Skip to main content

Introduction

  • Chapter
  • First Online:
Biophysics of Skin and Its Treatments

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Skin is the outer layer covering a human or animal body. It is the largest organ and for humans covers an average surface area of 1.5–2 m2. Its function is to protect the body from physical and environmental assaults, and to provide sensation, heat regulation, water resistance, and other such functions. Skin ages over time, resulting in changes in skin properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aubert, L., Anthoine, P., Rigal, J. D., & Leveque, J. L. (1985). An in vivo assessment of the biomechanical properties of human skin modifications under the influence of cosmetic products. International Journal of Cosmetic Science, 7, 51–59.

    Article  Google Scholar 

  • Bhushan, B. (2001). Modern Tribology Handbook, vol. 1—Principles of Tribology; vol. 2—Materials, Coatings, and Industrial Applications. Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Bhushan, B. (2008). Nanoscale characterization of human hair and hair conditioners. Progress in Materials Science, 53, 585–710.

    Article  Google Scholar 

  • Bhushan, B. (Ed.). (2010a). Springer Handbook of Nanotechnology (3rd ed.). Heidelberg, Germany: Springer.

    Google Scholar 

  • Bhushan, B. (2010b). Biophysics of Human Hair—Structural, Nanomechanical and Nanotribological Studies. Heidelberg, Germany: Springer.

    Google Scholar 

  • Bhushan, B. (2011). Nanotribology and Nanomechanics I—Measurement Techniques and Nanomechanics, II—Nanotribology, Biomimetics, and Industrial Applications (3rd ed.). Heidelberg, Germany: Springer.

    Google Scholar 

  • Bhushan, B. (2012). Nanotribological and nanomechanical properties of skin with and without skin cream treatment using atomic force microscopy and nanoindentation. Journal of Colloid and Interface Science, 367, 1–33.

    Article  Google Scholar 

  • Bhushan, B. (2013a). Principles and Applications of Tribology (2nd ed.). New York: Wiley.

    Book  Google Scholar 

  • Bhushan, B. (2013b). Introduction to Tribology (2nd ed.). New York: Wiley.

    Book  Google Scholar 

  • Bhushan, B., Chen, S., & Ge, S. (2012). Friction and durability of virgin and damaged skin with and without skin cream treatment using atomic force microscopy. Beilstein Journal of Nanotechnology, 3, 731–746.

    Article  Google Scholar 

  • Bhushan, B., & Li, X. (2003). Nanomechanical characterisation of solid surfaces and thin films. International Materials Reviews, 48, 125–164.

    Article  Google Scholar 

  • Bhushan, B., & Tang, W. (2011). Surface, tribological and mechanical characterization of synthetic skins for cosmetic science. Journal of Applied Polymer Science, 120, 2881–2890.

    Article  Google Scholar 

  • Bhushan, B., Tang, W., & Ge, S. (2010). Nanomechanical characterization of skin and skin cream. Journal of Microscopy, 240, 135–144.

    Article  MathSciNet  Google Scholar 

  • Blichmann, C. W., Serup, J., & Winther, A. (1989). Effects of single application of a moisturizer: Evaporation of emulsion water, skin surface temperature, electrical conductance, electrical capacitance, and skin surface (emulsion) lipids. Acta Dermato Venereologica, 69, 327–330.

    Google Scholar 

  • Bronaugh, R. L., & Maibach, H. I. (1999). Percutaneous Absorption: Drugs—Cosmetics—Mechanisms—Methodology (3rd ed.). New York: Marcel Dekker.

    Google Scholar 

  • Chen, S., & Bhushan, B. (2013). Naonomechanical and nanotribological characterization of two synthetic skins with and without skin cream treatment using atomic force microscopy. Journal of Colloid and Interface Science, 398, 247–254.

    Article  Google Scholar 

  • Cua, A. B., Wilhelm, K. L., & Maibach, H. I. (1990). Frictional properties of human skin: Relation to age, sex, and anatomical region, stratum corneum hydration and transepidermal water loss. British Journal of Dermatology, 123, 473–479.

    Article  Google Scholar 

  • Del Prete, Z., Antoniucci, S., Hoffman, A., & Grigg, P. (2004). Viscoelastic properties of skin in Mov-13 and Tsk mice. Journal of Biomechanics, 37, 1491–1497.

    Article  Google Scholar 

  • Ding, S., & Bhushan, B. (2016). Tactile perception of skin and skin cream by friction induced vibrations. Journal of Colloid and Interface Science, 481, 131–143.

    Google Scholar 

  • Diridollou, S., Berson, M., Vabre, V., Black, D., Karlsson, B., Auriol, F., et al. (1998). An in vivo method for measuring the mechanical properties of the skin using ultrasound. Ultrasound in Medicine and Biology, 24, 215–224.

    Article  Google Scholar 

  • Dobrev, H. (2000). Use of cutometer to assess epidermal hydration. Skin Research and Technology, 6, 239–244.

    Article  Google Scholar 

  • Dombi, G. W., Haut, R. C., & Sullivan, W. G. (1993). Correlation of high-speed tensile strength with collagen content in control and lathyritic rat skin. Journal of Surgical Research, 54, 21–28.

    Article  Google Scholar 

  • Egawa, M., Oguri, M., Hirao, T., Takahashi, M., & Miyakawa, M. (2002). The evaluation of skin friction using a frictional feel analyzer. Skin Research and Technology, 8, 41–51.

    Article  Google Scholar 

  • EI-Shimi, A. F. (1977). In vivo skin friction measurements. Journal of the Society of Cosmetic Chemists, 28, 37–51.

    Google Scholar 

  • Falanga, V., & Bucalo, B. (1993). Use of a durometer to assess skin hardness. Journal of the American Academy of Dermatology, 29, 47–51.

    Article  Google Scholar 

  • Gerhardt, L. C., Strassle, V., Lenz, A., Spencer, N. D., & Derler, S. (2008). Influence of epidermal hydration on the friction of human skin against textiles. Journal of the Royal Society, Interface, 5, 1317–1328.

    Article  Google Scholar 

  • Giasson, S., Israelachvili, J., & Yoshizawa, H. (1997). Thin film morphology and tribology study of mayonnaise. Journal of Food Science, 62, 640–646.

    Article  Google Scholar 

  • Greason, W. D., Oltean, I. M., Kucerovsky, Z., & Ieta, A. C. (2004). Triboelectric charging between polytetrafluoroethylene and metals. IEEE Transactions on Industry Applications, 40, 442–450.

    Article  Google Scholar 

  • Harding, C. R., Watkinson, A., & Rawlings, A. V. (2000). Dry skin, moisturization, and corneodesmolysis. International Journal of Cosmetic Science, 22, 21–52.

    Article  Google Scholar 

  • Highley, D. R., Cooney, M., DenBeste, M., & Wolfram, L. J. (1977). Frictional properties of skin. Journal of Investigative Dermatology, 69, 303–305.

    Article  Google Scholar 

  • Hollins, M., Bensmaïa, S. J., & Risner, S. R. (1998). The Duplex theory of tactile texture perception. In S. Grondin & Y. Lacouture (Eds.), Proceedings of the Fourteenth Annual Meeting of the International Society for Psychophysics (Fechner Day 98.) (pp. 115–120). Quebec, Canada: The International Society for Psychophysics.

    Google Scholar 

  • Israelachvili, J. N., McGuiggan, P. M., & Homola, A. M. (1988). Dynamic properties of molecularly thin liquid films. Science, 240, 189–191.

    Article  ADS  Google Scholar 

  • Johnson, L. C., & Corah, N. L. (1963). Racial differences in skin resistance. Science, 139, 766–767.

    Article  ADS  Google Scholar 

  • Jonassen, N. (1998). Electrostatics. New York: Chapman & Hall.

    Book  Google Scholar 

  • Karlson, T. A. (1982). The influence of hospital-treated facial injuries from vehicles. Journal of Trauma, 22, 303–310.

    Article  Google Scholar 

  • Katz, D. (1989). The World of Touch (L. E. Krueger & Lawrence Erlbaum Associates, Inc., Trans.). Hillsdale, New Jersey.

    Google Scholar 

  • Kendall, M. A. F., Chong, Y. F., & Cock, A. (2007). The mechanical properties of the skin epidermis in relation to targeted gene and drug delivery. Biomaterials, 28, 4968–4977.

    Article  Google Scholar 

  • Koudine, A. A., Barquins, M., & Anthoine, P. H. (2000). Frictional properties of skin: Proposal of a new approach. International Journal of Cosmetic Science, 22, 11–20.

    Article  Google Scholar 

  • Kwiatkowska, M., Franklin, S. E., Hendriks, C. P., & Kwiatkowski, K. (2009). Friction and deformation behaviour of human skin. Wear, 267, 1264–1273.

    Article  Google Scholar 

  • Lanir, Y., & Fung, Y. C. (1974a). Two-dimensional mechanical properties of rabbit skin-II. Experimental results. Journal of Biomechanics, 7, 171–182.

    Article  Google Scholar 

  • Lanir, Y., & Fung, Y. C. (1974b). Two-dimensional mechanical properties of rabbit skin. I. Experimental system. Journal of Biomechanics, 7, 29–34.

    Article  Google Scholar 

  • Leyden, J. J., & Rawlings, A. V. (Eds.). (2002). Skin Moisturization. New York: Marcel Dekker.

    Google Scholar 

  • Liu, H., & Bhushan, B. (2003). Nanotribological characterization of molecularly thick lubricant films for applications to MEMS/NEMS by AFM. Ultramicroscopy, 97, 321–340.

    Article  Google Scholar 

  • Lodén, M., & Lindberg, M. (1991). The influence of a single application of different moisturizers on the skin capacitance. Acta Dermato Venereologica, 71, 79–82.

    Google Scholar 

  • Luengo, G., Tsuchiya, M., Heuberger, M., & Israelachvili, J. (1997). Thin film rheology and tribology of chocolate. Journal of Food Science, 62, 767–772.

    Article  Google Scholar 

  • Morganti, P., Ruocco, E., Wolf, R., & Ruocco, V. (2001). Percutaneous absorption and delivery systems. Clinics in Dermatology, 19, 489–501.

    Article  Google Scholar 

  • Murray, B. C., & Wickett, R. R. (1996). Sensitivity of cutometer data to stratum corneum hydration level. A preliminary study. Skin Research and Technology, 2, 167–172.

    Article  Google Scholar 

  • Nacht, S., Close, J., Yeung, D., & Gans, E. H. (1981). Skin friction coefficient: Changes induced by skin hydration and emollient application and correlation with perceived skin feel. Journal of the Society of Cosmetic Chemists, 32, 55–65.

    Google Scholar 

  • Naylor, P. F. D. (1955). The skin surface and friction. British Journal of Dermatology, 67, 239–248.

    Article  Google Scholar 

  • Ohara, K. (1978). Temperature and frictional speed dependence of frictional electrification between polymer films: Contribution of molecular motion of polymers to frictional electrification. Journal of Electrostatics, 4, 233–246.

    Article  Google Scholar 

  • Ohara, K., Tonouchi, T., & Uchiyama, S. (1990). Frictional electrification of thin films deposited by the Langmuir-Blodgett method. Journal of Physics. D. Applied Physics, 23, 1092–1096.

    Article  ADS  Google Scholar 

  • Őzyazgan, I., Liman, N., Dursun, N., & Gunes, I. (2002). The effects of ovariectomy on the mechanical properties of skin in rats. Maturitas, 43, 65–74.

    Article  Google Scholar 

  • Pan, L., Zan, L., & Foster, F. S. (1998). Ultrasonic and viscoelastic properties of skin under transverse mechanical stress in vitro. Ultrasound in Medicine and Biology, 24, 995–1007.

    Article  Google Scholar 

  • Piérard, G. E., Nizet, J. L., & Adant, J. P. (1999). Tensile properties of relaxed excised skin exhibiting striae distensae. Journal of Medical Engineering & Technology, 23, 69–72.

    Article  Google Scholar 

  • Sanders, R. (1973). Torsional elasticity of human skin in vivo. Pflügers Archiv, 342, 255–260.

    Article  Google Scholar 

  • Scheibert, J., Leurent, S., Prevost, A., & Debrégeas, G. (2009). The role of fingerprints in the coding of tactile information probed with a biomimetic sensor. Science, 323, 1503–1506.

    Article  ADS  Google Scholar 

  • Seshadri, I. P., & Bhushan, B. (2008). Effect of rubbing and load on nanoscale charging characteristics of human hair characterized by AFM based Kelvin probe. Journal of Colloid and Interface Science, 325, 580–587.

    Article  Google Scholar 

  • Sivamani, R. K., Goodman, J., Gitis, N. V., & Maibach, H. I. (2003a). Friction coefficient of skin in real-time. Skin Research and Technology, 9, 235–239.

    Article  Google Scholar 

  • Sivamani, R. K., Wu, G., Gitis, N., & Maibach, H. (2003b). Tribological testing of skin products: Gender, age, and ethnicity on the volar forearm. Skin Research and Technology, 9, 299–305.

    Article  Google Scholar 

  • Son, J. Y., & Lee, G. (2008). Writing nanotriboelectric charge bits on insulator surface. Applied Physics Letters, 93, 173105-1–173105-2.

    Google Scholar 

  • Tambe, N. S., & Bhushan, B. (2005). Friction model for the velocity dependence of nanoscale friction. Nanotechnology, 16, 2309–2324.

    Article  ADS  Google Scholar 

  • Tang, W., & Bhushan, B. (2010). Adhesion, friction and wear characterization of skin and skin cream using atomic force microscope. Colloid Surface B, 76, 1–15.

    Article  Google Scholar 

  • Tang, W., Bhushan, B., & Ge, S. (2010a). Friction, adhesion and durability and influence of humidity on adhesion and surface charging of skin and various skin creams using atomic force microscopy. Journal of Microscopy, 239, 99–116.

    MathSciNet  Google Scholar 

  • Tang, W., Bhushan, B., & Ge, S. (2010b). Triboelectrification studies of skin and skin cream using Kelvin probe microscopy. Journal of Vacuum Science and Technology A, 28, 1018–1028.

    Article  Google Scholar 

  • Tang, W., Ge, S., Zhu, H., Cao, X., & Li, N. (2008). The influence of normal load and sliding speed on frictional properties of skin. Journal of Bionic Engineering, 5, 33–38.

    Article  Google Scholar 

  • Tang, W., Zhang, J., Chen, S., Chen, N., Zhu, H., Ge, S., et al. (2015). Tactile perception of skin and skin cream. Tribology Letters, 59, 24.

    Article  Google Scholar 

  • Tao, Z., & Bhushan, B. (2007). Velocity dependence and rest time effect on nanoscale friction of ultrathin films at high sliding velocities. Journal of Vacuum Science and Technology A, 25, 1267–1274.

    Article  Google Scholar 

  • Vicente, J., Spikes, H. A., & Stokes, J. R. (2006). Viscosity ratio effect in the emulsion lubrication of soft EHL contact. Journal of Tribology, 128, 795–800.

    Article  Google Scholar 

  • Wåhlin, A., & Bäckströml, G. (1974). Sliding electrification of teflon by metals. Journal of Applied Physics, 45, 2058–2064.

    Article  Google Scholar 

  • Yuan, Y., & Verma, R. (2006). Measuring microelastic properties of stratum corneum. Colloids Surfaces B: Biointerfaces, 48, 6–12.

    Article  Google Scholar 

  • Zhang, M., & Mak, A. F. T. (1999). In vivo friction properties of human skin. Prosthetics and Orthotics International, 23, 135–141.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bhushan, B. (2017). Introduction. In: Biophysics of Skin and Its Treatments. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-45708-6_1

Download citation

Publish with us

Policies and ethics