Skip to main content

Antimicrobial Fibers and Fabrics Obtained by Electro/Melt Spinning

  • Chapter
  • First Online:
Polymers against Microorganisms
  • 1074 Accesses

Abstract

Nanotechnology and nanoscience involve different aspects including the manipulation, control, and assembly of nanoscale components to produce materials, systems, and/or devices. In this context, the fabrication of micro/nanofibers has attracted huge interest. In particular, micro/nanofibers have different properties such as high porosity, small pore size, high surface area, and compatibility with functionalizing additives that enables their use in multiple applications. These include their use as enzyme carriers, membranes for filtration purposes, as barriers to liquid penetration, sensors, delivery purposes, and catalysts. Polymer fibers have also been explored in a large variety of medical applications such as tissue engineering or in regenerative medicine.

In this chapter, we will provide an overview of the most extended fabrication approaches and their use in medical applications, in particular to prevent microbial contamination. The fabrication of fibers treated with antimicrobials is today a standard finish for many different textile products employed in such uses as medical, institutional, and hygienic. More recently, antimicrobial fibers have been extended to other applications including women’s wear, sportswear, and aesthetic clothing to impart anti-odor or biostatic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sambaer W, Zatloukal M, Kimmer D. 3D modeling of filtration process via polyurethane nanofiber based nonwoven filters prepared by electrospinning process. Chem Eng Sci. 2011;66(4):613–23.

    Article  Google Scholar 

  2. Lee S, Obendorf SK. Use of electrospun nanofiber web for protective textile materials as barriers to liquid penetration. Text Res J. 2007;77(9):696–702.

    Article  Google Scholar 

  3. Jang B-H, Landau O, Choi S-J, Shin J, Rothschild A, Kim I-D. Selectivity enhancement of SnO2 nanofiber gas sensors by functionalization with Pt nanocatalysts and manipulation of the operation temperature. Sensor Actuat B Chem. 2013;188:156–68.

    Article  Google Scholar 

  4. Fathi-Azarbayjani A, Qun L, Chan YW, Chan SY. Novel vitamin and gold-loaded nanofiber facial mask for topical delivery. AAPS PharmSciTech. 2010;11(3):1164–70.

    Article  Google Scholar 

  5. Vasita R, Katti DS. Nanofibers and their applications in tissue engineering. Int J Nanomed. 2006;1(1):15–30.

    Article  Google Scholar 

  6. Zajicova A, Javorkova E, Trosan P, Krulova M, Holan V. Drug-loaded nanofiber scaffolds for a simultaneous delivery of stem cells and immunosuppressive drugs in cell-based therapy and regenerative medicine. J Tissue Eng Regen Med. 2014;8:277–8.

    Google Scholar 

  7. Ahire JJ, Dicks LMT. 2,3-Dihydroxybenzoic acid-containing nanofiber wound dressings inhibit biofilm formation by Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2014;58(4):2098–104.

    Article  Google Scholar 

  8. Kenawy E-R, Worley SD, Broughton R. The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules. 2007;8(5):1359–84.

    Article  Google Scholar 

  9. Shin Y, Yoo DI, Jang J. Molecular weight effect on antimicrobial activity of chitosan treated cotton fabrics. J Appl Polym Sci. 2001;80(13):2495–501.

    Article  Google Scholar 

  10. Son YA, Sun G. Durable antimicrobial nylon 66 fabrics: ionic interactions with quaternary ammonium salts. J Appl Polym Sci. 2003;90(8):2194–9.

    Article  Google Scholar 

  11. Jang J, Lee KJ, Kim Y. Fabrication of polyimide nanotubes and carbon nanotubes containing magnetic iron oxide in confinement. Chem Commun. 2005;30:3847–9.

    Article  Google Scholar 

  12. Ikegame M, Tajima K, Aida T. Template synthesis of polypyrrole nanofibers insulated within one-dimensional silicate channels: hexagonal versus lamellar for recombination of polarons into bipolarons. Angew Chem Int Ed Engl. 2003;42(19):2154–7.

    Article  Google Scholar 

  13. Xie J, Li X, Xia Y. Putting electrospun nanofibers to work for biomedical research. Macromol Rapid Commun. 2008;29(22):1775–92.

    Article  Google Scholar 

  14. Brown TD, Dalton PD, Hutmacher DW. Melt electrospinning today: an opportune time for an emerging polymer process. Prog Polym Sci. 2016;56:116.

    Article  Google Scholar 

  15. Persano L, Camposeo A, Tekmen C, Pisignano D. Industrial upscaling of electrospinning and applications of polymer nanofibers: a review. Macromol Mater Eng. 2013;298(5):504–20.

    Article  Google Scholar 

  16. Van Dingenen JLJ. Gel-spun high-performance polyethylene fibres. In: Hearle JWS, editor. High-performance fibres. Cambridge: Woodhead; 2001. p. 62–92.

    Chapter  Google Scholar 

  17. Rey AD. Capillary models for liquid crystal fibers, membranes, films, and drops. Soft Matter. 2007;3(11):1349–68.

    Article  Google Scholar 

  18. Hearle JWS, Woodings C. Fibres related to cellulose. In: Woodings C, editor. Regenerated cellulose fibres. Cambridge: Woodhead; 2001. p. 156–73.

    Chapter  Google Scholar 

  19. Curran DJG. A method of making a composite ceramic fiber from pre-ceramic polymers. Google Patents; 1998.

    Google Scholar 

  20. Plunkett RJ. Tetrafluoroethylene polymers. Google Patents; 1941.

    Google Scholar 

  21. Tsuji T, Korematsu M. Highly flame-retardant shaped articles comprising a halogen containing polymer and polyvinyl alcohol. Google Patents; 1975.

    Google Scholar 

  22. Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv. 2010;28(3):325–47.

    Article  Google Scholar 

  23. Zeleny J. The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Phys Rev. 1914;3(2):69–91.

    Article  Google Scholar 

  24. Anton F. Process and apparatus for preparing artificial threads. Google Patents; 1934.

    Google Scholar 

  25. Sill TJ, von Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials. 2008;29(13):1989–2006.

    Article  Google Scholar 

  26. Liang D, Hsiao BS, Chu B. Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev. 2007;59(14):1392–412.

    Article  Google Scholar 

  27. Lalani R, Liu L. Electrospun zwitterionic poly(sulfobetaine methacrylate) for nonadherent, superabsorbent, and antimicrobial wound dressing applications. Biomacromolecules. 2012;13(6):1853–63.

    Article  Google Scholar 

  28. Ellison CJ, Phatak A, Giles DW, Macosko CW, Bates FS. Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup. Polymer. 2007;48(11):3306–16.

    Article  Google Scholar 

  29. McCulloch WJG, Tappi T. The history of the development of melt blowing technology. In: Tappi Nonwovens Conference; 1999. p. 109–21.

    Google Scholar 

  30. Wente VA. Superfine thermoplastic fibers. Ind Eng Chem. 1956;48(8):1342–6.

    Article  Google Scholar 

  31. Harding J, Keller J, Buntin R. Melt-blowing die for producing nonwoven mats. Google Patents; 1974.

    Google Scholar 

  32. Chen T, Li LQ, Huang XB. Fiber diameter of polybutylene terephthalate melt-blown nonwovens. J Appl Polym Sci. 2005;97(4):1750–2.

    Article  Google Scholar 

  33. Zhao RG, Wadsworth LC. Attenuating PP/PET bicomponent melt blown microfibers. Polym Eng Sci. 2003;43(2):463–9.

    Article  Google Scholar 

  34. Uyttendaele MAJ, Shambaugh RL. Melt blowing—general equation development and experimental verification. AIChE J. 1990;36(2):175–86.

    Article  Google Scholar 

  35. Milligan MW, Haynes BD. Empirical models for melt blowing. J Appl Polym Sci. 1995;58(1):159–63.

    Article  Google Scholar 

  36. Wang XM, Ke QF. Experimental investigation of adhesive meltblown web production using accessory air. Polym Eng Sci. 2006;46(1):1–7.

    Article  Google Scholar 

  37. Buchenska J. Polyamide fibers (PA6) with antibacterial properties. J Appl Polym Sci. 1996;61(3):567–76.

    Article  Google Scholar 

  38. Vigo TL. Advances in antimicrobial polymers and materials. In: Gebelein C, Carraher C, editors. Biotechnology and bioactive polymers. New York: Plenum Press; 1994. p. 225–37.

    Chapter  Google Scholar 

  39. Choi HM, Bide M, Phaneuf M, Quist W, LoGerfo F. Dyeing of wool with antibiotics to develop novel infection resistance materials for extracorporeal end use. J Appl Polym Sci. 2004;92(5):3343–54.

    Article  Google Scholar 

  40. Kriegel C, Kit KA, McClements DJ, Weiss J. Nanofibers as carrier systems for antimicrobial microemulsions. Part I: fabrication and characterization. Langmuir. 2009;25(2):1154–61.

    Article  Google Scholar 

  41. Torres-Giner S, Ocio MJ, Lagaron JM. Development of active antimicrobial fiber based chitosan polysaccharide nanostructures using electrospinning. Eng Life Sci. 2008;8(3):303–14.

    Article  Google Scholar 

  42. Wu J, Hou S, Ren D, Mather PT. Antimicrobial properties of nanostructured hydrogel webs containing silver. Biomacromolecules. 2009;10(9):2686–93.

    Article  Google Scholar 

  43. Hwang SH, Song J, Jung Y, Kweon OY, Song H, Jang J. Electrospun ZnO/TiO2 composite nanofibers as a bactericidal agent. Chem Commun. 2011;47(32):9164–6.

    Article  Google Scholar 

  44. Abdelgawad AM, Hudson SM, Rojas OJ. Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydr Polym. 2014;100:166–78.

    Article  Google Scholar 

  45. Saquing CD, Manasco JL, Khan SA. Electrospun nanoparticle-nanofiber composites via a one-step synthesis. Small. 2009;5(8):944–51.

    Article  Google Scholar 

  46. Shi Q, Vitchuli N, Nowak J, Noar J, Caldwell JM, Breidt F, Bourham M, McCord M, Zhang X. One-step synthesis of silver nanoparticle-filled nylon 6 nanofibers and their antibacterial properties. J Mater Chem. 2011;21(28):10330–5.

    Article  Google Scholar 

  47. Pant HR, Pandeya DR, Nam KT, Baek W-I, Hong ST, Kim HY. Photocatalytic and antibacterial properties of a TiO2/nylon-6 electrospun nanocomposite mat containing silver nanoparticles. J Hazard Mater. 2011;189(1–2):465–71.

    Article  Google Scholar 

  48. Guo-Dong F, Fang Y, Zhigang L, Xinsong L. Solvent-resistant antibacterial microfibers of self-quaternized block copolymers from atom transfer radical polymerization and electrospinning. J Mater Chem. 2008;18(8):859–67.

    Article  Google Scholar 

  49. Bajpai SK, Chand N, Mary G. Preparation of poly(acrylonitrile)-grafted silk fibers with antibacterial properties. Fiber Polym. 2010;11(3):338–45.

    Article  Google Scholar 

  50. Yalcinkaya F, Komarek M, Lubasova D, Sanetrnik F, Maryska J. Preparation of antibacterial nanofibre/nanoparticle covered composite yarns. J Nanomater. 2016, 7565972.

    Google Scholar 

  51. Sun YY, Sun G. Novel regenerable N-halamine polymeric biocides. II. Crafting hydantoin-containing monomers onto cotton cellulose. J Appl Polym Sci. 2001;81(3):617–24.

    Article  Google Scholar 

  52. Sun YY, Sun G. Novel refreshable N-halamine polymeric biocides: grafting hydantoin-containing monomers onto high performance fibers by a continuous process. J Appl Polym Sci. 2003;88(4):1032–9.

    Article  Google Scholar 

  53. Liu B, Hu J, Meng Q. Nonwoven supported temperature-sensitive poly(N-isopropylacrylamide)/polyurethane copolymer hydrogel with antibacterial activity. J Biomed Mater Res Part B Appl Biomater. 2009;89B(1):1–8.

    Article  Google Scholar 

  54. Sun G, Hong KH. Photo-induced antimicrobial and decontaminating agents: recent progresses in polymer and textile applications. Text Res J. 2013;83(5):532–42.

    Article  Google Scholar 

  55. Chen J-P, Kuo C-Y, Lee W-L. Thermo-responsive wound dressings by grafting chitosan and poly(N-isopropylacrylamide) to plasma-induced graft polymerization modified non-woven fabrics. Appl Surf Sci. 2012;262:95–101.

    Article  Google Scholar 

  56. Bajpai SK, Bajpai M, Sharma L, Yallapu MM. Silver nanoparticles loaded thermosensitive cotton fabric for antibacterial application. J Ind Text. 2014;44(1):58–69.

    Article  Google Scholar 

  57. James C, Johnson AL, Jenkins ATA. Antimicrobial surface grafted thermally responsive PNIPAM-co-ALA nano-gels. Chem Commun. 2011;47(48):12777–9.

    Article  Google Scholar 

  58. Wu D, Long M, Zhou J, Cai W, Zhu X, Chen C, Wu Y. Synthesis and characterization of self-cleaning cotton fabrics modified by TiO2 through a facile approach. Surf Coating Technol. 2009;203(24):3728–33.

    Article  Google Scholar 

  59. Hizal F, Zhuk I, Sukhishvili S, Busscher HJ, van der Mei HC, Choi C-H. Impact of 3D hierarchical nanostructures on the antibacterial efficacy of a bacteria-triggered self-defensive antibiotic coating. ACS Appl Mater Interfaces. 2015;7(36):20304–13.

    Article  Google Scholar 

  60. Qi K, Wang X, Xin JH. Photocatalytic self-cleaning textiles based on nanocrystalline titanium dioxide. Text Res J. 2011;81(1):101–10.

    Article  Google Scholar 

  61. Milowska K, Rybczynska A, Mosiolek J, Durdyn J, Szewczyk EM, Katir N, Brahmi Y, Majoral J-P, Bousmina M, Bryszewska M, El Kadib A. Biological activity of mesoporous dendrimer-coated titanium dioxide: insight on the role of the surface-interface composition and the framework crystallinity. ACS Appl Mater Interfaces. 2015;7(36):19994–20003.

    Article  Google Scholar 

  62. Zhong Z, Xu Z, Sheng T, Yao J, Xing W, Wang Y. Unusual air filters with ultrahigh efficiency and antibacterial functionality enabled by ZnO nanorods. ACS Appl Mater Interfaces. 2015;7(38):21538–44.

    Article  Google Scholar 

  63. Hong KH, Sun G. Antimicrobial and chemical detoxifying functions of cotton fabrics containing different benzophenone derivatives. Carbohydr Polym. 2008;71(4):598–605.

    Article  Google Scholar 

  64. Feese E, Sadeghifar H, Gracz HS, Argyropoulos DS, Ghiladi RA. Photobactericidal porphyrin-cellulose nanocrystals: synthesis, characterization, and antimicrobial properties. Biomacromolecules. 2011;12(10):3528–39.

    Article  Google Scholar 

  65. Ringot C, Sol V, Barriere M, Saad N, Bressollier P, Granet R, Couleaud P, Frochot C, Krausz P. Triazinyl porphyrin-based photoactive cotton fabrics: preparation, characterization, and antibacterial activity. Biomacromolecules. 2011;12(5):1716–23.

    Article  Google Scholar 

  66. Zhuo J, Sun G. Antimicrobial functions on cellulose materials introduced by anthraquinone vat dyes. ACS Appl Mater Interfaces. 2013;5(21):10830–5.

    Article  Google Scholar 

  67. Hong KH, Sun G. Photoactive antibacterial cotton fabrics treated by 3,3′,4,4′-benzophenonetetracarboxylic dianhydride. Carbohydr Polym. 2011;84(3):1027–32.

    Article  Google Scholar 

  68. Hou A, Feng G, Zhuo J, Sun G. UV light-induced generation of reactive oxygen species and antimicrobial properties of cellulose fabric modified by 3,3′,4,4′-benzophenone tetracarboxylic acid. ACS Appl Mater Interfaces. 2015;7(50):27918–24.

    Article  Google Scholar 

  69. Said SS, El-Halfawy OM, El-Gowelli HM, Aloufy AK, Boraei NA, El-Khordagui LK. Bioburden-responsive antimicrobial PLGA ultrafine fibers for wound healing. Eur J Pharm Biopharm. 2012;80(1):85–94.

    Article  Google Scholar 

  70. Said SS, Aloufy AK, El-Halfawy OM, Boraei NA, El-Khordagui LK. Antimicrobial PLGA ultrafine fibers: interaction with wound bacteria. Eur J Pharm Biopharm. 2011;79(1):108–18.

    Article  Google Scholar 

  71. Spasova M, Manolova N, Paneva D, Rashkov I. Preparation of chitosan-containing nanofibres by electrospinning of chitosan/poly(ethylene oxide) blend solutions. E-Polymers. 2004;56:1–12.

    Google Scholar 

  72. Qin YM, Zhu CJ, Chen J, Chen YZ, Zhang C. The absorption and release of silver and zinc ions by chitosan fibers. J Appl Polym Sci. 2006;101(1):766–71.

    Article  Google Scholar 

  73. Yeh JT, Chen CL, Huang KS, Nien YH, Chen JL, Huang PZ. Synthesis, characterization, and application of PVP/chitosan blended polymers. J Appl Polym Sci. 2006;101(2):885–91.

    Article  Google Scholar 

  74. Ignatova M, Manolova N, Rashkov I. Novel antibacterial fibers of quaternized chitosan and poly(vinyl pyrrolidone) prepared by electrospinning. Eur Polym J. 2007;43(4):1112–22.

    Article  Google Scholar 

  75. Ignatova M, Starbova K, Markova N, Manolova N, Rashkov I. Electrospun nano-fibre mats with antibacterial properties from quaternised chitosan and poly(vinyl alcohol). Carbohydr Res. 2006;341(12):2098–107.

    Article  Google Scholar 

  76. Shih CY, Huang KS. Synthesis of a polyurethane-chitosan blended polymer and a compound process for shrink-proof and antimicrobial woolen fabrics. J Appl Polym Sci. 2003;88(9):2356–63.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rodríguez-Hernández, J. (2017). Antimicrobial Fibers and Fabrics Obtained by Electro/Melt Spinning. In: Polymers against Microorganisms. Springer, Cham. https://doi.org/10.1007/978-3-319-47961-3_7

Download citation

Publish with us

Policies and ethics