Skip to main content
  • 1585 Accesses

Abstract

Intraoperative neurophysiologic monitoring (IOM) using either electrically elicited triggered or mechanically elicited spontaneous electromyographic (EMG) activity has become widely used for the preservation of neurologic function during various surgical procedures. Its use has a long history dating back to the 1960s, when it was first used for the preservation of facial nerve function. Since then, techniques that utilize EMG responses to protect neurologic function when brain, spinal cord, cranial nerve, cauda equina, and nerve root function are at risk include cranial nerve monitoring, brainstem and cortical motor strip mapping, nerve root monitoring for surgeries in the region of the cauda equina, nerve root monitoring during pedicle screw placements, H-reflex testing, snd transcranial motor-evoked responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hilger JA. Facial nerve stimulator. Trans Am Acad Ophthalmol Otolaryngol. 1964;68:74–6.

    CAS  PubMed  Google Scholar 

  2. Rand RW, Kurze TL. Facial nerve preservation by posterior fossa transmeatal microdissection in total removal of acoustic tumors. J Neurol Neurosurg Psychiatry. 1965;28:311–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Al-Mefty O, Holoubi A, Rifai A, Fox JL. Microsurgical removal of suprasellar meningiomas. Neurosurgery. 1985;16:364–72.

    Article  CAS  PubMed  Google Scholar 

  4. Prass RL, Lüders H. Acoustic (loudspeaker) facial electromyographic monitoring: Part 1. Evoked electromyographic activity during acoustic neuroma resection. Neurosurgery. 1986;19:392–400.

    Article  CAS  PubMed  Google Scholar 

  5. Sekhar LN, Møller AR. Operative management of tumors involving the cavernous sinus. J Neurosurg. 1986;64:879–89.

    Article  CAS  PubMed  Google Scholar 

  6. Harner SG, Daube JR, Ebersold MJ, Beatty CW. Improved preservation of facial nerve function with use of electrical monitoring during removal of acoustic neuromas. Mayo Clin Proc. 1987;62:92–102.

    Article  CAS  PubMed  Google Scholar 

  7. Prass RL, Kinney SE, Hardy RW, Hahn JF, Lüders H. Acoustic (loudspeaker) facial EMG monitoring: II. Use of evoked EMG activity during acoustic neuroma resection. Otolaryngol Head Neck Surg. 1987;97:541–51.

    Article  CAS  PubMed  Google Scholar 

  8. Yingling CD, Gardi JN. Intraoperative monitoring of facial and cochlear nerves during acoustic neuroma surgery. Otolaryngol Clin North Am. 1992;25:413–48.

    CAS  PubMed  Google Scholar 

  9. Yingling C, Gardi J. Intraoperative monitoring in skull base surgery. In: Jackler R, Brachmann D, editors. Neurotology. St. Louis: Mosby Year Book; 1994. p. 967–1002.

    Google Scholar 

  10. Selesnick SH, Goldsmith DF. Issues in the optimal selection of a cranial nerve monitoring system. Skull Base Surg. 1993;3:230–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Romstöck J, Strauss C, Fahlbusch R. Continuous electromyography monitoring of motor cranial nerves during cerebellopontine angle surgery. J Neurosurg. 2000;93:586–93.

    Article  PubMed  Google Scholar 

  12. Prell J, Rampp S, Rachinger J, Scheller C, Naraghi R, Strauss C. Spontaneous electromyographic activity during microvascular decompression in trigeminal neuralgia. J Clin Neurophysiol. 2008;25:225–32.

    Article  PubMed  Google Scholar 

  13. Prell J, Rachinger J, Scheller C, Alfieri A, Strauss C, Rampp S. A real-time monitoring system for the facial nerve. Neurosurgery. 2010;66:1064–73.

    Article  PubMed  Google Scholar 

  14. Chiara J, Kinney G, Slimp J, Lee GS, Oliaei S, Perkins JA. Facial nerve mapping and monitoring in lymphatic malformation surgery. Int J Pediatr Otorhinolaryngol. 2009;73:1348–52.

    Article  PubMed  Google Scholar 

  15. Dillon FX. Electromyographic (EMG) neuromonitoring in otolaryngology-head and neck surgery. Anesthesiol Clin. 2010;28:423–42.

    Article  PubMed  Google Scholar 

  16. Dimopoulos VG, Chung I, Lee GP, Johnston KW, Kapsalakis IZ, Smisson HF, et al. Quantitative estimation of the recurrent laryngeal nerve irritation by employing spontaneous intraoperative electromyographic monitoring during anterior cervical discectomy and fusion. J Spinal Disord Tech. 2009;22:1–7.

    Article  PubMed  Google Scholar 

  17. Genther DJ, Kandil EH, Noureldine SI, Tufano RP. Correlation of final evoked potential amplitudes on intraoperative electromyography of the recurrent laryngeal nerve with immediate postoperative vocal fold function after thyroid and parathyroid surgery. JAMA Otolaryngol Head Neck Surg. 2014;140:124–8.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Holdefer RN, Heffez DS, Cohen BA. Utility of evoked EMG monitoring to improve bone screw placements in the cervical spine. J Spinal Disord Tech. 2013;26:E163–9.

    Article  PubMed  Google Scholar 

  19. Jahangiri FR, Minhas M, Jane J. Preventing lower cranial nerve injuries during fourth ventricle tumor resection by utilizing intraoperative neurophysiological monitoring. Neurodiagn J. 2012;52:320–32.

    PubMed  Google Scholar 

  20. Sala F, Manganotti P, Tramontano V, Bricolo A, Gerosa M. Monitoring of motor pathways during brain stem surgery: what we have achieved and what we still miss? Neurophysiol Clin. 2007;37:399–406.

    Article  CAS  PubMed  Google Scholar 

  21. San-juan D, Barges-Coll J, Gómez Amador JL, Díaz MP, Alarcón AV, Escanio E, et al. Intraoperative monitoring of the abducens nerve in extended endonasal endoscopic approach: a pilot study technical report. J Electromyogr Kinesiol. 2014;24:558–64.

    Article  PubMed  Google Scholar 

  22. Skinner SA. Neurophysiologic monitoring of the spinal accessory nerve, hypoglossal nerve, and the spinomedullary region. J Clin Neurophysiol. 2011;28:587–98.

    Article  PubMed  Google Scholar 

  23. Son BC, Lee SW, Kim S, Hong JT, Sung JH, Yang S-H. Transzygomatic approach with intraoperative neuromonitoring for resection of middle cranial fossa tumors. J Neurol Surg B Skull Base. 2012;73:28–35.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lin N, Bebawy JF, Hua L, Wang BG. Is spinal anaesthesia at L2–L3 interspace safe in disorders of the vertebral column? A magnetic resonance imaging study. Br J Anaesth. 2010;105:857–62.

    Article  CAS  PubMed  Google Scholar 

  25. Sugita K, Kobayashi S. Technical and instrumental improvements in the surgical treatment of acoustic neurinomas. J Neurosurg. 1982;57:747–52.

    Article  CAS  PubMed  Google Scholar 

  26. Silverstein H, Smouha E, Jones R. Routine identification of the facial nerve using electrical stimulation during otological and neurotological surgery. Laryngoscope. 1988;98:726–30.

    Article  CAS  PubMed  Google Scholar 

  27. Moller A. Intraoperative neurophysiologic monitoring. Luxembourg: Harwood Academic; 1995.

    Google Scholar 

  28. Moller A. Intraoperative monitoring of evoked potentials: an update. In: Wilkins R, Rengachery S, editors. Neurosurgery update 1: diagnosis, operative technique, and neuro-oncology. New York: McGraw-Hill; 1990. p. 169–76.

    Google Scholar 

  29. Daube J. Intraoperative monitoring of cranial motor nerves. In: Schramm J, Moller A, editors. Intraoperative neurophysiologic monitoring in neurosurgery. Heidelberg: Springer; 1991. p. 246–67.

    Chapter  Google Scholar 

  30. Moller A. Monitoring and mapping the cranial nerves and the brainstem. In: Deletis V, Shils J, editors. Neurophysiology in neurosurgery. San Diego, CA: Academic; 2002. p. 291–318.

    Chapter  Google Scholar 

  31. Prell J, Rampp S, Romstöck J, Fahlbusch R, Strauss C. Train time as a quantitative electromyographic parameter for facial nerve function in patients undergoing surgery for vestibular schwannoma. J Neurosurg. 2007;106:826–32.

    Article  PubMed  Google Scholar 

  32. Lu AY, Yeung JT, Gerrard JL, Michaelides EM, Sekula RF, Bulsara KR. Hemifacial spasm and neurovascular compression. ScientificWorldJournal. 2014;2014:349319.

    PubMed  PubMed Central  Google Scholar 

  33. Karlikaya G, Citçi B, Güçlü B, Türe H, Türe U, Bingöl CA. Spinal accessory nerve monitoring in posterior fossa surgery. J Clin Neurophysiol. 2008;25:346–50.

    Article  PubMed  Google Scholar 

  34. Holdefer RN, Kinney GA, Robinson LR, Slimp JC. Alternative sites for intraoperative monitoring of cranial nerves X and XII during intracranial surgeries. J Clin Neurophysiol. 2013;30:275–9.

    Article  PubMed  Google Scholar 

  35. Dong CCJ, MacDonald DB, Akagami R, Westerberg B, AlKhani A, Kanaan I, et al. Intraoperative facial motor evoked potential monitoring with transcranial electrical stimulation during skull base surgery. Clin Neurophysiol. 2005;16:588–96.

    Article  Google Scholar 

  36. Deletis V, Fernandez-Conejero I, Ulkatan S, Costantino P. Methodology for intraoperatively eliciting motor evoked potentials in the vocal muscles by electrical stimulation of the corticobulbar tract. Clin Neurophysiol. 2009;120:336–41.

    Article  PubMed  Google Scholar 

  37. Morota N, Ihara S, Deletis V. Intraoperative neurophysiology for surgery in and around the brainstem: role of brainstem mapping and corticobulbar tract motor-evoked potential monitoring. Childs Nerv Syst. 2010;26:513–21.

    Article  PubMed  Google Scholar 

  38. Deletis V, Fernandez-Conejero I, Ulkatan S, Rogic M, Carbo EL, Hiltzik D. Methodology for intraoperative recording of the corticobulbar motor evoked potentials from cricothyroid muscles. Clin Neurophysiol. 2011;122:1883–9.

    Article  PubMed  Google Scholar 

  39. Katsuta T, Morioka T, Fujii K, Fukui M. Physiological localization of the facial colliculus during direct surgery on an intrinsic brain stem lesion. Neurosurgery. 1993;32:861–3. comment 863.

    Article  CAS  PubMed  Google Scholar 

  40. Strauss C, Romstöck J, Nimsky C, Fahlbusch R. Intraoperative identification of motor areas of the rhomboid fossa using direct stimulation. J Neurosurg. 1993;79:393–9.

    Article  CAS  PubMed  Google Scholar 

  41. Morota N, Deletis V, Epstein FJ, Kofler M, Abbott R, Lee M, et al. Brain stem mapping: neurophysiological localization of motor nuclei on the floor of the fourth ventricle. Neurosurgery. 1995;37:922–9. discussion 929–30.

    Article  CAS  PubMed  Google Scholar 

  42. Morota N, Deletis V, Lee M, Epstein FJ. Functional anatomic relationship between brain-stem tumors and cranial motor nuclei. Neurosurgery. 1996;39:787–93. discussion 793–4.

    Article  CAS  PubMed  Google Scholar 

  43. Morota N, Deletis V, Epstein FJ. Brainstem mapping. In: Neurophysiology in neurosurgery. San Diego, CA: Academic; 2002. p. 319–35.

    Chapter  Google Scholar 

  44. Maertens de Noordhout A, Born JD, Hans P, Remacle JM, Delwaide PJ. Intraoperative localisation of the primary motor cortex using single electrical stimuli. J Neurol Neurosurg Psychiatry. 1996;60:442–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gertzbein SD, Robbins SE. Accuracy of pedicular screw placement in vivo. Spine. 1990;15:11–4.

    Article  CAS  PubMed  Google Scholar 

  46. Calancie B, Lebwohl N, Madsen P, Klose KJ. Intraoperative evoked EMG monitoring in an animal model. A new technique for evaluating pedicle screw placement. Spine. 1992;17:1229–35.

    Article  CAS  PubMed  Google Scholar 

  47. Calancie B, Madsen P, Lebwohl N. Stimulus-evoked EMG monitoring during transpedicular lumbosacral spine instrumentation. Initial clinical results. Spine. 1994;19:2780–6.

    Article  CAS  PubMed  Google Scholar 

  48. Clements DH, Morledge DE, Martin WH, Betz RR. Evoked and spontaneous electromyography to evaluate lumbosacral pedicle screw placement. Spine (Phila Pa 1976). 1996;21:600–4.

    Article  CAS  Google Scholar 

  49. Darden BV, Wood KE, Hatley MK, Owen JH, Kostuik J. Evaluation of pedicle screw insertion monitored by intraoperative evoked electromyography. J Spinal Disord. 1996;9:8–16.

    PubMed  Google Scholar 

  50. Toleikis JR, Carlvin AO, Shapiro DE, Schafer MF. The use of dermatomal evoked responses during surgical procedures that use intrapedicular fixation of the lumbosacral spine. Spine. 1993;18:2401–7.

    Article  CAS  PubMed  Google Scholar 

  51. Shi Y, Binette M, Martin WH, Pearson JM, Hart RA. Electrical stimulation for intraoperative evaluation of thoracic pedicle screw placement. Spine. 2003;15:595–601.

    Google Scholar 

  52. Rodriguez-Olaverri JC, Zimick NC, Merola A, De Blas G, Burgos J, Piza-Vallespir G, et al. Using triggered electromyographic threshold in the intercostal muscles to evaluate the accuracy of upper thoracic pedicle screw placement (T3–T6). Spine. 2008;33:E194–7.

    Article  PubMed  Google Scholar 

  53. Norton JA, Hedden DM. Monitoring placement of high thoracic pedicle screws by triggered electromyography of the intercostal muscles. Can J Surg. 2009;52:E47–8.

    PubMed  PubMed Central  Google Scholar 

  54. De Blas G, Barrios C, Regidor I, Montes E, Burgos J, Pizá-Vallespir G, et al. Safe pedicle screw placement in thoracic scoliotic curves using t-EMG: stimulation threshold variability at concavity and convexity in apex segments. Spine. 2012;37:E387–95.

    Article  PubMed  Google Scholar 

  55. Lewis SJ, Lenke LG, Raynor B, Long J, Bridwell KH, Padberg A. Triggered electromyographic threshold for accuracy of thoracic pedicle screw placement in a porcine model. Spine. 2001;26:2485–9. discussion 2490.

    Article  CAS  PubMed  Google Scholar 

  56. Montes E, De Blas G, Regidor I, Barrios C, Burgos J, Hevia E, et al. Electromyographic thresholds after thoracic screw stimulation depend on the distance of the screw from the spinal cord and not on pedicle cortex integrity. Spine J. 2012;12:127–32.

    Article  PubMed  Google Scholar 

  57. Raynor BL, Lenke LG, Kim Y, Hanson DS, Wilson-Holden TJ, Bridwell KH, et al. Can triggered electromyograph thresholds predict safe thoracic pedicle screw placement? Spine. 2002;27:2030–5.

    Article  PubMed  Google Scholar 

  58. Regidor I, de Blas G, Barrios C, Burgos J, Montes E, García-Urquiza S, et al. Recording triggered EMG thresholds from axillary chest wall electrodes: a new refined technique for accurate upper thoracic (T2–T6) pedicle screw placement. Eur Spine J. 2011;20:1620–5.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Samdani AF, Tantorski M, Cahill PJ, Ranade A, Koch S, Clements DH, et al. Triggered electromyography for placement of thoracic pedicle screws: is it reliable? Eur Spine J. 2011;20:869–74.

    Article  PubMed  Google Scholar 

  60. Silverstein JW, Mermelstein LE. Utilization of paraspinal muscles for triggered EMG during thoracic pedicle screw placement. Am J Electroneurodiagnostic Technol. 2010;50:37–49.

    Article  PubMed  Google Scholar 

  61. Djurasovic M, Dimar JR, Glassman SD, Edmonds HL, Carreon LY. A prospective analysis of intraoperative electromyographic monitoring of posterior cervical screw fixation. J Spinal Disord Tech. 2005;18:515–8.

    Article  PubMed  Google Scholar 

  62. Danesh-Clough T, Taylor P, Hodgson B, Walton M. The use of evoked EMG in detecting misplaced thoracolumbar pedicle screws. Spine (Phila Pa 1976). 2001;26:1313–6.

    Article  CAS  Google Scholar 

  63. Donohue ML, Murtagh-Schaffer C, Basta J, Moquin RR, Bashir A, Calancie B. Pulse-train stimulation for detecting medial malpositioning of thoracic pedicle screws. Spine. 2008;33:E378–85.

    Article  PubMed  Google Scholar 

  64. Calancie B, Donohue ML, Harris CB, Canute GW, Singla A, Wilcoxen KG, et al. Neuromonitoring with pulse-train stimulation for implantation of thoracic pedicle screws: a blinded and randomized clinical study. Part 1. Methods and alarm criteria. J Neurosurg Spine. 2014;20:675–91.

    Article  PubMed  Google Scholar 

  65. Calancie B, Donohue ML, Moquin RR. Neuromonitoring with pulse-train stimulation for implantation of thoracic pedicle screws: a blinded and randomized clinical study. Part 2. The role of feedback. J Neurosurg Spine. 2014;20:692–704.

    Article  PubMed  Google Scholar 

  66. Skinner SA, Transfeldt EE, Savik K. Surface electrodes are not sufficient to detect neurotonic discharges: observations in a porcine model and clinical review of deltoid electromyographic monitoring using multiple electrodes. J Clin Monit Comput. 2008;22:131–9.

    Article  PubMed  Google Scholar 

  67. Toleikis JR, Skelly JP, Carlvin AO, Toleikis SC, Bernard TN, Burkus JK, et al. The usefulness of electrical stimulation for assessing pedicle screw placements. J Spinal Disord. 2000;13:283–9.

    Article  CAS  PubMed  Google Scholar 

  68. Howe JF, Loeser JD, Calvin WH. Mechanosensitivity of dorsal root ganglia and chronically injured axons: a physiological basis for the radicular pain of nerve root compression. Pain. 1977;3:25–41.

    Article  CAS  PubMed  Google Scholar 

  69. Holland NR, Kostuik JP. Continuous electromyographic monitoring to detect nerve root injury during thoracolumbar scoliosis surgery. Spine. 1997;22:2547–50.

    Article  CAS  PubMed  Google Scholar 

  70. Gläsker S, Pechstein U, Vougioukas VI, Van Velthoven V. Monitoring motor function during resection of tumours in the lower brain stem and fourth ventricle. Childs Nerv Syst. 2006;22:1288–95.

    Article  PubMed  Google Scholar 

  71. Jimenez JC, Sani S, Braverman B, Deutsch H, Ratliff JK. Palsies of the fifth cervical nerve root after cervical decompression: prevention using continuous intraoperative electromyography monitoring. J Neurosurg Spine. 2005;3:92–7.

    Article  PubMed  Google Scholar 

  72. Chappuis JL, Johnson G. Using intraoperative electrophysiologic monitoring as a diagnostic tool for determining levels to decompress in the cervical spine: a case report. J Spinal Disord Tech. 2007;20:403–7.

    Article  PubMed  Google Scholar 

  73. Paradiso G, Lee GYF, Sarjeant R, Hoang L, Massicotte EM, Fehlings MG. Multimodality intraoperative neurophysiologic monitoring findings during surgery for adult tethered cord syndrome: analysis of a series of 44 patients with long-term follow-up. Spine. 2006;31:2095–102.

    Article  PubMed  Google Scholar 

  74. Skinner SA, Transfeldt EE, Mehbod AA, Mullan JC, Perra JH. Electromyography detects mechanically-induced suprasegmental spinal motor tract injury: review of decompression at spinal cord level. Clin Neurophysiol. 2009;120:754–64.

    Article  PubMed  Google Scholar 

  75. Bose B, Sestokas AK, Schwartz DM. Neurophysiological detection of iatrogenic C-5 nerve deficit during anterior cervical spinal surgery. J Neurosurg Spine. 2007;6:381–5.

    Article  PubMed  Google Scholar 

  76. Mok JM, Lyon R, Lieberman JA, Cloyd JM, Burch S. Monitoring of nerve root injury using transcranial motor-evoked potentials in a pig model. Spine. 2008;33:E465–73.

    Article  PubMed  Google Scholar 

  77. Skinner SA, Transfeldt EE. Electromyography in the detection of mechanically induced spinal motor tract injury: observations in diverse porcine models. J Neurosurg Spine. 2009;11:369–74.

    Article  PubMed  Google Scholar 

  78. Macdonald DB, Stigsby B, Al Homoud I, Abalkhail T, Mokeem A. Utility of motor evoked potentials for intraoperative nerve root monitoring. J Clin Neurophysiol. 2012;29:118–25.

    Article  PubMed  Google Scholar 

  79. Bhalodia VM, Schwartz DM, Sestokas AK, Bloomgarden G, Arkins T, Tomak P, et al. Efficacy of intraoperative monitoring of transcranial electrical stimulation-induced motor evoked potentials and spontaneous electromyography activity to identify acute-versus delayed-onset C-5 nerve root palsy during cervical spine surgery: clinical article. J Neurosurg Spine. 2013;19:395–402.

    Article  PubMed  Google Scholar 

  80. Fotakopoulos G, Alexiou GA, Pachatouridis D, Karagiorgiadis D, Konitsiotis S, Kyritsis AP, et al. The value of transcranial motor-evoked potentials and free-running electromyography in surgery for cervical disc herniation. J Clin Neurosci. 2013;20:263–6.

    Article  PubMed  Google Scholar 

  81. Holland NR, Lukaczyk TA, Riley LH, Kostuik JP. Higher electrical stimulus intensities are required to activate chronically compressed nerve roots. Implications for intraoperative electromyographic pedicle screw testing. Spine. 1998;23:224–7.

    Article  CAS  PubMed  Google Scholar 

  82. Maguire J, Wallace S, Madiga R, Leppanen R, Draper V. Evaluation of intrapedicular screw position using intraoperative evoked electromyography. Spine. 1995;20:1068–74.

    Article  CAS  PubMed  Google Scholar 

  83. Glassman SD, Dimar JR, Puno RM, Johnson JR, Shields CB, Linden RD. A prospective analysis of intraoperative electromyographic monitoring of pedicle screw placement with computed tomographic scan confirmation. Spine. 1995;20:1375–9.

    Article  CAS  PubMed  Google Scholar 

  84. Isley M, Pearlman R, Wadsworth J. Recent advances in intraoperative neuromonitoring of spinal cord function: pedicle screw stimulation techniques. Neurodiagn J. 1997;37:93–126.

    Google Scholar 

  85. Lenke LG, Padberg AM, Russo MH, Bridwell KH, Gelb DE. Triggered electromyographic threshold for accuracy of pedicle screw placement. An animal model and clinical correlation. Spine. 1995;20:1585–91.

    Article  CAS  PubMed  Google Scholar 

  86. Isley MR, Zhang X-F, Balzer JR, Leppanen RE. Current trends in pedicle screw stimulation techniques: lumbosacral, thoracic, and cervical levels. Neurodiagn J. 2012;52:100–75.

    PubMed  Google Scholar 

  87. Bose B, Wierzbowski LR, Sestokas AK. Neurophysiologic monitoring of spinal nerve root function during instrumented posterior lumbar spine surgery. Spine. 2002;27:1444–50.

    Article  PubMed  Google Scholar 

  88. Raynor BL, Lenke LG, Bridwell KH, Taylor BA, Padberg AM. Correlation between low triggered electromyographic thresholds and lumbar pedicle screw malposition: analysis of 4857 screws. Spine. 2007;32:2673–8.

    Article  PubMed  Google Scholar 

  89. Parker SL, Amin AG, Farber SH, McGirt MJ, Sciubba DM, Wolinsky J-P, et al. Ability of electromyographic monitoring to determine the presence of malpositioned pedicle screws in the lumbosacral spine: analysis of 2450 consecutively placed screws. J Neurosurg Spine. 2011;15:130–5.

    Article  PubMed  Google Scholar 

  90. Lee CH, Kim HW, Kim HR, Lee CY, Kim JH, Sala F. Can triggered electromyography thresholds assure accurate pedicle screw placements? A systematic review and meta-analysis of diagnostic test accuracy. Clin Neurophysiol. 2015;126:2019–25.

    Article  PubMed  Google Scholar 

  91. Urmey WF. Using the nerve stimulator for peripheral or plexus nerve blocks. Minerva Anestesiol. 2006;72:467–71.

    CAS  PubMed  Google Scholar 

  92. Skinner SA, Rippe DM. Threshold testing of lumbosacral pedicle screws: a reappraisal. J Clin Neurophysiol. 2012;29:493–501.

    Article  PubMed  Google Scholar 

  93. Nichols GS, Manafov E. Utility of electromyography for nerve root monitoring during spinal surgery. J Clin Neurophysiol. 2012;29:140–8.

    Article  PubMed  Google Scholar 

  94. Toleikis J. Neurophysiological monitoring during pedicle screw placement. In: Deletis V, Shils J, editors. Neurophysiology in neurosurgery. San Diego, CA: Academic; 2002. p. 231–64.

    Chapter  Google Scholar 

  95. Donohue ML, Swaminathan V, Gilbert JL, Fox CW, Smale J, Moquin RR, et al. Intraoperative neuromonitoring: can the results of direct stimulation of titanium-alloy pedicle screws in the thoracic spine be trusted? J Clin Neurophysiol. 2012;29:502–8.

    Article  PubMed  Google Scholar 

  96. Davis TT, Tadlock S, Bernbeck J, Fung DA, Molinares DM. Can triggered electromyography be used to evaluate pedicle screw placement in hydroxyapatite-coated screws: an electrical examination. J Clin Neurophysiol. 2014;31:138–42.

    Article  PubMed  Google Scholar 

  97. Anderson DG, Wierzbowski LR, Schwartz DM, Hilibrand AS, Vaccaro AR, Albert TJ. Pedicle screws with high electrical resistance: a potential source of error with stimulus-evoked EMG. Spine. 2002;27:1577–81.

    Article  PubMed  Google Scholar 

  98. Houten JK, Alexandre LC, Nasser R, Wollowick AL. Nerve injury during the transpsoas approach for lumbar fusion. J Neurosurg Spine. 2011;15:280–4.

    Article  PubMed  Google Scholar 

  99. Jahangiri FR, Sherman JH, Holmberg A, Louis R, Elias J, Vega-Bermudez F. Protecting the genitofemoral nerve during direct/extreme lateral interbody fusion (DLIF/XLIF) procedures. Am J Electroneurodiagnostic Technol. 2010;50:321–35.

    PubMed  Google Scholar 

  100. Uribe JS, Isaacs RE, Youssef JA, Khajavi K, Balzer JR, Kanter AS, et al. Can triggered electromyography monitoring throughout retraction predict postoperative symptomatic neuropraxia after XLIF? Results from a prospective multicenter trial. Eur Spine J. 2015;24 Suppl 3:378–85.

    Article  PubMed  Google Scholar 

  101. Sloan TB. Muscle relaxant use during intraoperative neurophysiologic monitoring. J Clin Monit Comput. 2013;27:35–46.

    Article  PubMed  Google Scholar 

  102. Holland NR. Intraoperative electromyography during thoracolumbar spinal surgery. Spine. 1998;23:1915–22.

    Article  CAS  PubMed  Google Scholar 

  103. Leppanen RE. Intraoperative applications of the H-reflex and F-response: a tutorial. J Clin Monit Comput. 2006;20:267–304.

    Article  PubMed  Google Scholar 

  104. Táboríková H, Sax DS. Motoneurone pool and the H-reflex. J Neurol Neurosurg Psychiatry. 1968;31:354–61.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kimura J. Principles of nerve conduction studies. In: Kimura J, editor. Electrodiagnosis in diseases of nerve and muscle: principles and practice. Philadelphia: FA Davis; 1983. p. 353–98.

    Google Scholar 

  106. Slimp JC. Electrophysiologic intraoperative monitoring for spine procedures. Phys Med Rehabil Clin N Am. 2004;15:85–105.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Richard Toleikis Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Toleikis, J.R. (2017). Electromyography. In: Koht, A., Sloan, T., Toleikis, J. (eds) Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals. Springer, Cham. https://doi.org/10.1007/978-3-319-46542-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46542-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46540-1

  • Online ISBN: 978-3-319-46542-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics