Zhu XF, Zheng C, Hu YT et al (2011) Cadmium-induced oxalate secretion from root apex is associated with cadmium exclusion and resistance in Lycopersicon esulentum. Plant Cell Environ 34(7):1055–1064

    Article  CAS  PubMed  Google Scholar 

  19. Yang LT, Qi YP, Jiang HX, Chen LS (2012) Roles of organic acid anion secretion in aluminium tolerance of higher plants. Biomed Res Int 2013:Article 173682

    Google Scholar 

  20. Maksymiec W (2007) Signaling responses in plants to heavy metal stress. Acta Physiol Plant 29(3):177–187

    Article  CAS  Google Scholar 

  21. DalCorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5(6):663–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Harir Y, Mittler R (2009) The ROS signaling network of cells. In: Reactive oxygen species in plant signaling. Springer, Berlin, pp 165–174

    Chapter  Google Scholar 

  23. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120(4):483–495

    Article  CAS  PubMed  Google Scholar 

  24. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:Article ID 217037

    Google Scholar 

  25. Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    Article  CAS  PubMed  Google Scholar 

  26. Miller G, Schlauch K, Tam R et al (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal 2(84):ra45

    Article  PubMed  Google Scholar 

  27. Shiu SH, Bleecker AB (2003) Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132(2):530–543

    Article  CAS  PubMed  Google Scholar 

  28. Lehti-Shiu MD, Zou C, Hanada K, Shiu SH (2009) Evolutionary history and stress regulation of plant receptor-like kinase/pelle genes. Plant Physiol 150(1):12–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wrzaczek M, Brosche M, Salojarvi J et al (2010) Transcriptional regulation of the CRK/DUF26 group of receptor-like protein kinases by ozone and plant hormones in Arabidopsis. BMC Plant Biol 10:95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Idanheimo N, Gauthier A, Salojarvi J et al (2014) The Arabidopsis thaliana cysteine-rich receptor-like kinases CRK6 and CRK7 protect against apoplastic oxidative stress. Biochem Biophys Res Commun 445:457–462

    Article  CAS  PubMed  Google Scholar 

  31. Wrzaczek M, Brosche M, Kangasjarvi J (2013) ROS signaling loops—production, perception, regulation. Curr Opin Plant Biol 16(5):575–582

    Article  CAS  PubMed  Google Scholar 

  32. Munne-Bosch S, Queval G, Foyer CH (2013) The impact of global change factors on redox signaling underpinning stress tolerance. Plant Physiol 161(1):5–19

    Article  CAS  PubMed  Google Scholar 

  33. Van Norman JM, Breakfield NW, Benfey PN (2011) Intercellular communication during plant development. Plant Cell 23(3):855–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tsukagoshi H, Busch W, Benfey PN (2010) Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143(4):606–616

    Article  CAS  PubMed  Google Scholar 

  35. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  36. Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  37. Mahaja S, Sopoy SK, Tuteja N (2006) CBL-CIPK paradigm: role in calcium and stress signaling in plants. Proc Indian Nat Sci Acad 72:63–78

    Google Scholar 

  38. Xiang Y, Huang Y, Xiong L (2007) Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol 144(3):1416–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hashimoto K, Kudla J (2011) Calcium decoding mechanisms in plants. Biochimie 93(12):2054–2059

    Article  CAS  PubMed  Google Scholar 

  40. DeFalco TA, Chiasson D, Munro K, Kaiser BN, Snedden WA (2010) Characterization of GmCaMK1, a member of a soybean calmodulin-binding receptor-like kinase family. FEBS Lett 584(23):4717–4724

    Article  CAS  PubMed  Google Scholar 

  41. Sanders D, Brownlee C, Harper JF (1999) Communicating with calcium. Plant Cell 11(4):691–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tuteja N (2009) Integrated calcium signaling in plants. In: Baluška F, Mancuso S (eds) Signaling in plants. Springer, Berlin, pp 29–49

    Google Scholar 

  43. Hetherington A, Trewavas A (1982) Calcium-dependent protein kinase in pea shoot membranes. FEBS Lett 145(1):67–71

    Article  CAS  Google Scholar 

  44. Das R, Pandey GK (2010) Expressional analysis and role of calcium regulated kinases in abiotic stress signaling. Curr Genomics 11(1):2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang T, Poovaiah BW (2003) Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci 8(10):505–512

    Article  CAS  PubMed  Google Scholar 

  46. Gu Z, Ma B, Jiang Y, Chen Z, Su X, Zhang H (2008) Expression analysis of the calcineurin B-like gene family in rice (Oryza sativa L.) under environmental stresses. Gene 415(1):1–12

    Article  CAS  PubMed  Google Scholar 

  47. Tripathi V, Parasuraman B, Laxmi A, Chattopadhyay D (2009) CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. Plant J 58(5):778–790

    Article  CAS  PubMed  Google Scholar 

  48. Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R, Fromm H (2006) Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis. Plant Cell 18:2733–2748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Harada A, Shimazaki KI (2006) Phototropins and blue light-dependent calcium signaling in higher plants. Photochem Photobiol 83(1):102–111

    Article  CAS  Google Scholar 

  50. Martinez-Noel G, Tognetti J, Nagaraj V, Wiemken A, Pontis H (2006) Calcium is essential for fructan synthesis induction mediated by sucrose in wheat. Planta 225:183–191

    Article  CAS  PubMed  Google Scholar 

  51. Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14(1):165–183

    Article  CAS  Google Scholar 

  52. Cheng Y, Song C (2006) Hydrogen peroxide homeostasis and signaling in plant cells. Sci China C Life Sci 49(1):1–11

    Article  CAS  PubMed  Google Scholar 

  53. Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signaling. Curr Opin Plant Biol 5(5):388–395

    Article  CAS  PubMed  Google Scholar 

  54. Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133(3):481–489

    Article  CAS  PubMed  Google Scholar 

  55. Orozco-Cárdenas ML, Narváez-Vásquez J, Ryan CA (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13(1):191

    Article  Google Scholar 

  56. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol 49:249–279

    Article  CAS  Google Scholar 

  57. Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photoinhibition topics of photosynthesis. Elsevier, Amsterdam, pp 227–287

    Google Scholar 

  58. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  59. Fedoroff N (2006) Redox regulatory mechanisms in cellular stress responses. Ann Bot 98(2):289–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sanderfoot AA, Assaad FF, Raikhel NV (2000) The Arabidopsis genome. An abundance of soluble N-ethylmaleimide-sensitive factor adaptor protein receptors. Plant Physiol 124(4):1558–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yan J, Tsuichihara N, Etoh T, Iwai S (2007) Reactive oxygen species and nitric oxide are involved in ABA inhibition of stomatal opening. Plant Cell Environ 30(10):1320–1325

    Article  CAS  PubMed  Google Scholar 

  62. Kwak JM, Mori IC, Pei ZM et al (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22(11):2623–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  CAS  PubMed  Google Scholar 

  64. Bethke PC, Jones RL (2001) Cell death of barley aleurone protoplasts is mediated by reactive oxygen species. Plant J 25(1):19–29

    Article  CAS  PubMed  Google Scholar 

  65. Joo JH, Bae YS, Lee JS (2001) Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol 126(3):1055–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Torres MA, Dangl JL, Jones JDG (2002) Arabidopsis gp91phox homologues Atrbohd and Atrbohf are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci U S A 99(1):517–522

    Article  CAS  PubMed  Google Scholar 

  67. Locato V, de Pinto MC, Paradiso A, de Gara L (2010) Reactive oxygen species and ascorbate—glutathione interplay in signaling and stress responses. In: Gupta DS (ed) Reactive oxygen species and antioxidants in higher plants. CRC Press, New York, pp 45–64

    Chapter  Google Scholar 

  68. Jonak C, Nakagami H, Hirt H (2004) Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol 136(2):3276–3283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Santos M, Gousseau H, Lister C, Foyer C, Creissen G, Mullineaux P (1996) Cytosolic ascorbate peroxidase from Arabidopsis thaliana L. is encoded by a small multigene family. Planta 198(1):64–69

    Article  CAS  PubMed  Google Scholar 

  70. Goyer C, Haslekås M, Miginiac-Maslow M et al (2002) Isolation and characterization of a thioredoxin-dependent peroxidase from Chlamydomonas reinhardtii. Eur J Biochem 269(1):272–282

    Article  CAS  PubMed  Google Scholar 

  71. Wang Y, Wisniewski M, Meilan R, Cui M, Webb R, Fuchigami L (2005) Overexpression of cytosolic ascorbate peroxidase in tomato confers tolerance to chilling and salt stress. J Am Soc Hortic Sci 130(2):167–173

    CAS  Google Scholar 

  72. Yabuta Y, Motoki T, Yoshimura K, Takeda T, Ishikawa T, Shigeoka S (2002) Thylakoid membrane-bound ascorbate peroxidase is a limiting factor of antioxidative systems under photo-oxidative stress. Plant J 32(6):915–925

    Article  CAS  PubMed  Google Scholar 

  73. Sharma P, Dubey RS (2007) Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep 26(11):2027–2038

    Article  CAS  PubMed  Google Scholar 

  74. Li E, Chen L, Zeng C, Chen X, Yu N, Lai Q, Qin JG (2007) Growth, body composition, respiration and ambient ammonia nitrogen tolerance of the juvenile white shrimp, Litopenaeus vannamei, at different salinities. Aquaculture 265(1):385–390

    Article  CAS  Google Scholar 

  75. Rahaie M, Naghavi MR, Alizadeh H, Malboobi MA, Dimitrov K (2011) A novel DNA-based nanostructure for single molecule detection purposes. Int J Nanotechnol 8(6–7):458–470

    Article  CAS  Google Scholar 

  76. Rahaie M, Gomarian M, Alizadeh H, Malboobi MA, Naghavi MR (2011) The expression analysis of transcription factors under long term salt stress in tolerant and susceptible wheat (Triticum aestivum L) genotypes using Reverse Northern Blot. Iranian J Crop Sci 13(3):580–595

    Google Scholar 

  77. Eltayeb E, Kawano N, Badawi GH et al (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225(5):1255–1264

    Article  CAS  PubMed  Google Scholar 

  78. Li F, Wu QY, Sun YL, Wang LY, Yang XH, Meng QW (2010) Overexpression of chloroplastic monodehydroascorbate reductase enhanced tolerance to temperature and methyl viologen-mediated oxidative stresses. Physiol Plant 139(4):421–434

    CAS  PubMed  Google Scholar 

  79. Rubio MI, Escrig I, Martinez-Cortina C, Lopez-Banet FJ, Sanz A (1994) Cadmium and nickel accumulation in rice plants: effects on mineral nutrition and possible interactions of abscisic and gibberellic acids. Plant Growth Regul 14:151–157

    Article  CAS  Google Scholar 

  80. Eltayeb AE, Yamamoto S, Habora MEE, Yin L, Tsujimoto H, Tanaka K (2011) Transgenic potato overexpressing Arabidopsis cytosolic AtDHAR1 showed higher tolerance to herbicide, drought and salt stresses. Breed Sci 61(1):3–10

    Article  CAS  Google Scholar 

  81. Kwon SY, Jeong YJ, Lee HS, Kim JS, Cho KY, Allen RD, Kwak SS (2002) Enhanced tolerances of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen-mediated oxidative stress. Plant Cell Environ 25(7):873–882

    Article  Google Scholar 

  82. Lim S, Kim YH, Kim SH et al (2007) Enhanced tolerance of transgenic sweetpotato plants that express both Cu Zn SOD and APX in chloroplasts to methyl viologen-mediated oxidative stress and chilling. Mol Breed 19(3):227–239

    Article  CAS  Google Scholar 

  83. Kwak SS, Lim S, Tang L, Kwon SY, Lee HS (2009) Enhanced tolerance of transgenic crops expressing both SOD and APX in chloroplasts to multiple environmental stress. In: Ashraf M, Ozturk M, Athar HR (eds) Salinity and water stress improving crop efficiency. Springer, Berlin, pp 197–203

    Google Scholar 

  84. Lim CJ, Hwang JE, Chen H, Hong JK, Yang KA, Choi MS et al (2007) Over-expression of the Arabidopsis DRE/CRT-binding transcription factor DREB2C enhances thermotolerance. Biochem Biophys Res Commun 362(2):431–436

    Article  CAS  PubMed  Google Scholar 

  85. Tseng MJ, Liu CW, Yiu JC (2008) Tolerance to sulfur dioxide in transgenic Chinese cabbage transformed with both the superoxide dismutase containing manganese and catalase genes of Escherichia coli. Sci Horticult 115(2):101–110

    Article  CAS  Google Scholar 

  86. Aono M, Saji H, Sakamoto A, Tanaka K, Kondo N, Tanaka K (1995) Paraquat tolerance of transgenic Nicotianatabacum with enhanced activities of glutathione reductase and superoxide dismutase. Plant Cell Physiol 36(8):1687–1691

    CAS  PubMed  Google Scholar 

  87. Lee YP, Kim SH, Bang JW, Lee HS, Kwak SS, Kwon SY (2007) Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Rep 26(5):591–598

    Article  CAS  PubMed  Google Scholar 

  88. Eapen S, D’souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23(2):97–114

    Article  CAS  PubMed  Google Scholar 

  89. Verbruggen N, LeDuc D, Vanek T (2009) Potential of plant genetic engineering for phytoremediation of toxic trace elements. Phytotechnologies solutions for sustainable land management. Eolss Publishers, Oxford

    Google Scholar 

  90. Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54(393):2601–2613

    Article  CAS  PubMed  Google Scholar 

  91. Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50(2):207–218

    Article  CAS  PubMed  Google Scholar 

  92. Plaza S, Tearall KL, Zhao FJ, Buchner P, McGrath SP, Hawkesford MJ (2007) Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspicaerulescens. J Exp Bot 58(7):1717–1728

    Article  CAS  PubMed  Google Scholar 

  93. Kramer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581(12):2263–2272

    Article  PubMed  CAS  Google Scholar 

  94. Puig S, Andres-Colas NURIA, Garcia-Molina A, PeNarrubia L (2007) Copper and iron homeostasis in Arabidopsis: responses to metal deficiencies, interactions and biotechnological applications. Plant Cell Environ 30(3):271–290

    Article  CAS  PubMed  Google Scholar 

  95. Clemens S, Aarts MG, Thomine S, Verbruggen N (2013) Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci 18(2):92–99

    Article  CAS  PubMed  Google Scholar 

  96. Milner MJ, Seamon J, Craft E, Kochian LV (2013) Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J Exp Bot 64(1):369–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kabata-Pendias A (2004) Soil–plant transfer of trace elements—an environmental issue. Geoderma 122(2):143–149

    Article  CAS  Google Scholar 

  98. Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181(4):759–776

    Article  CAS  PubMed  Google Scholar 

  99. Won CKE, Cobbett CS (2009) HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytol 181(1):71–78

    Article  CAS  Google Scholar 

  100. Courbot M, Willems G, Motte P, Arvidsson S, Roosens N, Saumitou-Laprade P, Verbruggen N (2007) A major quantitative trait locus for cadmium tolerance in Arabidopsis hallericolocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol 144(2):1052–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Siemianowski O, Barabasz A, Weremczuk A, Ruszczyńska A, Bulska E, Williams LE, Antosiewicz D (2013) Development of Zn-related necrosis in tobacco is enhanced by expressing AtHMA4 and depends on the apoplastic Zn levels. Plant Cell Environ 36(6):1093–1104

    Article  CAS  PubMed  Google Scholar 

  102. Menguer PK, Farthing E, Peaston KA, Ricachenevsky FK, Fett JP, Williams LE (2013) Functional analysis of the rice vacuolar zinc transporter OsMTP1. J Exp Bot 64(10):2871–2883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Krämer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453(7193):391–395

    Article  CAS  PubMed  Google Scholar 

  104. Axelsen KB, Palmgren MG (2001) Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiol 126(2):696–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Delhaize E, Gruber BD, Pittman JK, White RG, Leung H, Miao Y, Richardson AE (2007) A role for the AtMTP11 gene of Arabidopsis in manganese transport and tolerance. Plant J 51(2):198–210

    Article  CAS  PubMed  Google Scholar 

  106. Mari S, Lebrun M (2006) Metal immobilization: where and how?. In: Tamas MJ, Martinoia E (eds) Molecular biology of metal homeostasis and detoxification. Springer, Berlin, pp 273–298

    Google Scholar 

  107. Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K (2014) Remediation of heavy metal (loid) s contaminated soils—to mobilize or to immobilize? J Hazard Mater 266(2014):141–166

    Article  CAS  PubMed  Google Scholar 

  108. Kang SH, Singh S, Kim JY, Lee W, Mulchandani A, Chen W (2007) Bacteria metabolically engineered for enhanced phytochelatin production cadmium accumulation. Appl Environ Microbiol 73:6317–6320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212(4):475–486

    Article  CAS  PubMed  Google Scholar 

  110. Mejáre M, Bülow L (2001) Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19(2):67–73

    Article  PubMed  Google Scholar 

  111. Thomas M, Lieberman J, Lal A (2010) Desperately seeking microRNA targets. Nat Struct Mol Biol 17(10):1169–1174

    Article  CAS  PubMed  Google Scholar 

  112. Hassan Z, Aarts MG (2011) Opportunities and feasibilities for biotechnological improvement of Zn, Cd or Ni tolerance and accumulation in plants. Environ Exp Bot 72(1):53–63

    Article  CAS  Google Scholar 

  113. Anjum NA, Srikanth K, Mohmood I, Sayeed I, Trindade T, Duarte AC et al (2014) Brain glutathione redox system significance for the control of silica-coated magnetite nanoparticles with or without mercury co-exposures mediated oxidative stress in European eel (Anguilla anguilla L.). Environ Sci Pollut Res 21(12):7746–7756

    Article  CAS  Google Scholar 

  114. Anjum NA, Aref IM, Duarte AC, Pereira E, Ahmad I, Iqbal M (2014) Glutathione and proline can coordinately make plants withstand the joint attack of metal (loid) and salinity stresses. Front Plant Sci 5:662

    Article  PubMed  PubMed Central  Google Scholar 

  115. Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13(3):3145–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Seth CS, Remans T, Keunen E, Jozefczak M, Gielen H, Opdenakker K et al (2012) Phytoextraction of toxic metals: a central role for glutathione. Plant Cell Environ 35(2):334–346

    Article  CAS  PubMed  Google Scholar 

  117. Anjum NA, Hasanuzzaman M, Hossain MA, Thangavel P, Roychoudhury A, Gill SS, Rodrigo MAM, Adam V, Fujita M, Kizek R, Duarte AC, Pereira E, Ahmad I (2015) Jacks of metal/metalloid chelation trade in plants –– an overview. Front Plant Sci 6:192–209

    Google Scholar 

  118. Yuzefovych LV, Musiyenko SI, Wilson GL, Rachek LI (2013) Mitochondrial DNA damage and dysfunction, and oxidative stress are associated with endoplasmic reticulum stress, protein degradation and apoptosis in high fat diet-induced insulin resistance mice. PLoS One 8(1):e54059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kotrba P, Doleckova L, de Lorenzo V, Ruml T (1999) Enhanced bioaccumulation of heavy metal ions by bacterial cells due to surface display of short metal binding peptides. Appl Environ Microbiol 65:1092–1098

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Cobbett C, Meagher R (2002) Phytoremediation the Arabidopsis proteome. In: Somerville C (ed) Arabidopsis. Cold Spring Harbor Laboratory Press, New York, pp 1–22

    Google Scholar 

  121. Ramos J, Naya L, Gay M, Abian J et al (2008) Functional characterization of an unusual phytochelatin synthase, LjPCS3, of Lotus japonicus. Plant Physiol 148:536–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cobbett CS (2000) Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr Opin Plant Biol 3(3):211–216

    Article  CAS  PubMed  Google Scholar 

  123. Sauge-Merle S, Cuine S, Carrier P, Lecomte-Pradines C, Luu DT, Peltier G (2003) Enhanced toxic metal accumulation in engineered bacterial cells expressing Arabidopsis thaliana phytochelatin synthase. Appl Environ Microbiol 69:490–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wojas S, Clemens S, SkŁodowska A, Antosiewicz DM (2010) Arsenic response of AtPCS1-and CePCS-expressing plants—effects of external As (V) concentration on As-accumulation pattern and NPT metabolism. J Plant Physiol 167(3):169–175

    Article  CAS  PubMed  Google Scholar 

  125. Liu GY, Zhang YX, Chai TY (2011) Phytochelatin synthase of Thlaspi caerulescens enhanced tolerance and accumulation of heavy metals when expressed in yeast and tobacco. Plant Cell Rep 30:1067–1076

    Article  CAS  PubMed  Google Scholar 

  126. Verkleij JAC, Sneller FEC, Schat H (2003) Metallothioneins and phytochelatins: ecophysiological aspects. In: Abrol YP, Ahmad A (eds) Sulphur in plants. Springer, Dordrecht, pp 163–176

    Chapter  Google Scholar 

  127. Yang Z, Chu C (2011) Towards understanding plant response to heavy metal stress. In: Shanker A (ed) Abiotic stress in plants—mechanisms and adaptations. InTech, Croatia, pp 59–78

    Google Scholar 

  128. Leszczyszyn OI, Imam HT, Blindauer CA (2013) Diversity and distribution of plant metallothioneins: a review of structure, properties and functions. Metallomics 5(9):1146–1169

    Article  CAS  PubMed  Google Scholar 

  129. Memon R, Aktoprakligil D, Zdemur A, Vertii A (2001) Heavy metal accumulation and detoxification mechanisms in plants. Turk J Bot 25(3):111–121

    Google Scholar 

  130. Guo JL, Xu LP, Su YC et al (2013) ScMT2-1-3, a metallothionein gene of sugarcane, plays an important role in the regulation of heavy metal tolerance/accumulation. Biomed Res Int 2013:904769

    PubMed  PubMed Central  Google Scholar 

  131. Kohler A, Blaudez D, Chalot M, Martin F (2004) Cloning and expression of multiple metallothioneins from hybrid poplar. New Phytol 164(1):83–93

    Article  CAS  Google Scholar 

  132. Wong HL, Sakamoto T, Kawasaki T, Umemura K, Shimamoto K (2004) Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiol 135(3):1447–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Macovei L, Ventura M, Dona MF, Balestrazzi A, Carbonera D (2010) Effects of heavy metal treatments on metallothionein expression profiles in white poplar (Populusalba L.) cell suspension cultures. Fascicula Biol 18(2):274–279

    Google Scholar 

  134. Mishra S, Dubey RS (2006) Heavy metal uptake and detoxification mechanisms in plants. Int J Agric Res 1(2):122–141

    Article  CAS  Google Scholar 

  135. Grennan AK (2011) Metallothioneins, a diverse protein family. Plant Physiol 155(4):1750–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Du J, Yang JL, Li CH (2012) Advances in metallotionein studies in forest trees. Plant Omics 5(1):46–51

    CAS  Google Scholar 

  137. Kumar SV, Tan SG, Quah SC, Yusoff K (2002) Isolation and characterization of seven tetranucleotide microsatellite loci in mungbean, Vigna radiata. Mol Ecol Notes 2(3):293–295

    Article  CAS  Google Scholar 

  138. Zhigang A, Cuijie L, Yuangang Z, Yejie D, Wachter A, Gromes R, Rausch T (2006) Expression of BjMT2, a metallothionein 2 from Brassica juncea, increases copper and cadmium tolerance in Escherichia coli and Arabidopsis thaliana, but inhibits root elongation in Arabidopsis thaliana seedlings. J Exp Bot 57(14):3575–3582

    Article  PubMed  CAS  Google Scholar 

  139. Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012, Article ID 872875

    Google Scholar 

  140. Kangasjarvi S, Kangasjarvi J (2014) Towards understanding extracellular ROS sensory and signaling systems in plants. Adv Bot 2014:Article ID 538946

    Google Scholar 

  141. Pottosin I, Velarde-Buendía AM, Bose J, Zepeda-Jazo I, Shabala S, Dobrovinskaya O (2014) Cross-talk between reactive oxygen species and polyamines in regulation of ion transport across the plasma membrane: implications for plant adaptive responses. J Exp Bot 65(5):1271–1283

    Article  CAS  PubMed  Google Scholar 

  142. Xing Y, Jia W, Zhang J (2008) AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J 54(3):440–451

    Article  CAS  PubMed  Google Scholar 

  143. Velarde-Buendía AM, Shabala S, Cvikrova M, Dobrovinskaya O, Pottosin I (2012) Salt-sensitive and salt-tolerant barley varieties differ in the extent of potentiation of the ROS-induced K+ efflux by polyamines. Plant Physiol Biochem 61:18–23

    Article  PubMed  CAS  Google Scholar 

  144. Hirayama T, Shinozaki K (2007) Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci 12(8):343–351

    Article  CAS  PubMed  Google Scholar 

  145. Xuan Y, Zhou S, Wang L, Cheng Y, Zhao L (2010) Nitric oxide functions as a signal and acts upstream of AtCaM3 in thermotolerance in Arabidopsis seedlings. Plant Physiol 153(4):1895–1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Liu HT, Sun DY, Zhou RG (2005) Ca2+ and AtCaM3 are involved in the expression of heat shock protein gene in Arabidopsis. Plant Cell Environ 28(10):1276–1284

    Article  CAS  Google Scholar 

  147. Wu HC, Luo DL, Vignols F, Jinn TL (2012) Heat shock-induced biphasic Ca2+ signature and OsCaM1-1 nuclear localization mediate downstream signalling in acquisition of thermotolerance in rice (Oryza sativa L.). Plant Cell Environ 35(9):1543–1557

    Article  CAS  PubMed  Google Scholar 

  148. Park HC, Kim ML, Kang YH, Jeon JM, Yoo JH, Kim MC et al (2004) Pathogen-and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol 135(4):2150–2161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Liu HT, Li B, Shang ZL, Li XZ, Mu RL, Sun DY et al (2003) Calmodulin is involved in heat shock signal transduction in wheat. Plant Physiol 132:1186–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Park HC, Park CY, Koo SC, Cheong MS, Kim KE, Kim MC, Chung WS (2010) AtCML8, a calmodulin-like protein, differentially activating CaM-dependent enzymes in Arabidopsis thaliana. Plant Cell Rep 29(11):1297–1304

    Article  CAS  PubMed  Google Scholar 

  151. Magnan F, Ranty B, Charpenteau M, Sotta B, Galaud JP, Aldon D (2008) Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid. Plant J 56(4):575–589

    Article  CAS  PubMed  Google Scholar 

  152. Yamaguchi T, Aharon GS, Sottosanto JB, Blumwald E (2005) Vacuolar Na+/H+ antiportercation selectivity is regulated by calmodulin from within the vacuole in a Ca2+- and pH-dependent manner. Proc Natl Acad Sci U S A 102(44):16107–16112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Delk NA, Johnson KA, Chowdhury NI, Braam J (2005) CML24, regulated in expression by diverse stimuli, encodes a potential Ca2+ sensor that functions in responses to abscisic acid, daylength, and ion stress. Plant Physiol 139:240–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Vanderbeld B, Snedden WA (2007) Developmental and stimulus-induced expression patterns of Arabidopsis calmodulin-like genes CML37, CML38 and CML39. Plant Mol Biol 64:683–697

    Article  CAS  PubMed  Google Scholar 

  155. Vadassery J, Reichelt M, Hause B, Gershenzon J, Boland W, Mithofer A (2012) CML42-mediated calcium signaling coordinates responses to Spodopteraherbivory and abiotic stresses in Arabidopsis. Plant Physiol 159:1159–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Xu GY, Rocha PS, Wang ML, Xu ML, Cui YC, Li LY et al (2011) A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta 234:47–59

    Article  CAS  PubMed  Google Scholar 

  157. Liu HT, Li GL, Chang H, Sun DY, Zhou RG, Li B (2007) Calmodulin-binding protein phosphatase PP7 is involved in thermotolerance in Arabidopsis. Plant Cell Environ 30:156–164

    Article  CAS  PubMed  Google Scholar 

  158. Liu HT, Gao F, Li GL, Han JL, Liu DL, Sun DY et al (2008) The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana. Plant J 55:760–773

    Article  CAS  PubMed  Google Scholar 

  159. Yang T, Chaudhuri S, Yang L, Chen Y, Poovaiah BW (2004) Calcium/calmodulin Up-regulates a cytoplasmic receptor-like kinase in plants. J Biol Chem 279:42552–42559

    Article  CAS  PubMed  Google Scholar 

  160. Yang T, Poovaiah BW (2000) An early ethylene up-regulated gene encoding a calmodulin-binding protein involved in plant senescence and death. J Biol Chem 275:38467–38473

    Article  CAS  PubMed  Google Scholar 

  161. Yang T, Poovaiah BW (2000) Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action. J Biol Chem 275:3137–3143

    Article  CAS  PubMed  Google Scholar 

  162. Shi B, Ni L, Zhang A, Cao J, Zhang H, Qin T et al (2012) OsDMI3 is a novel component of abscisic acid signaling in the induction of antioxidant defense in leaves of rice. Mol Plant 5:1359–1374

    Article  CAS  PubMed  Google Scholar 

  163. Ma FF, Lu R, Liu HY, Shi B, Zhang JH, Tan MP et al (2012) Nitric oxide-activated calcium/calmodulin-dependent protein kinase regulates the abscisic acid-induced antioxidant defence in maize. J Exp Bot 63:4835–4847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Pandey S, Tiwari SB, Tyagi W, Reddy MK, Upadhyaya KC, Sopory SK (2002) A Ca2+/CaM-dependent kinase from pea is stress regulated and in vitro phosphorylates a protein that binds to AtCaM5 promoter. Eur J Biochem 269:3193–3204

    Article  CAS  PubMed  Google Scholar 

  165. Chen Z, Gallie DR (2006) Dehydroascorbate reductase affects leaf growth, development, and function. Plant Physiol 142:775–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ushimaru T, Nakagawa T, Fujioka Y, Daicho K, Naito M, Yamauchi Y, Murata N (2006) Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J Plant Physiol 163(11):1179–1184

    Article  CAS  PubMed  Google Scholar 

  167. Delhaize E, Kataoka T, Hebb DM, White RG, Ryan PR (2003) Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance. Plant Cell 15(5):1131–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qaisar Mahmood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Shaheen, S., Mahmood, Q., Asif, M., Ahmad, R. (2017). Genetic Control of Metal Sequestration in Hyper-Accumulator Plants. In: Ansari, A., Gill, S., Gill, R., R. Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-52381-1_13

Download citation

Publish with us

Policies and ethics