Skip to main content
Log in

Tactile Perception of Skin and Skin Cream

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The tactile sense allows us to get the feeling of objects, and it is one of the most important sensations humans process. In this study, a characterization method for estimating the tactile sensation associated with skin cream was carried out. Four characteristic features, spectral centroid (SC), vertical deviations (R), adhesive force (F a), and coefficient of friction (μ), are extracted and used to characterize the tactile perception. The influences of skin cream, film thickness, humidity, and temperature on the tactile perception of skin were studied. It is found that the features are consistent with human tactile sensing and could characterize the tactile perception accurately. After applied skin cream, SC, F a, and μ increase and R decreases, which correspond to a fine, greasy, sticky, and smooth perception. With the increase in cream film thickness, SC and F a increase and R decreases, which correspond to an increase in fine, greasy, and smooth perception. μ and the perceived slipperiness show different tendency when the film thickness is above 3 μm. Humidity and temperature influence the tactile perception of skin. Humidity has the similar function with skin cream. The influence of humidity on tactile perception of cream-treated skin is more obvious than on virgin skin. The related mechanisms were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fernandes, A.M., Albuquerque, P.B.: Tactual perception: a review of experimental variables and procedures. Cogn. Process. 13, 285–301 (2012)

    Article  Google Scholar 

  2. Howe, R.D., Cutkosky, M.R.: Dynamic tactile sensing perception of fine surface features with stress rate sensing. IEEE Trans. Robot. Autom. 9, 140–151 (1993)

    Article  Google Scholar 

  3. Prevost, A., Scheibert, J., Debrégeas, G.: Effect of fingerprints orientation on skin vibrations during tactile exploration of textured surfaces. Commun. Integr. Biol. 2, 422–424 (2009)

    Article  Google Scholar 

  4. Bolanowski, S.J., Gescheider, G.A., Verrillo, R.T., Checkosky, C.M.: Four channels mediate the mechanical aspects of touch. J. Acoust. Soc. Am. 84, 1680–1694 (1988)

    Article  Google Scholar 

  5. Johnson, K.O., Hsiao, S.S.: Neural mechanisms of tactual form and texture perception. Annu. Rev. Neurosci. 15, 227–250 (1992)

    Article  Google Scholar 

  6. Francomano, M.T., Accoto, D., Guglielmelli, E.: Artificial sense of Slip—a review. IEEE Sens. J. 13, 2489–2498 (2013)

    Article  Google Scholar 

  7. Scheibert, J., Leurent, S., Prevost, A., Debrégeas, G.: The role of fingerprints in the coding of tactile information probed with a biomimetic sensor. Science 323, 1503–1506 (2009)

    Article  Google Scholar 

  8. Ramalho, A., Szekeres, P., Fernandes, E.: Friction and tactile perception of textile fabrics. Tribol. Int. 63, 29–33 (2013)

    Article  Google Scholar 

  9. Koç, Murat, Aksu, C.: Tactile sensing of constructional differences in fabrics with a polymeric finger tip. Tribol. Int. 59, 339–349 (2013)

    Article  Google Scholar 

  10. Tiwana, M.I., Redmond, S.J., Lovell, N.H.: A review of tactile sensing technologies with applications in biomedical engineering. Sens. Actuators A 179, 17–31 (2012)

    Article  Google Scholar 

  11. Schostek, S., Schurr, M.O., Buess, G.F.: Review on aspects of artificial tactile feedback in laparoscopic surgery. Med. Eng. Phys. 31, 887–898 (2009)

    Article  Google Scholar 

  12. Kawasaki, H., Komatsu, T., Uchiyama, K.: Dexterous anthropomorphic robot hand with distributed tactile sensor: gifu hand II. IEEE/ASME Trans. Mechatron. 7, 296–303 (2002)

    Article  Google Scholar 

  13. Girão, P.S., Ramos, P.M.P., Postolache, O., Pereira, J.M.D.: Tactile sensors for robotic applications. Measurement 46, 1257–1271 (2013)

    Article  Google Scholar 

  14. Horiuchi, K., Kashimoto, A., Tsuchiya, R., Yokoyama, M., Nakano, K.: Relationship between tactile sensation and friction signals in cosmetic foundation. Tribol. Lett. 36, 113–123 (2009)

    Article  Google Scholar 

  15. Nakano, K., Horiuchi, K., Soneda, T., Kashimoto, A., Tsuchiya, R., Yokoyama, M.: A neural network approach to predict tactile comfort of applying cosmetic foundation. Tribol. Int. 43, 1978–1990 (2010)

    Article  Google Scholar 

  16. Nakano, K., Kobayashi, K., Nakao, K., Tsuchiya, R., Nagai, Y.: Tribological method to objectify similarity of vague tactile sensations experienced during application of liquid cosmetic foundations. Tribol. Int. 63, 8–13 (2013)

    Article  Google Scholar 

  17. Holliins, M., Faldowski, R., Rao, S., Young, F.: Perceptual dimensions of tactile surface texture: a multidimensional scaling analysis. Percept. Psychophys. 54, 697–705 (1993)

    Article  Google Scholar 

  18. Fishel, J.A., Loeb, G.E.: Bayesian exploration for intelligent identification of textures. Front. Neurorobot. 6, 1–20 (2012)

    Article  Google Scholar 

  19. Kuijt-Evers, L.F.M., Bosch, T., Huysmans, M.A., de Looze, M.P., Vink, P.: Association between objective and subjective measurements of comfort and discomfort in hand tools. Appl. Ergon. 38, 643–654 (2007)

    Article  Google Scholar 

  20. Tang, W., Bhushan, B., Ge, S.: Friction, adhesion, and durability and influence of humidity on adhesion and surface charging of skin and various skin creams using atomic force microscopy. J. Microscopy 239, 99–116 (2010)

    Google Scholar 

  21. Naylor, P.F.D.: The skin surface and friction. Br. J. Dermatol. 67, 239–248 (1955)

    Article  Google Scholar 

  22. EI-Shimi, A.F.: In vivo skin friction measurements. J. Soc. Cosmet. Chem. 28, 37–51 (1977)

    Google Scholar 

  23. Egawa, M., Oguri, M., Hirao, T., Takahashi, M., Miyakawa, M.: The evaluation of skin friction using a frictional feel analyzer. Skin Res. Technol. 8, 41–51 (2002)

    Article  Google Scholar 

  24. Sivamani, R.K., Goodman, J., Gitis, N.V., Maibach, H.I.: Friction coefficient of skin in real-time. Skin Res. Technol. 9, 235–239 (2003)

    Article  Google Scholar 

  25. Katz, D., Krueger, L.E.: The World of Touch. Lawrence Erlbaum Associates, Mahwah, New Jersey (1989)

    Google Scholar 

  26. Horiuchi, K., Nakano, K.: Sliding test by using an apparatus imitating a human finger for estimating the tactile sensation of cosmetic foundation. J. Adv. Mech. Des. Sys. Manuf. 1, 726–736 (2007)

    Google Scholar 

  27. de Boissieu, F., Godin, C., Guilhamat, B., David, D., Serviere, C., Baudois, D.: Tactile texture recognition with a 3-axial force MEMS integrated artificial finger. In: Proceeding of Robotics Science and Systems (RSS), Seattle, USA (2009)

  28. Jermann, R., Toumiat, M., Imfeld, D.: Development of an in vitro efficacy test for self-tanning formulations. Int. J. Cosmet. Sci. 24, 35–42 (2002)

    Article  Google Scholar 

  29. Wakefield, G., Stott, J.: Photostabilization of organic UV-absorbing and anti-oxidant cosmetic components in formulations containing micronized manganese-doped titanium oxide. J. Cosmet. Sci. 57, 385–395 (2006)

    Google Scholar 

  30. Beasley, D.G., Meyer, T.A.: Characterization of the UVA protection provided by avobenzone, zinc oxide, and titanium dioxide in broad-spectrum sunscreen products. Am. J. Clin. Dermatol. 11, 413–421 (2010)

    Article  Google Scholar 

  31. Turner, R.B., Biedermann, K.A., Morgan, J.M., Keswick, B., Ertel, K.D., Barker, M.F.: Efficacy of organic acids in hand cleansers for prevention of rhinovirus infections. Antimicrob. Agents Chemother. 48, 2595–2598 (2004)

    Article  Google Scholar 

  32. Tang, W., Bhushan, B.: Adhesion, friction and wear characterization of skin and skin cream using atomic force microscope. Colloids Surf. B: Biointerfaces 76, 1–15 (2010)

    Article  Google Scholar 

  33. Fishel, J. A., Santos, V. J., Loeb, G. E.: A robust microvibration sensor for biomimetic fingertips. In: IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, AZ, USA, 659–663, 2008

  34. Su, Z., Fishel, J.A., Yamamoto, T., Loeb, G.E.: Use of tactile feedback to control exploratory movements to characterize object compliance. Front Neurorobot. 6, 1–9 (2012)

    Article  Google Scholar 

  35. Lederman, S.J., Loomis, J.M., Williams, D.A.: The role of vibration in the tactual perception of roughness. Percept. Psychophys. 32, 109–116 (1982)

    Article  Google Scholar 

  36. Mukaibo, Y., Shirado, H., Konyo, M., Maeno, T.: Development of a texture sensor emulating the tissue structure and perceptual mechanism of human fingers. In: Proceedings of the 2005 IEEE ICRA’05, Barcelona, Spain, 2565–2570, 2005

  37. Cattaneo, Z., Vecchi, T.: Blind Vision: the Neuroscience of Visual Impairment. MIT Press, London (2011)

    Book  Google Scholar 

  38. Heller, M.A., Ballesteros, S.: Touch and Blindness: Psychology and Neuroscience. Lawrence Erlbaum Associates, Mahwah, New Jersey (2006)

    Google Scholar 

  39. Augurelle, A.S., Smith, A.M., Lejeune, T., Thonnard, J.L.: Importance of cutaneous feedback in maintaining a secure grip during manipulation of hand-held objects. J. Neurophysiol. 89, 665–671 (2003)

    Article  Google Scholar 

  40. Brock, D.L.: Enhancing the dexterity of a robot hand using controlled slip. Proc. IEEE Int. Conf. Robot. Autom. 1, 249–251 (1988)

    Google Scholar 

  41. Meftah, E.M., Belingard, L., Chapman, C.E.: Relative effects of the spatial and temporal characteristics of scanned surfaces on human perception of tactile roughness using passive touch. Exp. Brain Res. 132, 351–361 (2000)

    Article  Google Scholar 

  42. Srinivasan, M.A., La Motte, R.H.: Tactual discrimination of softness. J. Neurophsiol. 73, 88–101 (1995)

    Google Scholar 

  43. Bodegard, A., Ledberg, A., Geyer, S., Naito, E., Zilles, K., Roland, P.E.: Object shape differences reflected by somatosensory cortical activation in human. J. Neurosci. 20, 1–5 (2000)

    Google Scholar 

  44. Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science, 4th edn. McGraw-Hill, New York (2000)

    Google Scholar 

  45. Mole, R.H.: The Relative humidity of the skin. J. Physiol. 107, 399–411 (1948)

    Article  Google Scholar 

  46. Perry, R.H., Green, D.W.: Perry’s Chemical Engineers’ Handbook, 8th edn. McGraw-Hill, New York (2007)

    Google Scholar 

  47. Haynes, W.M.: CRC Handbook of Chemistry and Physics, 93rd edn. CRC Press, Boca Raton (2012)

    Google Scholar 

  48. Oddo, C.M., Beccai, L., Felder, M., Giovacchini, F., Carrozza, M.C.: Artificial roughness encoding with a bio-inspired MEMS-based tactile sensor array. Sensors 9, 3161–3183 (2009)

    Article  Google Scholar 

  49. Culbertson, H., Unwin, J., Kuchenbecker, K.: Modeling and rendering realistic textures from unconstrained tool-surface interactions. IEEE Trans. Haptics 7, 381–392 (2014)

    Article  Google Scholar 

  50. Dargahi, J., Najarian, S.: Human tactile perception as a standard for artificial tactile sensing-a review. Int. J. Med Robot Comput Assist Surg 1, 23–35 (2004)

  51. Bhushan, B.: Principles and Applications of Tribology. Wiley, Somerset, NJ (2013)

    Book  Google Scholar 

  52. Bhushan, B.: Introduction to Tribology, 2nd edn. Wiley, Somerset, NJ (2013)

    Book  Google Scholar 

  53. Park, J.Y., Thiel, P.A.: Atomic scale friction and adhesion properties of quasicrystal surfaces. J. Phys.: Condens. Matter 20, 1–14 (2008)

    Google Scholar 

  54. Achanta, S., Liskiewicz, T., Drees, D., Celis, J.-P.: Friction mechanisms at the micro-scale. Tribol. Int. 42, 1792–1799 (2009)

    Article  Google Scholar 

  55. Wieleba, W.: The statistical correlation of the coefficient of friction and wear rate of PTFE composites with steel counterface roughness and hardness. Wear 252, 719–729 (2002)

    Article  Google Scholar 

  56. Yoshizawa, H., Chen, Y.L., Israelachvili, J.: Fundamental mechanisms of interfacial friction. 1. relation between adhesion and friction. J. Phys. Chem. 97, 4128–4140 (1993)

    Article  Google Scholar 

  57. Fagiani, R., Massi, F., Chatelet, E., Berthiera, Y., Akayc, A.: Tactile perception by friction induced vibrations. Tribol. Int. 44, 1100–1110 (2011)

    Article  Google Scholar 

  58. Nacht, S., Close, J., Yeung, D., Gans, E.H.: Skin friction coefficient: changes induced by skin hydration and emollient application and correlation with perceived skin feel. J. Soc. Cosmet. Chem. 32, 55–65 (1981)

    Google Scholar 

  59. Morganti, P., Ruocco, E., Wolf, R., Ruocco, V.: Percutaneous absorption and delivery systems. Clin. Dermatol. 19, 489–501 (2001)

    Article  Google Scholar 

  60. Fritsch, W.C., Stoughton, R.B.: The effect of temperature and humidity on the penetration of C14 acetylsalicylic acid in excised human skin. J. Invest. Dermatol. 41, 307–311 (1963)

    Article  Google Scholar 

  61. Downing, D.T., Strauss, J.S., Pochi, P.E.: Variability of the chemical composition of skin surface lipids. J. Inves. Dermatol. 53, 322–327 (1969)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the National Natural Science Foundation of China 51205394, Specialized Research Fund for the Doctoral Program of Higher Education 20120095120014, the China Postdoctoral Science Foundation funded project 2013T60572, the Fundamental Research Funds for the Central Universities 2014QNA41, the International Postdoctoral Exchange Fellowship Program, and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. The authors acknowledge the Syntouch LLC for supporting the biomimetic finger.

Conflict of interest

None.

Ethical standard

The research in the manuscript has been conducted under the guidance of international ethical standards. All relevant ethical safeguards have been met in relation to patient or subject protection, or animal experimentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, W., Zhang, J., Chen, S. et al. Tactile Perception of Skin and Skin Cream. Tribol Lett 59, 24 (2015). https://doi.org/10.1007/s11249-015-0540-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-015-0540-3

Keywords

Navigation