Skip to main content

Sorghum Germplasm Resources Characterization and Trait Mapping

  • Chapter
  • First Online:
The Sorghum Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Sorghum is the fifth most important cereal crop mostly grown for food, feed, fodder, and bioenergy purposes, and a staple for over 500 million resource-poor people in marginal environments. Globally, over 236,000 sorghum germplasm accessions have been conserved in genebanks, of which the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), India and the Plant Genetic Resources Conservation Unit, Southern Regional Plant Introduction Station, University of Georgia, USDA-ARS, together conserve about 32 % of the total global sorghum collections. Germplasm diversity representative subsets such as core and mini core collections and a genotyping-based reference set have been established in sorghum providing access to large diversity. The sorghum mini core collection established at the ICRISAT is being widely used for identification of sources for resistance to various biotic and abiotic stresses, and for agronomic and grain nutritional traits. Large genetic and genomic resources are available in sorghum, and resequencing of diverse germplasm resources including the mini core collection and wild and weedy relatives will provide researchers opportunities to relate sequence variations with phenotypic traits of interest and their utilization in sorghum improvement. Genomewide association mapping studies have identified genomic regions that are associated with important agronomic traits and  resistance to biotic and abiotic stresses. High-throughput phenotyping platforms/technologies are required for precise phenotyping to attain greater genetic gains. The current status of germplasm, its characterization and utilization has been summarized in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Araus JL, Cairns JE (2014) Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci 19(1):52–61

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay R, Mughogho LK, Rao KRP (1988) Sources of resistance to sorghum grain molds. Plant Dis 72:504–508

    Article  Google Scholar 

  • Batz J, Méndez-Dorado M, Thomasson J (2016) Imaging for high-throughput phenotyping in energy sorghum. J Imaging 2(1):4. doi:10.3390/jimaging2010004

    Article  Google Scholar 

  • Besufekad Y, Bantte K (2013) Evaluation and association mapping for drought tolerance in sorghum [Sorghum bicolor (L.) Moench]. Glob J Sci Front Res Agric Vet 13(5)

    Google Scholar 

  • Bhosale SU, Stich B, Rattunde HFW, Weltzien E, Haussmann BIG, Hash CT, Ramu P, Cuevas HE, Paterson AH, Melchinger AE, Parzies HK (2012) Association analysis of photoperiodic flowering time genes in west and central African sorghum [Sorghum bicolor (L.) Moench]. BMC Plant Biol 12(1):32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billot C, Rivallan R, Sall MN, Fonceka D, Deu M, Glaszmann J-C, Noyer J-L, Rami J-F, Risterucci A-M, Wincker P, Ramu P, Hash CT (2012) A reference microsatellite kit to assess for genetic diversity of Sorghum bicolor (Poaceae). Am J Bot 99(6):e245–250

    Article  PubMed  Google Scholar 

  • Billot C, Ramu P, Bouchet S, Chantereau J, Deu M, Rivallan R, Li Y, Lu P, Gardes L, Noyer J, Wang T, Folkertsma RT, Arnaud E, Upadhyaya HD, Glaszmann C, Hash CT (2013) Massive sorghum collection genotyped with SSR Markers to enhance use of global genetic resources. PLoS ONE 8(4):e59714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchet S, Pot D, Deu M, Rami J-F, Billot C, Perrier X, Rivallan R, Gardes L, Xia L, Wenzl P, Kilian A, Glaszmann J-C (2012) Genetic structure, linkage disequilibrium and signature of selection in Sorghum: lessons from physically anchored DArT markers. PLoS ONE 7(3):e33470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowers JE, Abbey C, Anderson S, Chang C, Draye X, Hoppe AH, Jessup R, Lemke C, Lennington J, Li Z, Lin YR, Liu SC, Luo L, Marler BS, Ming R, Mitchell SE, Qiang D, Reischmann K, Schulze SR, Skinner DN, Wang YW, Kresovich S, Schertz KF, Paterson AH (2003) A high-density genetic recombination map of sequence-tagged sites for Sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics 165(1):367–386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AHD (1989) Core collections: a practical approach to genetic resources management. Genome 31:818–824

    Article  Google Scholar 

  • Cuevas HE, Prom LK, Magill C (2012) Reaction to rust by a subset of sorghum accessions from Zimbabwe. Asian J Plant Pathol 6(2):33–40

    Article  Google Scholar 

  • Cuevas HE, Prom LK, Erpelding JE (2014) Tapping the US sweet sorghum collection to identify biofuel germplasm. Sugar Technol 17(4):428–438

    Article  Google Scholar 

  • Cuevas HE, Prom LK, Isakeit T, Radwan G (2016) Assessment of sorghum germplasm from Burkina Faso and South Africa to identify new sources of resistance to grain mold and anthracnose. Crop Protec 79:43–50

    Article  Google Scholar 

  • Dahlberg JA, Burke JJ, Rosenow DT (2004) Development of a sorghum core collection: refinement and evaluation of a subset from Sudan. Econ Bot 58(4):556–567

    Article  Google Scholar 

  • de Wet JMJ (1978) Systematics and evolution of sorghum sect sorghum (Gramineae). Am J Bot 65:477–484

    Article  Google Scholar 

  • Dwivedi S, Sahrawat K, Upadhyaya HD, Ortiz R (2013) Food, nutrition and agrobiodiversity under global climate change. In: Sparks DL (ed) Advances in agronomy. Academic Press, Elsevier Inc., USA, pp 1–128. http://dx.doi.org/10.1016/B978-0-12-407686-0.00001-4

    Google Scholar 

  • Erpelding J (2012) Anthracnose resistance in sorghum germplasm from the Segou region of Mali. J Crop Improv 26(3):397–414

    Article  CAS  Google Scholar 

  • Evans J, McCormick RF, Morishige D, Olson SN, Weers B, Hilley J, Klein P, Rooney W, Mullet J (2013) Extensive variation in the density and distribution of DNA polymorphism in sorghum genomes. PLoS ONE 8(11):e79192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez MGS, Schoenbaum GR, Goggi AS (2014) Novel germplasm and screening methods for early cold tolerance in Sorghum. Crop Sci 54(6):2631–2638

    Article  Google Scholar 

  • Frankel OH (1984) Genetic perspective of germplasm conservation. In: Arber W, Limensee K, Peacock WJ, Stralinger P (eds) Genetic manipulations: impact on man and society. Cambridge Univ Press, Cambridge, UK, pp 161–170

    Google Scholar 

  • Grenier C, Bramel-Cox PJ, Hamon P (2001a) Core collection of sorghum: I. Stratification based on eco-geographical data. Crop Sci 41:379–380

    Article  Google Scholar 

  • Grenier C, Hamon P, Bramel-Cox PJ (2001b) Core collection of sorghum: II. Comparison of three random sampling strategies. Crop Sci 41:241–246

    Article  Google Scholar 

  • Harlan JR, de Wet JMJ (1972) A simplified classification of cultivated sorghum. Crop Sci 12:172–176

    Article  Google Scholar 

  • Honsdorf N, March TJ, Berger B, Tester M, Pillen K (2014) High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines. PLoS ONE 9(5):e97047

    Article  PubMed  PubMed Central  Google Scholar 

  • IAASTD (2009) Agriculture at a cross-roads. Global report. Island Press, Washington DC, USA

    Google Scholar 

  • Jordan DR, Mace ES, Cruickshank AW, Hunt CH, Henzell RG (2011) Exploring and exploiting genetic variation from unadapted sorghum germplasm in a breeding program. Crop Sci 51:1444–1457

    Article  Google Scholar 

  • Kamala V, Singh SD, Bramel PJ, Rao DM (2002) Sources of resistance to downy mildew in wild and weedy sorghums. Crop Sci 42:1357–1360

    Article  Google Scholar 

  • Kamala V, Sharma HC, Rao DM, Varaprasad KS, Bramel P (2009) Wild relatives of sorghum as sources of resistance to sorghum shoot fly, Atherigona soccata. Plant Breed. 128:137–142

    Article  Google Scholar 

  • Kamala V, Sharma HC, Rao DM, Varaprasad KS, Bramel PJ, Chandra S (2012) Interactions of spotted stem borer Chilo partellus with wild relatives of sorghum. Plant Breed 131(4):511–521

    Article  Google Scholar 

  • Kapanigowda MH, Perumal R, Djanaguiraman M, Aiken RM, Tesso T, Prasad PVV, Little CR (2013) Genotypic variation in sorghum [Sorghum bicolor (L.) Moench] exotic germplasm collections for drought and disease tolerance. Springerplus 2:650

    Google Scholar 

  • Karunakar RI, Narayana YD, Pandey S, Mughogho L, Singh SD (1994a) Evaluation of early-flowering sorghum germplasm accessions for downy mildew resistance in the greenhouse. Int Sorghum Millets Newslett 35:102–103

    Google Scholar 

  • Karunakar RI, Narayana YD, Pande S, Mughogho L, Singh S (1994b) Evaluation of wild and weedy sorghums for downy mildew resistance. Int Sorghum Millets Newslett 35:104–106

    Google Scholar 

  • Kong W, Jin H, Franks CD, Kim C, Bandyopadhyay R, Rana MK, Auckland SA, Goff VH, Rainville LK, Burow GB, Woodfin C, Burke JJ, Paterson AH (2013) Genetic analysis of recombinant inbred lines for Sorghum bicolor × Sorghum propinquum. G3: Genes Genomes. Genetics 3:101–108

    CAS  Google Scholar 

  • Leiser WL, Rattunde H, Weltzien E, Cisse N, Abdou M, Diallo A, Tourè AO, Magalhaes JV, Haussmann B (2014) Two in one sweep: aluminum tolerance and grain yield in P-limited soils are associated to the same genomic region in West African Sorghum. BMC Plant Biol 14(1):206

    Article  PubMed  PubMed Central  Google Scholar 

  • Li M, Yuyama N, Luo L, Hirata M, Cai H (2009) In silico mapping of 1758 new SSR markers developed from public genomic sequences for sorghum. Mol Breed 24(1):41–47

    Article  Google Scholar 

  • Liu Q, Liu H, Wen J, Peterson PM (2014) Infrageneric phylogeny and temporal divergence of sorghum (Andropogoneae, Poaceae) based on low-copy nuclear and plastid sequences. PLoS One 9:e104933

    Google Scholar 

  • Luo H, Zhao W, Wang Y, Xia Y, Wu X, Zhang L, Tang B, Zhu J, Fang L, Du Z, Bekele WA, Tai S, Jordan DR, Godwin ID, Snowdon RJ, Mace ES, Jing H-C, Luo J (2016) SorGSD: a sorghum genome SNP database. Biotechnol Biofuels 9(1):6

    Article  PubMed  PubMed Central  Google Scholar 

  • Mace ES, Xia L, Jordan DR, Halloran K, Parh DK, Huttner E, Wenzl P, Kilian A (2008) DArT markers: diversity analyses and mapping in Sorghum bicolor. BMC Genom 9(1):26

    Article  Google Scholar 

  • Mace ES, Tai S, Gilding EK, Li Y, Prentis PJ, Bian L, Campbell BC, HuW Innes DJ, Han X, Cruickshank A, Dai C, Frère C, Zhang H, Hunt CH, Wang X, Shatte T, Wang M, Su Z, Li J, Lin X, Godwin ID, Jordan DR, Wang J (2013a) Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nat Commun 4:2320

    PubMed  PubMed Central  Google Scholar 

  • Mace ES, Hunt CH, Jordan DR (2013b) Supermodels: sorghum and maize provide mutual insight into the genetics of flowering time. Theor Appl Genet 126(5):1377–1395

    Article  CAS  PubMed  Google Scholar 

  • Mannai El, Shehzad T, Okuno K (2011) Variation in flowering time in sorghum core collection and mapping of QTLs controlling flowering time by association analysis. Genet Resour Crop Evol 58:983–989

    Article  Google Scholar 

  • Mantilla Perez MB, Zhao J, Yin Y, Hu J, Fernandez MGS (2014) Association mapping of brassinosteroid candidate genes and plant architecture in a diverse panel of Sorghum bicolor. Theor Appl Genet 127(12):2645–2662

    Article  CAS  PubMed  Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16(4):237–251

    Article  CAS  PubMed  Google Scholar 

  • Morris G (2015) Dissecting complex traits in sorghum with a nested association mapping population. In: Conference paper. Plant and Animal Genome XXIII. January 10–14 (2015) San Diego. CA, USA

    Google Scholar 

  • Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD, Riera-Lizarazu O, Brown PJ, Acharya CB, Mitchell SE, Harriman J, Glaubitz JC, Buckler ES, Kresovich S (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci USA 110(2):453–458

    Article  CAS  PubMed  Google Scholar 

  • Mutegi E, Sagnard F, Semagn K, Deu M, Muraya M, Kanyenji B, de Villiers S, Kiambi D, Herselman L, Labuschagne M (2011) Genetic structure and relationships within and between cultivated and wild sorghum (Sorghum bicolor (L.) Moench) in Kenya as revealed by microsatellite markers. Theor Appl Genet 122(5):989–1004

    Google Scholar 

  • Murray SC, Rooney WL, Hamblin MT, Mitchell SE, Kresovich S (2009) Sweet sorghum genetic diversity and association mapping for brix and height. Plant Genome J 2(1):48–62

    Article  CAS  Google Scholar 

  • Neilson EH, Edwards AM, Blomstedt CK, Berger B, Møller BL, Gleadow RM (2015) Utilization of a high-throughput shoot imaging system to examine the dynamic phenotypic responses of a C4 cereal crop plant to nitrogen and water deficiency over time. J Exp Bot 66(7):1817–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson JC, Wang S, Wu Y, Li X, Antony G, White FF, Yu J (2011) Single-nucleotide polymorphism discovery by high-throughput sequencing in sorghum. BMC Genom 12(1):352

    Article  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457(7229):551–556

    Article  CAS  PubMed  Google Scholar 

  • Prasada Rao KE, Ramanatha Rao V (1995) The use of characterization data in developing a core collection of sorghum. In: Hodgkin T, Brown AHD, van Hintum Th.JL, Morales EAV (eds) Core collections of plant genetic resources. Wiley, Chichester, UK, pp 109–115

    Google Scholar 

  • Prom LK, Erpelding J (2009) New sources of grain mold resistance among sorghum accessions from Sudan. Trop Subtrop Agroecosyst 10(3):457–463

    Google Scholar 

  • Prom LK, Erpelding JE, Montes-Garcia N (2007) Chinese sorghum germplasm evaluated for resistance to downy mildew and anthracnose. Commun Biometry Crop Sci 2(1):26–31

    Google Scholar 

  • Prom LK, Erpelding J, Perumal R, Isakeit T, Cuevas H (2012) Response of sorghum accessions from four African countries against Colletotrichum sublineolum, causal agent of sorghum anthracnose. Am J Plant Sci 3:125–129

    Article  Google Scholar 

  • Prom LK, Perumal R, Montes-Garcia N, Isakeit T, Odvody GN, Rooney WL, Little CR, Magill C (2015) Evaluation of Gambian and Malian sorghum germplasm against downy mildew pathogen, Peronosclerospora sorghi, in Mexico and the USA. J Gen Plant Pathol 81:24–31

    Article  CAS  Google Scholar 

  • Reddy BVS, Ramesh S, Reddy PS, Ramaiah B, Salimath PM, Kachapur R (2005) Sweet sorghum-A potential alternative raw material for bio-ethanol and bio-energy. Int Sorghum Millet Newsl. 46:79–86

    Google Scholar 

  • Reddy BVS, Kumar AA, Reddy PS, Elangovan M (2008) Sorghum germplasm: diversity and utilization. In: Bantilan MCS, Deb UK, Gowda CLL, Reddy BVS, Obilana AB, Evenson RE (eds) Sorghum genetic enhancement: research process, dissemination and impacts. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, AP, India, pp 153–169. ISBN 978-92-9066-512-0

    Google Scholar 

  • Seetharam (2011) Phenotypic assessment of sorghum (Sorghum bicolor L. Moench) germplasm reference set for yield and related traits under post flowering drought conditions. PhD Thesis. Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

    Google Scholar 

  • Sharma HC, Taneja SL, Kameswara Rao N, Prasada Rao KE (2003) Evaluation of sorghum germplasm for resistance to insect pests. Information Bulletin no. 63. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 184 p. ISBN 92-9066-458-4

    Google Scholar 

  • Sharma R, Rao VP, Upadhyaya HD, Reddy VG, Thakur RP (2010) Resistance to grain mold and downy mildew in a mini-core collection of sorghum germplasm. Plant Dis 94(4):439–444

    Article  Google Scholar 

  • Sharma R, Upadhyaya HD, Manjunatha SV, Rao VP, Thakur RP (2012) Resistance to foliar diseases in a mini-core collection of sorghum germplasm. Plant Dis 96:1629–1633

    Article  Google Scholar 

  • Shehzad T, Okuizumi H, Kawase M, Okuno K (2009) Development of SSR-based sorghum (Sorghum bicolor (L.) Moench) diversity research set of germplasm and its evaluation by morphological traits. Genet Resour Crop Evol 56(6):809–827

    Google Scholar 

  • Singh V, Singh Y (2014) Screening of sorghum germplasm against Exserohilum leaf blight. Trends Biosci 7(16):2087–2089

    Google Scholar 

  • Thakur RP, Rao VP, Sharma R (2008) Characterization of grain mold resistant sorghum germplasm accessions for physio- morphological traits. SAT eJournal 6(December):1–7

    Google Scholar 

  • Topp CN, Iyer-Pascuzzi AS, Anderson JT, Lee C-R, Zurek PR, Symonova O, Zheng Y, Bucksch A, Mileyko Y, Galkovskyi T, Moore BT, Harer J, Edelsbrunner H, Mitchell-Olds T, Weitz JS, Benfey PN (2013) 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture. Proc Natl Acad Sci USA 110(18):E1695–1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyaya HD, Ortiz R (2001) A mini core subset for capturing diversity and promoting utilization of chickpea genetic resources in crop improvement. Theor Appl Genet 102:1292–1298

    Article  Google Scholar 

  • Upadhyaya HD, Pundir RPS, Dwivedi SL, Gowda CLL, Reddy VG, Singh S (2009) Developing a mini core collection of sorghum for diversified utilization of germplasm. Crop Sci 49:1769–1780

    Article  Google Scholar 

  • Upadhyaya HD, Wang Y-H, Sharma S, Singh S, Hasenstein KH (2012a) SSR markers linked to kernel weight and tiller number in sorghum identified by association mapping. Euphytica 187(3):401–410

    Article  CAS  Google Scholar 

  • Upadhyaya HD, Wang Y-H, Sharma S, Singh S (2012b) Association mapping of height and maturity across five environments using the sorghum mini core collection. Genome 55(6):471–479

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya HD, Wang Y-H, Gowda CLL, Sharma S (2013a) Association mapping of maturity and plant height using SNP markers with the sorghum mini core collection. Theor Appl Genet 126(8):2003–2015

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya HD, Wang Y-H, Sharma R, Sharma S (2013b) Identification of genetic markers linked to anthracnose resistance in sorghum using association analysis. Theor Appl Genet 126(6):1649–1657

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya HD, Wang Y-H, Sharma R, Sharma S (2013c) SNP markers linked to leaf rust and grain mold resistance in sorghum. Mol Breed 32(2):451–462

    Article  CAS  Google Scholar 

  • Upadhyaya HD, Sharma S, Dwivedi SL, Singh SK (2014a) Sorghum genetic resources: conservation and diversity assessment fo enhanced utilization in sorghum improvement. In: Wang YH, Upadhyaya HD, Kole C (eds) Genetics, genomics and breeding of sorghum. CRC Press, Boca Raton (USA), London (UK), New York (USA), pp 28–55

    Google Scholar 

  • Upadhyaya HD, Dwivedi SL, Ramu P, Singh SK, Singh S (2014b) Genetic variability and effect of postflowering drought on stalk sugar content in sorghum mini core collection. Crop Sci 54(5):2120–2130

    Article  Google Scholar 

  • Upadhyaya HD, Dwivedi SL, Singh S, Sahrawat KL, Singh SK (2016a) Genetic variation and postflowering drought effects on seed iron and zinc in ICRISAT sorghum mini core collection. Crop Sci 56:374–383

    Article  CAS  Google Scholar 

  • Upadhyaya HD, Wang Y-H, Dintyala SV, Dwivedi SL, Prasad PVV, Burrell AM, Klein R, Morris GP, Klein PE (2016b) Association mapping of germinability and seedling vigor in sorghum under controlled low temperature conditions. Genome 59:137–145

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya HD, Dwivedi SL, Vetriventhan M, Krishnamurthy L, Singh SK (2017) Post-flowering drought tolerance using managed stress trials, adjusted to flowering and mini core collection in sorghum. Crop Sci. doi:10.2135/cropsci2016.04.0280

    Google Scholar 

  • Vadez V, Kholova J, Hummel G, Zhokhavets U, Gupta SK, Hash CT (2015) LeasyScan: a novel concept combining 3D imaging and lysimetry for high-throughput phenotyping of traits controlling plant water budget. J Exp Bot 66(18):5581–5593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vadez V, Krishnamurthy L, Hash CT, Upadhyaya HD, Borrell AK (2011) Yield, transpiration efficiency, and water-use variations and their interrelationships in the sorghum reference collection. Crop Pasture Sci 62:645–655

    Article  Google Scholar 

  • van Treuren R, van Hintum TJL (2014) Next-generation genebanking: plant genetic resources management and utilization in the sequencing era. Plant Genet Resour 12(3):298–307

    Article  Google Scholar 

  • Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12(6):e1001883

    Article  PubMed  PubMed Central  Google Scholar 

  • Walter A, Liebisch F, Hund A (2015) Plant phenotyping: from bean weighing to image analysis. Plant Methods 11:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang YH, Bible P, Loganantharaj R, Upadhyaya HD (2011) Identification of SSR markers associated with saccharification yield using pool-based genome- wide association mapping in sorghum. Genome 54:883–889

    Article  CAS  PubMed  Google Scholar 

  • Wang Y-H, Acharya A, Burrell AM, Klein RR, Klein PE, Hasenstein KH (2013a) Mapping and candidate genes associated with saccharification yield in sorghum. Genome 56(11):659–665

    Article  CAS  PubMed  Google Scholar 

  • Wang Y-H, Bible P, Loganantharaj R, Upadhyaya HD (2012) Identification of SSR markers associated with height using pool-based genome-wide association mapping in sorghum. Mol Breed 30(1):281–292

    Article  Google Scholar 

  • Wang Y, Upadhyaya HD, Burrell AM, Sahraeian SME, Klein RR, Klein PE (2013b) genetic structure and linkage disequilibrium in a diverse, representative collection of the C4 model plant, Sorghum bicolor. G3: Genes Genomes Genet 3:783–793

    Google Scholar 

  • Yang W, Guo Z, Huang C, Duan L, Chen G, Jiang N, Fang W, Feng H, Xie W, Lian X, Wang G, Luo Q, Zhang Q, Liu Q, Xiong L (2014) Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat Commun 5:5087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X-H, Xu Z-H, Xue H-W (2005) Arabidopsis membrane steroid binding protein 1 is involved in inhibition of cell elongation. Plant Cell 17(1):116–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Kong W, Robertson J, Goff VH, Epps E, Kerr A, Mills G, Cromwell J, Lugin Y, Phillips C, Paterson AH (2015) Genetic analysis of inflorescence and plant height components in sorghum (Panicoidae) and comparative genetics with rice (Oryzoidae). BMC Plant Biol 15(1):107

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari D. Upadhyaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Upadhyaya, H.D., Vetriventhan, M., Deshpande, S. (2016). Sorghum Germplasm Resources Characterization and Trait Mapping. In: Rakshit, S., Wang, YH. (eds) The Sorghum Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-47789-3_4

Download citation

Publish with us

Policies and ethics