Skip to main content

Abstract

Intraoperative application of evoked potentials has evolved during the past 30 years, and somatosensory-evoked potential (SSEP) monitoring is the method most commonly employed. The ultimate goal of intraoperative SSEP monitoring is to ensure maintenance of neurologic integrity throughout a procedure with resultant improved outcome and decreased morbidity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tolekis JR. Intraoperative monitoring using somatosensory evoked potentials: a position statement by the American Society of Neurophysiological Monitoring. J Clin Monit Comput. 2005;19:241–58.

    Article  Google Scholar 

  2. Misulis KE, Fakhoury T. Spehlmann’s evoked potential primer. 3rd ed. Woburn, MA: Butterworth-Heinemann; 2001.

    Google Scholar 

  3. Cruccu G, Aminoff MJ, Curio G, et al. Recommendations for the clinical use of somatosensory-evoked potentials. Clin Neurophysiol. 2008;119:1705–19.

    Article  CAS  PubMed  Google Scholar 

  4. Sloan TB, Heyer EJ. Anesthesia for intraoperative neurophysiologic monitoring of the spinal cord. J Clin Neurophysiol. 2002;19(5):430–43.

    Article  PubMed  Google Scholar 

  5. Sloan T. Anesthetics and the brain. Anesthesiol Clin North Am. 2002;20:1–27.

    Article  Google Scholar 

  6. Mullen M, McGarvey M. Spinal cord infarction: vascular anatomy and etiologies. In: Wilterdink J, editor. Waltham, MA: UpToDate; 2015. http://www.uptodate.com/contents/spinal-cord-infarction-vascular-anatomy-and-etiologies. Accessed 19 May 2015.

  7. Cheshire WP, Santos CC, Massey EW, Howard Jr JF. Spinal cord infarction: etiology and outcome. Neurology. 1996;47(2):321.

    Article  CAS  PubMed  Google Scholar 

  8. American Electroencephalographic Society. Guidelines for intraoperative monitoring of sensory evoked potentials. J Clin Neurophysiol. 1987;4:397–416.

    Article  Google Scholar 

  9. American Electroencephalographic Society. Guidelines for intraoperative monitoring of sensory evoked potentials. J Clin Neurophysiol. 1994;11:77–87.

    Article  Google Scholar 

  10. International Organization of Societies for Electrophysiological Technology (OSET). Guidelines for performing EEG and evoked potential monitoring during surgery. Am J END Technol. 1999;39:257–77.

    Google Scholar 

  11. Stecker MM. Generalized averaging and noise levels in evoked responses. Comput Biol Med. 2000;30:247–65.

    Article  CAS  PubMed  Google Scholar 

  12. Celesia GG. Somatosensory evoked potentials recorded directly from human thalamus and Sm I cortical area. Arch Neurol. 1979;36:399–405.

    Article  CAS  PubMed  Google Scholar 

  13. Kelly Jr DL, Goldring S, O’Leary JL. Averaged evoked somatosensory responses from exposed cortex of man. Arch Neurol. 1965;13:1–9.

    Article  PubMed  Google Scholar 

  14. MacDonald DB, Al Zayed Z, Stigsby B. Tibial somatosensory evoked potential intraoperative monitoring: recommendations based on signal to noise ratio analysis of popliteal fossa, optimized P37, standard P37, and P31 potentials. Clin Neurophysiol. 2005;116(8):1858–69.

    Article  CAS  PubMed  Google Scholar 

  15. MacDonald DB, Al-Zayed Z, Stigsby B, Al-Homoud I. Median somatosensory evoked potential intraoperative monitoring: recommendations based on signal-to-noise ratio analysis. J Clin Neurophysiol. 2009;120(2):315–28.

    Article  CAS  Google Scholar 

  16. MacDonald DB, Streletz LJ, Al-Zayed Z, Abdool S, Stigsby B. Intraoperative neurophysiologic discovery of uncrossed sensory and motor pathways in a patient with horizontal gaze palsy and scoliosis. Clin Neurophysiol. 2004;115(3):576–82.

    Article  CAS  PubMed  Google Scholar 

  17. Sloan T. Evoked potentials. In: Albin MS, editor. A textbook of neuroanesthesia with neurosurgical and neuroscience perspectives. New York, NY: McGraw-Hill; 1997. p. 221–76.

    Google Scholar 

  18. Sloan TB, Koht A. Depression of cortical somatosensory evoked potentials by nitrous oxide. Br J Anaesth. 1985;57:849–52.

    Article  CAS  PubMed  Google Scholar 

  19. Sloan TB. Anesthetic effects on electrophysiologic recordings. J Clin Neurophysiol. 1998;15:217–26.

    Article  CAS  PubMed  Google Scholar 

  20. Koht A, Schutz W, Schmidt G, Schramm J, Watanabe E. Effects of etomidate, midazolam, and thiopental on median nerve somatosensory evoked potentials and the additive effects of fentanyl and nitrous oxide. Anesth Analg. 1988;67:435–41.

    Article  CAS  PubMed  Google Scholar 

  21. Banoub M, Tetzlaff JE, Schubert A. Pharmacologic and physiologic influences affecting sensory evoked potentials: implications for perioperative monitoring. Anesthesiology. 2003;99:716–37.

    Article  PubMed  Google Scholar 

  22. McPherson RW, Sell B, Thaystman RJ. Effect of thiopental, fentanyl and etomidate on upper extremity somatosensory evoked potentials in humans. Anesthesiology. 1986;65:584–9.

    Article  CAS  PubMed  Google Scholar 

  23. Ikuta T. Effects of thiopental on the human somatosensory evoked response. Folia Psychiatr Neurol Jpn. 1966;20:19–31.

    CAS  PubMed  Google Scholar 

  24. Sloan TB, Vasquez J, Burger E. Methohexital in total intravenous anesthesia during intraoperative neurophysiological monitoring. J Clin Monit Comput. 2013;27:697–702.

    Article  PubMed  Google Scholar 

  25. Ganes T, Lundar T. The effect of thiopentone on somatosenory evoked responses and EEGs in comatose patients. J Neurol Neurosurg Psychiatry. 1983;46:509–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Drummond JC, Todd MM, U HS. The effect of high dose sodium thiopental on brainstem auditory and median nerve somatosensory evoked responses in humans. Anesthesiology. 1985;63:249–54.

    Article  CAS  PubMed  Google Scholar 

  27. Sutton LN, Frewen T, Marsh R, Jaggi J, Bruce DA. The effects of deep barbiturate coma on multimodality evoked potentials. J Neurosurg. 1982;57:178–85.

    Article  CAS  PubMed  Google Scholar 

  28. Drummond JC, Todd MM, Schubert A, Sang H. Effect of acute administration of high dose pentobarbital on human brainstem auditory and median nerve somatosensory evoked responses. Neurosurgery. 1987;20:830–5.

    Article  CAS  PubMed  Google Scholar 

  29. Scheepstra GL, deLange JJ, Booij LH, Ross HH. Median nerve evoked potentials during propofol anesthesia. Br J Anaesth. 1989;62:92–4.

    Article  CAS  PubMed  Google Scholar 

  30. Kalkman CJ, Drummond JC, Ribberink AA. Effects of propofol, etomidate, midazolam, and fentanyl on motor evoked responses to transcranial electrical or magnetic stimulation in humans. Anesthesiology. 1992;76:502–9.

    Article  CAS  PubMed  Google Scholar 

  31. Angel A, LeBeau F. A comparison of the effects of propofol with other anesthetic agents on the centripetal transmission of sensory information. Gen Pharmacol. 1992;23:945–63.

    Article  CAS  PubMed  Google Scholar 

  32. Schwartz DM, Schwartz JA, Pratt Jr RE, Wierzbowski LR, Sestokas AK. Influence of nitrous oxide on posterior tibial nerve cortical somatosensory evoked potentials. J Spine Disord. 1997;10:80–6.

    CAS  Google Scholar 

  33. Borrissov B, Langeron O, Lille F, et al. Combination of propofol-sufentanil on somatosensory evoked potentials in surgery of the spine. Ann Francaises d Anesth et de Reanimation. 1995;14:326–30.

    Article  CAS  Google Scholar 

  34. Kalkman CJ, Traast H, Zuurmond WW, Bovill JG. Differential effects of propofol and nitrous oxide on posterior tibial nerve somatosensory cortical evoked potentials during alfentanil anaesthesia. Br J Anaesth. 1991;66:483–9.

    Article  CAS  PubMed  Google Scholar 

  35. Laureau E, Marciniak B, Hèbrard A, Herbaux B, Guieu JD. Comparative study of propofol and midazolam effects on somatosensory evoked potentials during surgical treatment of scoliosis. Neurosurgery. 1999;45:69–74.

    CAS  PubMed  Google Scholar 

  36. Boisseau N, Madany M, Staccini P, et al. Comparison of the effects of sevoflurane and propofol on cortical somatosensory evoked potentials. Br J Anaesth. 2002;88:785–9.

    Article  CAS  PubMed  Google Scholar 

  37. Kochs E, Treede RD, Schulte am Esch J. Increase of somatosensory evoked potentials during induction of anesthesia with etomidate. Anaesthetist. 1986;35:359–64.

    CAS  Google Scholar 

  38. Pechstein U, Nadstawek J, Zentner J, et al. Isoflurane plus nitrous oxide versus propofol for recording of motor evoked potentials after high frequency repetitive electrical stimulation. Electroencephalogr Clin Neurophysiol. 1998;108:175–81.

    Article  CAS  PubMed  Google Scholar 

  39. Sloan TB, Ronai AK, Toleikis JR, et al. Improvement of intraoperative somatosensory evoked potentials by etomidate. Anesth Analg. 1988;67:582–5.

    CAS  PubMed  Google Scholar 

  40. Meng XL, Wang LW, Zhao W, Guo XY. Effects of different etomidate doses on intraoperative somatosensory-evoked potential monitoring. Ir J Med Sci. 2015;184(4):799–803.

    Article  CAS  PubMed  Google Scholar 

  41. Schubert A, Licina MG, Lineberry PJ. The effect of ketamine on human somatosensory evoked potentials and its modification by nitrous oxide. Anesthesiology. 1990;72:33–9.

    Article  CAS  PubMed  Google Scholar 

  42. Kano T, Shimoji K. The effects of ketzmine and neuroleptanalgesia on the evoked electrospinogram and elecromyogram in man. Anesthesiology. 1974;40:241–6.

    Article  CAS  PubMed  Google Scholar 

  43. Stone JL, Ghaly RF, Levy WJ, Kartha R, Krinsky L, Roccaforte P. A comparative analysis of enflurane anesthesia on primate motor and somatosensory evoked potentials. Electroencephalgr Clin Neurophysiol. 1992;84:180–7.

    Article  CAS  Google Scholar 

  44. Langeron O, Lille F, Zerhouni O, et al. Comparison of the effects of ketamine-midazolam with those of fentanyl-midazolam on cortical somatosensory evoked potentials during major spine surgery. Br J Anaesth. 1997;78:701–6.

    Article  CAS  PubMed  Google Scholar 

  45. Bloom M, Beric A, Bekker A. Dexmedetomidine infusion and somatosensory evoked potentials. J Neurosurg Anesthesiol. 2001;13:320–2.

    Article  CAS  PubMed  Google Scholar 

  46. Tobias JD, Goble TJ, Bates G, Anderson JT, Hoernschemeyer DG. Effects of dexmedetomidine on intraoperative motor and somatosensory evoked potential monitoring during spinal surgery in adolescents. Paediatr Anaesth. 2008;18(11):1082–8.

    Article  PubMed  Google Scholar 

  47. Chen Z, Lin S, Shao W. Effects on somatosensory and motor evoked potentials of senile patients using different doses of dexmedetomidine during spine surgery. Ir J Med Sci. 2015;184(4):813–8.

    Article  CAS  PubMed  Google Scholar 

  48. Fernandez-Galinski SM, Monells J, Espadaler JM, Pol O, Puig MM. Effects of subarachnoid lidocaine, meperidine and fentanyl on somatosensory and motor evoked responses in awake humans. Acta Anaesthesiol Scandinavica. 1996;40:39–46.

    Article  CAS  Google Scholar 

  49. Goodarzi M, Shier NG, Grogan DP. Effect of intrathecal opioids on somatosensory-evoked potentials during spinal fusion in children. Spine. 1996;21:1565–8.

    Article  CAS  PubMed  Google Scholar 

  50. Schubert A, Licina MG, Lineberry PJ, Deers MA. The effect of intrathecal morphine on somatosensory evoked potentials in awake humans. Anesthesiology. 1991;75:401–5.

    Article  CAS  PubMed  Google Scholar 

  51. Loughman BA, Yau KW, Ransford AO, Hall GM. Effects of epidural diamorphine on the somatosensory evoked potentials to posterior tibial nerve stimulation. Anesthesia. 1991;46:912–4.

    Article  Google Scholar 

  52. Sloan TB, Fugina ML, Toleikis JR. Effects of midazolam on median nerve somatosensory evoked potentials. Br J Anaesth. 1990;64:590–3.

    Article  CAS  PubMed  Google Scholar 

  53. Sloan TB. Nondepolarizing neuromuscular blockade does not alter sensory evoked potentials. J Clin Monit. 1994;10:4–10.

    Article  CAS  PubMed  Google Scholar 

  54. Schubert A, Licina MG, Glaze GM, Paranandi L. Systemic lidocaine and human somatosensory-evoked potentials during sufentanil-isoflurane anaesthesia. Can J Anaesth. 1992;39(6):569–75.

    Article  CAS  PubMed  Google Scholar 

  55. Sloan TB, Mongan P, Lyda C, Koht A. Lidocaine infusion adjunct to total intravenous anesthesia reduces the total dose of propofol during intraoperative neurophysiological monitoring. J Clin Monit Comput. 2014;28:139–47.

    Article  PubMed  Google Scholar 

  56. Nuwer MR. Evoked potential monitoring in the operating room. New York: Raven; 1986.

    Google Scholar 

  57. Lang M, Welte M, Syben R, Hansen D. Effects of hypothermia on median nerve somatosensory evoked potentials during spontaneous circulation. J Neurosurg Anesthesiol. 2002;14(2):141–5.

    Article  PubMed  Google Scholar 

  58. Zanatta P, Bosco E, Comin A, Mazzarolo AP, Di Pasquale P, Forti A, Longatti P, Polesel E, Stecker M, Sorbara C. Effect of mild hypothermic cardiopulmonary bypass on the amplitude of somatosensory evoked potentials. J Neurosurg Anesthesiol. 2014;26(2):161–6.

    Article  PubMed  Google Scholar 

  59. Stecker MM, Cheung AT, Pochettino A, et al. Deep hypothermic circulator arrest: I effects of cooling on electroencephalogram and evoked potentials. Ann Thorac Surg. 2001;71(1):22–8.

    Article  CAS  PubMed  Google Scholar 

  60. Oro J, Haghighi SS. Effects of altering core body temperature on somatosensory and motor evoked potentials in rats. Spine. 1992;17:498–503.

    Article  CAS  PubMed  Google Scholar 

  61. Branston NM, Symon L, Cortical EP. Blood flow, and potassium changes in experimental ischemia. In: Barber C, editor. Evoked potentials. Baltimore, MD: University Park Press; 1980. p. 527–30.

    Chapter  Google Scholar 

  62. Nuwer MR. Intraoperative electroencephalography. J Clin Neurophysiol. 1993;10:437–44.

    Article  CAS  PubMed  Google Scholar 

  63. Prior PF. EEG monitoring and evoked potentials in brain ischemia. Br J Anaeth. 1985;57:63–81.

    Article  CAS  Google Scholar 

  64. Brodkey JS, Richards DE, Blasingame JP, et al. Reversible spinal cord trauma in cats: additive effects of direct pressure and ischemia. J Neurosurg. 1972;37:591–3.

    Article  CAS  PubMed  Google Scholar 

  65. Dolan EJ, Transfeld EE, Tator CH, et al. The effect of spinal distraction on regional blood flow in cats. J Neurosurg. 1980;53:756–64.

    Article  CAS  PubMed  Google Scholar 

  66. Gregory PC, McGeorge AP, Fitch W, et al. Effects of hemorrhagic hypotension on the cerebral circulation. II. Electrocortical function. Stroke. 1979;10:719–23.

    Article  CAS  PubMed  Google Scholar 

  67. Nagao S, Roccaforte P, Moody RA. The effects of isovolemic hemodilution and reinfusion of packed erythrocytes on somatosensory and visual evoked potentials. J Surg Res. 1978;25:530–7.

    Article  CAS  PubMed  Google Scholar 

  68. Dong WK, Bledsoe SW, Chadwick HS, Shaw CM, Hornbein TF. Electrical correlates of brain injury resulting from severe hypotension and hemodilution in monkeys. Anesthesiology. 1986;65:617–25.

    Article  CAS  PubMed  Google Scholar 

  69. Ledsome JR, Cole C, Sharp-Kehl JM. Somatosensory evoked potentials during hypoxia and hypocapnia in conscious humans. Can J Anasth. 1996;43:1025–9.

    Article  CAS  Google Scholar 

  70. Grundy BL, Heros RC, Tung AS, Doyle E. Intraoperative hypoxia detected by evoked potential monitoring. Anesth Analg. 1981;60:437–9.

    CAS  PubMed  Google Scholar 

  71. Kalkman CJ, Boezeman EH, Ribberink AA, Oosting J, Deen L, Bovill JG. Influence of changes in arterial carbon dioxide tension on the electroencephalogram and posterior tibial nerve somatosensory cortical evoked potentials during alfentanil/nitrous oxide anesthesia. Anesthesiology. 1991;75:68–74.

    Article  CAS  PubMed  Google Scholar 

  72. Schubert A, Drummond JC. The effect of acute hypocapnia on human median nerve somatosensory evoked responses. Anesth Analg. 1986;65:240–4.

    Article  CAS  PubMed  Google Scholar 

  73. Mackey-Hargadine JR, Hall III JW. Sensory evoked responses in head injury. Central Nerv Syst Trauma. 1985;2:187–206.

    Article  CAS  Google Scholar 

  74. LaMont RL, Wasson SI, Green MA. Spinal cord monitoring during spinal surgery using somatosensory spinal evoked potentials. J Pediatr Orthop. 1983;3:31–6.

    Article  CAS  PubMed  Google Scholar 

  75. Lubicky JP, Spadaro JA, Yuan HA, Fredrickson BE, Henderson N. Variability of somatosensory cortical evoked potential monitoring during spinal surgery. Spine. 1989;14:790–8.

    Article  CAS  PubMed  Google Scholar 

  76. York DH, Chabot RJ, Gaines RW. Response variability of somatosensory evoked potentials during scoliosis surgery. Spine. 1987;12:864–76.

    Article  CAS  PubMed  Google Scholar 

  77. Brown RH, Nash CL, Berilla JA, Amaddio MD. Cortical evoked potential monitoring. A system for intraoperative monitoring of spinal cord function. Spine. 1984;9:256–61.

    Article  CAS  PubMed  Google Scholar 

  78. More RC, Nuwer MR, Dawson EG. Cortical evoked potential monitoring during spinal surgery: sensitivity, specificity, reliability, and criteria for alarm. J Spinal Disord. 1988;1(1):75–80.

    Article  CAS  PubMed  Google Scholar 

  79. Wiedemayer H, Fauser B, Sandalcioglu IE, Schafer H, Stolke D. The impact of neurophysiological intraoperative monitoring on surgical decisions: a critical analysis of 423 cases. J Neurosurg. 2002;96:255–62.

    Article  PubMed  Google Scholar 

  80. Owen JH, Toleikis JR. Nerve root monitoring. In: Bridwell KH, Dewald RD, editors. The textbook of spinal surgery. 2nd ed. Philadelphia, PA: Lippincott-Raven; 1997. p. 61–75.

    Google Scholar 

  81. Toleikis JR, Carlvin AO, Shapiro DE, Schafer MF. The use of dermatomal evoked responses during surgical procedures that use intrapedicular fixation of the lumbosacral spine. Spine. 1993;18:2401–7.

    Article  CAS  PubMed  Google Scholar 

  82. Minahan RE, Mandir AS. Basic neurophysiologic intraoperative monitoring techniques. In: Husain AM, editor. A practical approach to neurophysiologic intraoperative monitoring. New York: Demos; 2008. p. 21–44.

    Google Scholar 

  83. Lindsay K, Bone I. Neurology and neurosurgery illustrated. London, UK: Churchill Livingstone; 2004. p. 198.

    Google Scholar 

  84. Klem GH, Lüders HO, Jasper HH, Elger C. The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl. 1999;52:3–6.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimee Becker M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Becker, A., Amlong, C., Rusy, D.A. (2017). Somatosensory-Evoked Potentials. In: Koht, A., Sloan, T., Toleikis, J. (eds) Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals. Springer, Cham. https://doi.org/10.1007/978-3-319-46542-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46542-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46540-1

  • Online ISBN: 978-3-319-46542-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics