Skip to main content

Interval Linear Algebra and Computational Complexity

  • Conference paper
  • First Online:
Applied and Computational Matrix Analysis (MAT-TRIAD 2015)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 192))

Included in the following conference series:

Abstract

This work connects two mathematical fields – computational complexity and interval linear algebra . It introduces the basic topics of interval linear algebra – regularity and singularity, full column rank, solving a linear system , deciding solvability of a linear system , computing inverse matrix , eigenvalues , checking positive (semi)definiteness or stability . We discuss these problems and relations between them from the view of computational complexity . Many problems in interval linear algebra are intractable, hence we emphasize subclasses of these problems that are easily solvable or decidable. The aim of this work is to provide a basic insight into this field and to provide materials for further reading and research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In computer science it is sometimes emphasized that the functions are defined for each input, or total for short. This is to distinguish them from partially defined functions which are also studied in this area, namely within logic and recursion theory.

References

  1. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  2. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer Science & Business Media, New York (2012)

    MATH  Google Scholar 

  3. Coxson, G.E.: Computing exact bounds on elements of an inverse interval matrix is NP-hard. Reliab. Comput. 5(2), 137–142 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fiedler, M., Nedoma, J., Ramik, J., Rohn, J., Zimmermann, K.: Linear Optimization Problems with Inexact Data. Springer, New York (2006)

    MATH  Google Scholar 

  5. Garloff, J., Adm, M., Titi, J.: A survey of classes of matrices possessing the interval property and related properties. Reliab. Comput. 22, 1–10 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Golub, G.H., Van Loan, C.F.: Matrix computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  7. Hansen, E., Walster, G.: Solving overdetermined systems of interval linear equations. Reliab. Comput. 12(3), 239–243 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hartman, D., Hladík, M.: Tight bounds on the radius of nonsingularity. In: Scientific Computing, Computer Arithmetic, and Validated Numerics, pp. 109–115, Springer, Heidelberg (2015)

    Google Scholar 

  9. Hladík, M.: New operator and method for solving real preconditioned interval linear equations. SIAM J. Numer. Anal. 52(1), 194–206 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hladík, M.: AE solutions and AE solvability to general interval linear systems. Linear Algebra Appl. 465, 221–238 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hladík, M.: Complexity issues for the symmetric interval eigenvalue problem. Open Math. 13(1), 157–164 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Hladík, M.: Positive Semidefiniteness and Positive Definiteness of a Linear Parametric Interval Matrix, to appear in a Springer book series (2016)

    Google Scholar 

  13. Hladík, M., Horáček, J.: A shaving method for interval linear systems of equations. In: Wyrzykowski, R. et al. (ed.) Parallel Processing and Applied Mathematics, vol. 8385 of LNCS, pp. 573–581. Springer, Berlin (2014)

    Google Scholar 

  14. Horáček, J., Hladík, M.: Computing enclosures of overdetermined interval linear systems. Reliab. Comput. 19, 143 (2013)

    MathSciNet  Google Scholar 

  15. Horáček, J., Hladík, M.: Subsquares approach – a simple scheme for solving overdetermined interval linear systems. In Wyrzykowski, R., et al. (ed.) Parallel Processing and Applied Mathematics, vol. 8385 of LNCS, pp. 613–622. Springer, Berlin (2014)

    Google Scholar 

  16. Jaulin, L., Henrion, D.: Contracting optimally an interval matrix without loosing any positive semi-definite matrix is a tractable problem. Reliab. Comput. 11(1), 1–17 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jaulin, L., Kieffer, M., Didrit, O., Walter, É.: Applied interval analysis. With Examples in Parameter and State Estimation, Robust Control and Robotics. Springer, London (2001)

    Google Scholar 

  18. Kearfott, R.: Interval computations: Introduction, uses, and resources. Euromath Bull. 2(1), 95–112 (1996)

    MathSciNet  Google Scholar 

  19. Kearfott, R., Kreinovich, V. (eds.): Applications of Interval Computations. Kluwer, Dordrecht (1996)

    MATH  Google Scholar 

  20. Kosheleva, O., Kreinovich, V., Mayer, G., Nguyen, H.: Computing the cube of an interval matrix is NP-hard. Proc. ACM Symp. Appl. Comput. 2, 1449–1453 (2005)

    Google Scholar 

  21. Krawczyk, R.: Newton-algorithmen zur bestimmung von nullstellen mit fehlerschranken. Computing 4(3), 187–201 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kreinovich, V.: How to define relative approximation error of an interval estimate: A proposal. Appl. Math. Sci. 7(5), 211–216 (2013)

    Article  MathSciNet  Google Scholar 

  23. Kreinovich, V., Lakeyev, A.V., Rohn, J., Kahl, P.: Computational Complexity and Feasibility of Data Processing and Interval Computations. Kluwer, Dordrecht (1998)

    Book  MATH  Google Scholar 

  24. Kuttler, J.: A fourth-order finite-difference approximation for the fixed membrane eigenproblem. Math. Comput. 25(114), 237–256 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mansour, M.: Robust stability of interval matrices. In: Proceedings of the 28th IEEE Conference on Decision and Control, vol. 1, pp. 46–51, Tampa, Florida (1989)

    Google Scholar 

  26. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra 2. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  27. Moore, R., Kearfott, R., Cloud, M.: Introduction to interval analysis. Society for Industrial Mathematics, Philadelphia (2009)

    Google Scholar 

  28. Nemirovskii, A.: Several NP-hard problems arising in robust stability analysis. Math. Control Signals Syst. 6(2), 99–105 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Neumaier, A.: Linear interval equations. Interval Mathematics 1985, pp. 109–120. Springer, Heidelberg (1986)

    Google Scholar 

  30. Neumaier, A.: Interval Methods for Systems of Equations, vol. 37. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  31. Oettli, W., Prager, W.: Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides. Numer. Math. 6(1), 405–409 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  32. Popova, E.D.: Improved solution enclosures for over- and underdetermined interval linear systems. In Lirkov, I., et al. (ed.) Large-Scale Scientific Computing, vol. 3743 of LNCS, pp. 305–312 (2006)

    Google Scholar 

  33. Renegar, J.: On the computational complexity and geometry of the first-order theory of the reals. Part I: Introduction. Preliminaries. The geometry of semi-algebraic sets. The decision problem for the existential theory of the reals. J. Symb. Comput. 13(3), 255–299 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Renegar, J.: On the computational complexity and geometry of the first-order theory of the reals. Part II: The general decision problem. Preliminaries for quantifier elimination. J. Symb. Comput. 13(3), 301–327 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  35. Renegar, J.: On the computational complexity and geometry of the first-order theory of the reals. Part III: Quantifier elimination. J. Symb. Comput. 13(3), 329–352 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rex, G., Rohn, J.: Sufficient conditions for regularity and singularity of interval matrices. SIAM J. Matrix Anal. Appl. 20(2), 437–445 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rohn, J.: Systems of linear interval equations. Linear Algebra Appl. 126, 39–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rohn, J.: Interval matrices: singularity and real eigenvalues. SIAM J. Matrix Anal. Appl. 14(1), 82–91 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rohn, J.: Inverse interval matrix. SIAM J. Numer. Anal. 30(3), 864–870 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rohn, J.: Checking positive definiteness or stability of symmetric interval matrices is NP-hard. Commentat. Math. Univ. Carol. 35(4), 795–797 (1994)

    MathSciNet  MATH  Google Scholar 

  41. Rohn, J.: Positive definiteness and stability of interval matrices. SIAM J. Matrix Anal. Appl. 15(1), 175–184 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  42. Rohn, J.: Checking properties of interval matrices. Technical Report 686, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague (1996)

    Google Scholar 

  43. Rohn, J.: Enclosing solutions of overdetermined systems of linear interval equations. Reliable Comput. 2(2), 167–171 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  44. Rohn, J.: Perron vectors of an irreducible nonnegative interval matrix. Linear Multilinear Algebra 54(6), 399–404 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. Rohn, J.: Solvability of Systems of Interval Linear Equations and Inequalities, pp. 35–77. Springer (2006)

    Google Scholar 

  46. Rohn, J.: Forty necessary and sufficient conditions for regularity of interval matrices: a survey. Electron. J Linear Algebra 18, 500–512 (2009)

    MathSciNet  MATH  Google Scholar 

  47. Rohn, J.: Explicit inverse of an interval matrix with unit midpoint. Electron. J Linear Algebra 22, 138–150 (2011)

    MathSciNet  MATH  Google Scholar 

  48. Rohn, J.: A handbook of results on interval linear problems. Technical Report 1163, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague (2012)

    Google Scholar 

  49. Rohn, J., Farhadsefat, R.: Inverse interval matrix: a survey. Electron. J Linear Algebra 22, 704–719 (2011)

    MathSciNet  MATH  Google Scholar 

  50. Rump, S. M.: Verification methods for dense and sparse systems of equations. In Herzberger, J. (ed.) Topics in Validated Computations. Studies in Computational Mathematics, pp. 63–136 (1994)

    Google Scholar 

  51. Shary, S.P.: On controlled solution set of interval algebraic systems. Interval Comput. 6(6) (1992)

    Google Scholar 

  52. Shary, S.P.: A new technique in systems analysis under interval uncertainty and ambiguity. Reliab. Comput. 8(5), 321–418 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  53. Shary, S.P.: On full-rank interval matrices. Numer. Anal. Appl. 7(3), 241–254 (2014)

    Article  MATH  Google Scholar 

  54. Smale, S.: Mathematical problems for the next century. Math. Intell. 20, 7–15 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

J. Horáček and M. Hladík were supported by GAČR grant P402/13-10660S. M. Černý was supported by the GAČR grant 16-00408S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Horáček .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Horáček, J., Hladík, M., Černý, M. (2017). Interval Linear Algebra and Computational Complexity. In: Bebiano, N. (eds) Applied and Computational Matrix Analysis. MAT-TRIAD 2015. Springer Proceedings in Mathematics & Statistics, vol 192. Springer, Cham. https://doi.org/10.1007/978-3-319-49984-0_3

Download citation

Publish with us

Policies and ethics