Skip to main content

Bacterial Infections: Few Concepts

  • Chapter
  • First Online:
Polymers against Microorganisms

Abstract

A principal challenge defying current medicine in the twenty-first century is the large occurrence of antibiotic resistance, as well as, the risk posed by drug-resistant superbugs. In spite of this, progresses on the development of novel antibiotics to combat this problem are quite limited. It appears necessary to carry out a more concerted effort to advance in the discovery of novel therapeutic agents with excellent activity and unique mechanisms of action to overcome the problem of drug resistance. In this context, macromolecular antimicrobials with a different interaction with bacteria may offer an interesting alternative to current strategies in order to successfully prevent resistance. Furthermore, biofilm-forming bacteria are recognized to be gradually resistant to the action of antibiotics and are a leading cause of mortality or morbidity in nosocomial infections.

This chapter will, thus, describe the bacterial structure and summarize the mechanisms involved in the interaction between antibiotics and bacteria as well as the resistance mechanisms developed. In addition, the proposed models of interaction between macromolecular antimicrobials and bacteria will be analyzed.

The second part of this chapter is devoted to implant-associated infections produced by the formation of a biofilms at the surface of biomaterials. More precisely, the steps involved in biofilm formation and its particular properties that reduce the antimicrobial activity will be discussed. Finally, preliminary concepts on the use of polymers to overcome this limitation are depicted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wong JP, DiTullio P, Parkinson S. Bisphosphocins: novel antimicrobials for enhanced killing of drug-resistant and biofilm-forming bacteria. Future Microbiol. 2015;10:1751–8.

    Article  Google Scholar 

  2. McManus MC. Mechanisms of bacterial resistance to antimicrobial agents. Am J Health Syst Pharm. 1997;54:1420–33.

    Google Scholar 

  3. Engler AC, Wiradharma N, Ong ZY, Coady DJ, Hedrick JL, Yang Y-Y. Emerging trends in macromolecular antimicrobials to fight multi-drug-resistant infections. Nano Today. 2012;7:201–22.

    Article  Google Scholar 

  4. Cooper GM. The cell: a molecular approach. Washington, DC: ASM Press; 2000.

    Google Scholar 

  5. Ruiz-Herrera J, Elorza MV, Valentin E, Sentandreu R. Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity. FEMS Yeast Res. 2006;6:14–29.

    Article  Google Scholar 

  6. Alberts B. Molecular biology of the cell: reference edition. New York: Garland Science; 2008.

    Google Scholar 

  7. Walsh C. Molecular mechanisms that confer antibacterial drug resistance. Nature. 2000;406:775–81.

    Article  Google Scholar 

  8. Williams DH. The glycopeptide story—how to kill the deadly ‘superbugs’. Nat Prod Rep. 1996;13:469–77.

    Article  Google Scholar 

  9. Anderson GJ. Quinolone antimicrobial agents, 3rd edition. Emerg Infect Dis. 2004;10:1177.

    Article  Google Scholar 

  10. Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13:42–51.

    Article  Google Scholar 

  11. Paulsen IT, Brown MH, Skurray RA. Proton-dependent multidrug efflux systems. Microbiol Rev. 1996;60:575–608.

    Google Scholar 

  12. Levy SB. Active efflux mechanisms for antimicrobial resistance. Antimicrob Agents Chemother. 1992;36:695–703.

    Article  Google Scholar 

  13. Ross JI, Eady EA, Cove JH, Cunliffe WJ, Baumberg S, Wootton JC. Inducible erythromycin resistance in staphlyococci is encoded by a member of the ATP-binding transport super-gene family. Mol Microbiol. 1990;4:1207–14.

    Article  Google Scholar 

  14. Hu R-M, Liao S-T, Huang C-C, Huang Y-W, Yang T-C. An inducible fusaric acid tripartite efflux pump contributes to the fusaric acid resistance in Stenotrophomonas maltophilia. PLoS One. 2012;7:e51053.

    Article  Google Scholar 

  15. Ogawa W, Onishi M, Ni R, Tsuchiya T, Kuroda T. Functional study of the novel multidrug efflux pump KexD from Klebsiella pneumoniae. Gene. 2012;498:177–82.

    Article  Google Scholar 

  16. Floyd JL, Smith KP, Kumar SH, Floyd JT, Varela MF. LmrS is a multidrug efflux pump of the major facilitator superfamily from Staphylococcus aureus. Antimicrob Agents Chemother. 2010;54:5406–12.

    Article  Google Scholar 

  17. Kim C, Mwangi M, Chung M, Milheirço C, de Lencastre H, Tomasz A. The mechanism of heterogeneous beta-lactam resistance in MRSA: key role of the stringent stress response. PLoS One. 2013;8:e82814.

    Article  Google Scholar 

  18. Tamber S, Hancock REW. On the mechanism of solute uptake in pseudomonas. Front Biosci. 2003;8:S472–83.

    Article  Google Scholar 

  19. Philippon A, Labia R, Jacoby G. Extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 1989;33:1131–6.

    Article  Google Scholar 

  20. Shaw KJ, Rather PN, Hare RS, Miller GH. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev. 1993;57:138–63.

    Google Scholar 

  21. Wright GD. Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv Drug Deliv Rev. 2005;57:1451–70.

    Article  Google Scholar 

  22. Chu DTW, Plattner JJ, Katz L. New directions in antibacterial research. J Med Chem. 1996;39:3853–74.

    Article  Google Scholar 

  23. Spratt B. Resistance to antibiotics mediated by target alterations. Science. 1994;264:388–93.

    Article  Google Scholar 

  24. Long KS, Poehlsgaard J, Kehrenberg C, Schwarz S, Vester B. The Cfr rRNA methyltransferase confers resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A antibiotics. Antimicrob Agents Chemother. 2006;50:2500–5.

    Article  Google Scholar 

  25. Thoma LM, Boles BR, Kuroda K. Cationic methacrylate polymers as topical antimicrobial agents against Staphylococcus aureus nasal colonization. Biomacromolecules. 2014;15:2933–43.

    Article  Google Scholar 

  26. Kuroda K, Caputo GA. Antimicrobial polymers as synthetic mimics of host-defense peptides. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5:49–66.

    Article  Google Scholar 

  27. Li P, Li X, Saravanan R, Li CM, Leong SSJ. Antimicrobial macromolecules: synthesis methods and future applications. RSC Adv. 2012;2:4031–44.

    Article  Google Scholar 

  28. Muñoz-Bonilla A, Fernández-García M. Polymeric materials with antimicrobial activity. Prog Polym Sci. 2012;37:281–339.

    Article  Google Scholar 

  29. King A, Chakrabarty S, Zhang W, Zeng X, Ohman DE, Wood LF, et al. High antimicrobial effectiveness with low hemolytic and cytotoxic activity for PEG/quaternary copolyoxetanes. Biomacromolecules. 2014;15:456–67.

    Article  Google Scholar 

  30. Liu R, Chen X, Chakraborty S, Lemke JJ, Hayouka Z, Chow C, et al. Tuning the biological activity profile of antibacterial polymers via subunit substitution pattern. J Am Chem Soc. 2014;136:4410–8.

    Article  Google Scholar 

  31. Stratton TR, Applegate BM, Youngblood JP. Effect of steric hindrance on the properties of antibacterial and biocompatible copolymers. Biomacromolecules. 2011;12:50–6.

    Article  Google Scholar 

  32. Thaker HD, Cankaya A, Scott RW, Tew GN. Role of amphiphilicity in the design of synthetic mimics of antimicrobial peptides with gram-negative activity. ACS Med Chem Lett. 2013;4:481–5.

    Article  Google Scholar 

  33. Sovadinova I, Palermo EF, Urban M, Mpiga P, Caputo GA, Kuroda K. Activity and mechanism of antimicrobial peptide-mimetic amphiphilic polymethacrylate derivatives. Polymers. 2011;3:1512–32.

    Article  Google Scholar 

  34. Timofeeva L, Kleshcheva N. Antimicrobial polymers: mechanism of action, factors of activity, and applications. Appl Microbiol Biotechnol. 2011;89:475–92.

    Article  Google Scholar 

  35. Tashiro T. Antibacterial and bacterium adsorbing macromolecules. Macromol Mater Eng. 2001;286:63–87.

    Article  Google Scholar 

  36. Gilbert P, Moore LE. Cationic antiseptics: diversity of action under a common epithet. J Appl Microbiol. 2005;99:703–15.

    Article  Google Scholar 

  37. Broxton P, Woodcock PM, Gilbert P. A study of the antibacterial activity of some polyhexamethylene biguanides towards Escherichia coli ATCC 8739. J Appl Bacteriol. 1983;54:345–53.

    Article  Google Scholar 

  38. Ikeda T, Ledwith A, Bamford CH, Hann RA. Interaction of a polymeric biguanide biocide with phospholipid membranes. Biochim Biophys Acta Biomembr. 1984;769:57–66.

    Article  Google Scholar 

  39. Maillard JY. Bacterial target sites for biocide action. J Appl Microbiol. 2002;92:16S–27.

    Article  Google Scholar 

  40. Wimley WC. Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem Biol. 2010;5:905–17.

    Article  Google Scholar 

  41. Chan DI, Prenner EJ, Vogel HJ. Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim Biophys Acta Biomembr. 2006;1758:1184–202.

    Article  Google Scholar 

  42. Qian S, Wang W, Yang L, Huang HW. Structure of the alamethicin pore reconstructed by x-ray diffraction analysis. Biophys J. 2008;94:3512–22.

    Article  Google Scholar 

  43. Qian S, Wang W, Yang L, Huang HW. Structure of transmembrane pore induced by Bax-derived peptide: evidence for lipidic pores. Proc Natl Acad Sci U S A. 2008;105:17379–83.

    Article  Google Scholar 

  44. Park SC, Kim JY, Shin SO, Jeong CY, Kim MH, Shin SY, et al. Investigation of toroidal pore and oligomerization by melittin using transmission electron microscopy. Biochem Biophys Res Commun. 2006;343:222–8.

    Article  Google Scholar 

  45. Azad MA, Huttunen-Hennelly HEK, Friedman CR. Bioactivity and the first transmission electron microscopy immunogold studies of short de novo-designed antimicrobial peptides. Antimicrob Agents Chemother. 2011;55:2137–45.

    Article  Google Scholar 

  46. Gazit E, Miller IR, Biggin PC, Sansom MSP, Shai Y. Structure and orientation of the mammalian antibacterial peptide cecropin P1 within phospholipid membranes. J Mol Biol. 1996;258:860–70.

    Article  Google Scholar 

  47. Miteva M, Andersson M, Karshikoff A, Otting G. Molecular electroporation: a unifying concept for the description of membrane pore formation by antibacterial peptides, exemplified with NK-lysin. FEBS Lett. 1999;462:155–8.

    Article  Google Scholar 

  48. Pokorny A, Almeida PFF. Kinetics of dye efflux and lipid flip-flop induced by δ-lysin in phosphatidylcholine vesicles and the mechanism of graded release by amphipathic, α-helical peptides. Biochemistry. 2004;43:8846–57.

    Article  Google Scholar 

  49. Pokorny A, Almeida PFF. Permeabilization of Raft-containing lipid vesicles by δ-lysin: a mechanism for cell sensitivity to cytotoxic peptides. Biochemistry. 2005;44:9538–44.

    Article  Google Scholar 

  50. Tieleman DP. The molecular basis of electroporation. BMC Biochem. 2004;5:1–12.

    Article  Google Scholar 

  51. Kenawy E-R, Worley SD, Broughton R. The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules. 2007;8:1359–84.

    Article  Google Scholar 

  52. Vitalariu AM, Diaconu D, Tatarciuc D, Aungurencei O, Moisei M, Barlean L. Effects of surface characteristics of the acrylic resins on the bacterial colonization. Rev Chim. 2015;66:1720–4.

    Google Scholar 

  53. Montanaro L, Campoccia D, Arciola CR. Nanostructured materials for inhibition of bacterial adhesion in orthopedic implants: a minireview. Int J Artif Organs. 2008;31:771–6.

    Google Scholar 

  54. Bollen CM, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater. 1997;13:258–69.

    Article  Google Scholar 

  55. Donlan RM. Biofilms and device-associated infections. Emerg Infect Dis. 2001;7:277–81.

    Article  Google Scholar 

  56. Fredonia. Implantable medical devices to 2015—industry market research, market share, market size, sales, demand forecast, market leaders, company profiles, industry trends. 2012. p. 395.

    Google Scholar 

  57. An YH, Friedman RJ. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res. 1998;43:338–48.

    Article  Google Scholar 

  58. Campoccia D, Montanaro L, Arciola CR. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials. 2013;34:8533–54.

    Article  Google Scholar 

  59. Merollini KMD, Zheng H, Graves N. Most relevant strategies for preventing surgical site infection after total hip arthroplasty: guideline recommendations and expert opinion. Am J Infect Control. 2013;41:221–6.

    Article  Google Scholar 

  60. Liu C, Zhao Q. Influence of surface-energy components of Ni–P–TiO2–PTFE nanocomposite coatings on bacterial adhesion. Langmuir. 2011;27:9512–9.

    Article  Google Scholar 

  61. Marshall KC. Mechanisms of bacterial adhesion at solid-water interfaces. In: Savage DC, Fletcher M, editors. Bacterial adhesion: mechanisms and physiological significance. Boston, MA: Springer US; 1985. p. 133–61.

    Chapter  Google Scholar 

  62. Marshall KC, Stout R, Mitchell R. Mechanism of the initial events in the sorption of marine bacteria to surfaces. Microbiology. 1971;68:337–48.

    Google Scholar 

  63. Gristina A. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science. 1987;237:1588–95.

    Article  Google Scholar 

  64. Arciola CR, Campoccia D, Speziale P, Montanaro L, Costerton JW. Biofilm formation in Staphylococcus implant infections. a review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials. 2012;33:5967–82.

    Article  Google Scholar 

  65. Arciola CR, Campoccia D, Ehrlich GD, Montanaro L. Biofilm-based implant infections in orthopaedics. In: Donelli G, editor. Biofilm-based healthcare-associated infections, vol. 1. Cham: Springer International; 2015. p. 29–46.

    Google Scholar 

  66. Campoccia D, Speziale P, Ravaioli S, Cangini I, Rindi S, Pirini V, et al. The presence of both bone sialoprotein-binding protein gene and collagen adhesin gene as a typical virulence trait of the major epidemic cluster in isolates from orthopedic implant infections. Biomaterials. 2009;30:6621–8.

    Article  Google Scholar 

  67. Speziale P, Pietrocola G, Rindi S, Provenzano M, Provenza G, Di Poto A, et al. Structural and functional role of Staphylococcus aureus surface components recognizing adhesive matrix molecules of the host. Future Microbiol. 2009;4:1337–52.

    Article  Google Scholar 

  68. Montanaro L, Speziale P, Campoccia D, Ravaioli S, Cangini I, Pietrocola G, et al. Scenery of Staphylococcus implant infections in orthopedics. Future Microbiol. 2011;6:1329–49.

    Article  Google Scholar 

  69. Patti JM, Allen BL, McGavin MJ, Hook M. MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol. 1994;48:585–617.

    Article  Google Scholar 

  70. Heilmann C, Hussain M, Peters G, Götz F. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol. 1997;24:1013–24.

    Article  Google Scholar 

  71. Foster SJ. Molecular characterization and functional analysis of the major autolysin of Staphylococcus aureus 8325/4. J Bacteriol. 1995;177:5723–5.

    Article  Google Scholar 

  72. Hirschhausen N, Schlesier T, Schmidt MA, Götz F, Peters G, Heilmann C. A novel staphylococcal internalization mechanism involves the major autolysin Atl and heat shock cognate protein Hsc70 as host cell receptor. Cell Microbiol. 2010;12:1746–64.

    Article  Google Scholar 

  73. Taraszkiewicz A, Fila G, Grinholc M, Nakonieczna J. Innovative strategies to overcome biofilm resistance. Biomed Res Int. 2013;2013:13.

    Article  Google Scholar 

  74. Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002;8:881–90.

    Article  Google Scholar 

  75. Bjarnsholt T, Jensen PØ, Fiandaca MJ, Pedersen J, Hansen CR, Andersen CB, et al. Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr Pulmonol. 2009;44:547–58.

    Article  Google Scholar 

  76. Mah T-FC, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001;9:34–9.

    Article  Google Scholar 

  77. Taj Y, Essa F, Aziz F, Kazmi SU. Study on biofilm-forming properties of clinical isolates of Staphylococcus aureus. J Infect Dev Ctries. 2012;6(5):403–9.

    Article  Google Scholar 

  78. Richards JJ, Melander C. Controlling bacterial biofilms. ChemBioChem. 2009;10:2287–94.

    Article  Google Scholar 

  79. Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA. Biofilm formation by the fungal pathogencandida albicans: development, architecture, and drug resistance. J Bacteriol. 2001;183:5385–94.

    Article  Google Scholar 

  80. Stephens C. Microbiology: breaking down biofilms. Curr Biol. 2002;12:R132–4.

    Article  Google Scholar 

  81. Golovlev EL. The mechanism of formation of Pseudomonas aeruginosa biofilm, a type of structured population. Microbiology. 2002;71:249–54.

    Article  Google Scholar 

  82. Clutterbuck AL, Cochrane CA, Dolman J, Percival SL. Evaluating antibiotics for use in medicine using a poloxamer biofilm model. Ann Clin Microbiol Antimicrob. 2007;6:2.

    Article  Google Scholar 

  83. Clutterbuck AL, Woods EJ, Knottenbelt DC, Clegg PD, Cochrane CA, Percival SL. Biofilms and their relevance to veterinary medicine. Vet Microbiol. 2007;121:1–17.

    Article  Google Scholar 

  84. Kuchma SL, O’Toole GA. Surface-induced and biofilm-induced changes in gene expression. Curr Opin Biotechnol. 2000;11:429–33.

    Article  Google Scholar 

  85. Flemming H-C, Wingender J. Relevance of microbial extracellular polymeric substances (EPSs)—Part I: structural and ecological aspects. Water Sci Technol. 2001;43:1–8.

    Google Scholar 

  86. Sutherland IW. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology. 2001;147:3–9.

    Article  Google Scholar 

  87. Sutherland IW. The biofilm matrix—an immobilized but dynamic microbial environment. Trends Microbiol. 2001;9:222–7.

    Article  Google Scholar 

  88. Hooshangi S, Bentley WE. From unicellular properties to multicellular behavior: bacteria quorum sensing circuitry and applications. Curr Opin Biotechnol. 2008;19:550–5.

    Article  Google Scholar 

  89. Stewart PS, William CJ. Antibiotic resistance of bacteria in biofilms. Lancet. 2001;358:135–8.

    Article  Google Scholar 

  90. Anderl JN, Franklin MJ, Stewart PS. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother. 2000;44:1818–24.

    Article  Google Scholar 

  91. Anwar H, van Biesen T, Dasgupta M, Lam K, Costerton JW. Interaction of biofilm bacteria with antibiotics in a novel in vitro chemostat system. Antimicrob Agents Chemother. 1989;33:1824–6.

    Article  Google Scholar 

  92. Williams I, Venables WA, Lloyd D, Paul F, Critchley I. The effects of adherence to silicone surfaces on antibiotic susceptibility in Staphylococcus aureus. Microbiology. 1997;143:2407–13.

    Article  Google Scholar 

  93. Alekshun MN, Levy SB. The mar regulon: multiple resistance to antibiotics and other toxic chemicals. Trends Microbiol. 1999;7:410–3.

    Article  Google Scholar 

  94. Maira-Litrán T, Allison DG, Gilbert P. Expression of the multiple antibiotic resistance operon (mar) during growth of Escherichia coli as a biofilm. J Appl Microbiol. 2000;88:243–7.

    Article  Google Scholar 

  95. Maira-Litrán T, Allison DG, Gilbert P. An evaluation of the potential of the multiple antibiotic resistance operon (mar) and the multidrug efflux pump acrAB to moderate resistance towards ciprofloxacin in Escherichia coli biofilms. J Antimicrob Chemother. 2000;45:789–95.

    Article  Google Scholar 

  96. Brooun A, Liu S, Lewis K. A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2000;44:640–6.

    Article  Google Scholar 

  97. Stewart PS. Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob Agents Chemother. 1996;40:2517–22.

    Google Scholar 

  98. Stewart PS. A review of experimental measurements of effective diffusive permeabilities and effective diffusion coefficients in biofilms. Biotechnol Bioeng. 1998;59:261–72.

    Article  Google Scholar 

  99. Kumon H, Tomochika K-I, Matunaga T, Ogawa M, Ohmori H. A sandwich cup method for the penetration assay of antimicrobial agents through Pseudomonas exopolysaccharides. Microbiol Immunol. 1994;38:615–9.

    Article  Google Scholar 

  100. Shigeta M, Tanaka G, Komatsuzawa H, Sugai M, Suginaka H, Usui T. Permeation of antimicrobial agents through Pseudomonas aeruginosa biofilms: a simple method. Chemotherapy. 1997;43:340–5.

    Article  Google Scholar 

  101. Gordon CA, Hodges NA, Marriott C. Antibiotic interaction and diffusion through alginate and exopolysaccharide of cystic fibrosis-derived Pseudomonas-aeruginosa. J Antimicrob Chemother. 1988;22:667–74.

    Article  Google Scholar 

  102. Nichols WW, Dorrington SM, Slack MPE, Walmsley HL. Inhibition of tobramycin diffusion by binding to alginate. Antimicrob Agents Chemother. 1988;32:518–23.

    Article  Google Scholar 

  103. Debeer D, Stoodley P, Roe F, Lewandowski Z. Effects of biofilm structures on oxygen distribution and mass-transport. Biotechnol Bioeng. 1994;43:1131–8.

    Article  Google Scholar 

  104. Tack KJ, Sabath LD. Increased minimum inhibitory concentrations with anaerobiasis for tobramycin, gentamicin, and amikacin, compared to latamoxef, piperacillin, chloramphenicol, and clindamycin. Chemotherapy. 1985;31:204–10.

    Article  Google Scholar 

  105. Zhang TC, Bishop PL. Evaluation of substrate and pH effects in a nitrifying biofilm. Water Environ Res. 1996;68:1107–15.

    Article  Google Scholar 

  106. Tuomanen E, Cozens R, Tosch W, Zak O, Tomasz A. The rate of killing of Escherichia-coli by beta-lactam antibiotics is strictly proportional to the rate of bacterial-growth. J Gen Microbiol. 1986;132:1297–304.

    Google Scholar 

  107. Prigent-Combaret C, Vidal O, Dorel C, Lejeune P. Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J Bacteriol. 1999;181:5993–6002.

    Google Scholar 

  108. Cochran WL, McFeters GA, Stewart PS. Reduced susceptibility of thin Pseudomonas aeruginosa biofilms to hydrogen peroxide and monochloramine. J Appl Microbiol. 2000;88:22–30.

    Article  Google Scholar 

  109. Das JR, Bhakoo M, Jones MV, Gilbert P. Changes in the biocide susceptibility of Staphylococcus epidermidis and Escherichia coli cells associated with rapid attachment to plastic surfaces. J Appl Microbiol. 1998;84:852–8.

    Article  Google Scholar 

  110. Arciola CR, Campoccia D, Montanaro L. Effects on antibiotic resistance of Staphylococcus epidermidis following adhesion to polymethylmethacrylate and to silicone surfaces. Biomaterials. 2002;23:1495–502.

    Article  Google Scholar 

  111. Kiedrowski MR, Horswill AR. New approaches for treating staphylococcal biofilm infections. Ann N Y Acad Sci. 2011;1241:104–21.

    Article  Google Scholar 

  112. Yilmaz C, Colak M, Yilmaz BC, Ersoz G, Kutateladze M, Gozlugol M. Bacteriophage therapy in implant-related infections. An experimental study. J Bone Joint Surg Am. 2013;95:117–25.

    Article  Google Scholar 

  113. Artini M, Papa R, Scoarughi GL, Galano E, Barbato G, Pucci P, et al. Comparison of the action of different proteases on virulence properties related to the staphylococcal surface. J Appl Microbiol. 2013;114:266–77.

    Article  Google Scholar 

  114. Otto M. Quorum-sensing control in Staphylococci—a target for antimicrobial drug therapy? FEMS Microbiol Lett. 2004;241:135–41.

    Article  Google Scholar 

  115. Manuel R, Laura A, Ana O. Patents on quorum quenching: interfering with bacterial communication as a strategy to fight infections. Recent Pat Biotechnol. 2012;6:2–12.

    Google Scholar 

  116. Donelli G, Francolini I, Romoli D, Guaglianone E, Piozzi A, Ragunath C, et al. Synergistic activity of dispersin B and cefamandole nafate in inhibition of staphylococcal biofilm growth on polyurethanes. Antimicrob Agents Chemother. 2007;51:2733–40.

    Article  Google Scholar 

  117. Darouiche RO, Mansouri MD, Gawande PV, Madhyastha S. Antimicrobial and antibiofilm efficacy of triclosan and DispersinB® combination. J Antimicrob Chemother. 2009;64:88–93.

    Article  Google Scholar 

  118. Christensen LD, van Gennip M, Jakobsen TH, Alhede M, Hougen HP, Høiby N, et al. Synergistic antibacterial efficacy of early combination treatment with tobramycin and quorum-sensing inhibitors against Pseudomonas aeruginosa in an intraperitoneal foreign-body infection mouse model. J Antimicrob Chemother. 2012;67:1198–206.

    Article  Google Scholar 

  119. Mansouri MD, Hull RA, Stager CE, Cadle RM, Darouiche RO. In vitro activity and durability of a combination of an antibiofilm and an antibiotic against vascular catheter colonization. Antimicrob Agents Chemother. 2013;57:621–5.

    Article  Google Scholar 

  120. Artini M, Papa R, Barbato G, Scoarughi GL, Cellini A, Morazzoni P, et al. Bacterial biofilm formation inhibitory activity revealed for plant derived natural compounds. Bioorg Med Chem. 2012;20:920–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rodríguez-Hernández, J. (2017). Bacterial Infections: Few Concepts. In: Polymers against Microorganisms. Springer, Cham. https://doi.org/10.1007/978-3-319-47961-3_2

Download citation

Publish with us

Policies and ethics