Skip to main content

Reynolds-Averaged Navier–Stokes Equations

  • Chapter
  • First Online:
Computational Fluid Dynamics

Abstract

The constitutive equations used in the Reynolds-averaged Navier–Stokes (RANS) equations are referred to as turbulence models. Although a large number of studies have been performed on the development of turbulence models, there has not been a universal turbulence model that is applicable to all turbulent flows. However, we in general suggest the use of the k-\(\varepsilon \) model for “simple” flows and the Large-Eddy Simulation (LES) for more complex flows (Chap. 8) found in many practical engineering applications. In this book, we refer to “simple flows” as stationary flows that have average streamlines that are relatively straight on the absolute coordinate system with low level of acceleration. Flows that impinge on walls, separate from corners, pass through a curved channel, and is in a rotational field would not be considered simple. In this and the next chapters, discussions on the strengths and limitations of these methods are offered. Since our objective is not to introduce all turbulence models available, we ask readers to refer to [3, 6, 28] for comprehensive reviews on RANS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There are also different Boussinesq approximations that appear in the analysis of flows with buoyancy and water waves.

  2. 2.

    http://turbmodels.larc.nasa.gov.

  3. 3.

    http://www.cfd-online.com.

References

  1. Abe, K., Nagano, Y., Kondoh, T.: An improved \(k\)-\(\epsilon \) model for preduction of turbulent flows with separation and reattachment. Trans. Jpan. Soc. Mech. Eng. B 58(554), 3003–3010 (1992)

    Article  Google Scholar 

  2. Baldwin, B.S., Lomax, H.: Thin layer approximation and algebraic model for separated turbulent flows. AIAA Paper 78–257 (1978)

    Google Scholar 

  3. Cebeci, T.: Analysis of Turbulent Flows with Computer Programs, 3rd edn. Butterworth-Heinemann (2013)

    Google Scholar 

  4. Daiguji, H., Miyake, Y., Yoshizawa, A. (eds.): Computational Fluid Dynamics of Turbulent Flow: Models and Numerical Methods. Univ. Tokyo Press (1998)

    Google Scholar 

  5. Daly, B.J., Harlow, F.H.: Transport equations in turbulence. Phys. Fluids 13(11), 2634–2649 (1970)

    Article  Google Scholar 

  6. Durbin, P.A., Reif, B.A.P.: Statistical Theory and Modeling for Turbulent Flows, 2nd edn. Wiley (2011)

    Google Scholar 

  7. Hanjalić, K., Launder, B.E.: Contribution towards a Reynolds-stress closure for low-Reynolds-number turbulence. J. Fluid Mech. 74(4), 593–610 (1976)

    Article  MATH  Google Scholar 

  8. Hinze, J.O.: Turbulence. McGraw-Hill, New York (1975)

    Google Scholar 

  9. Jones, W.P., Launder, B.E.: The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Trans. 15(2), 301–314 (1972)

    Article  Google Scholar 

  10. Kajishima, T., Miyake, Y.: A discussion on eddy viscosity models on the basis of the large eddy simulation of turbulent flow in a square duct. Comput. Fluids 21(2), 151–161 (1992)

    Article  MATH  Google Scholar 

  11. Launder, B.E., Reece, G.J., Rodi, W.: Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech. 68(3), 537–566 (1975)

    Article  MATH  Google Scholar 

  12. Launder, B.E., Spalding, D.B.: The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Engrg. 3(2), 269–289 (1974)

    Article  MATH  Google Scholar 

  13. Launder, B.E., Tselepidakis, D.P., Younis, B.A.: A second-moment closure study of rotating channel flow. J. Fluid Mech. 183, 63–75 (1987)

    Article  MATH  Google Scholar 

  14. Lumley, J.L., Newman, G.R.: The return to isotropy of homogeneous turbulence. J. Fluid Mech. 82(1), 161–178 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mansour, N.N., Kim, J., Moin, P.: Reynolds-stress and dissipation-rate budgets in a turbulent channel flow. J. Fluid Mech. 194, 15–44 (1988)

    Article  Google Scholar 

  16. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)

    Article  Google Scholar 

  17. Miyata, H. (ed.): Analysis of turbulent flows. In: Computational Fluid Dynamics Series, vol. 3. Univ. Tokyo Press (1995)

    Google Scholar 

  18. Myong, H.K., Kasagi, N.: A new approach to the improvement of \(k\)-\(\epsilon \) turbulence model for wall-bounded shear flows. JSME Int. J. 33(1), 63–72 (1990)

    Google Scholar 

  19. Nagano, Y., Tagawa, M., Niimi, M.: An improvement of the \(k\)-\(\epsilon \) turbulence model (the limiting behavior of wall and free turbulence, and the effect of adverse pressure gradient). Trans. Jpn. Soc. Mech. Eng. B 55(512), 1008–1015 (1989)

    Article  Google Scholar 

  20. Patankar, S.: Numerical Heat Transfer and Fluid Flow. Hemisphere, Washington (1980)

    MATH  Google Scholar 

  21. Patel, V.C., Rodi, W., Scheuerer, G.: Turbulence models for near-wall and low Reynolds number flows - A review. AIAA J. 23(9), 1308–1319 (1985)

    Article  MathSciNet  Google Scholar 

  22. Rotta, J.C.: Statistische theorie nichthomogener turbulenz. Zeitschrift für physik 129(6), 547–572 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shima, N.: Prediction of turbulent boundary layers with a second-moment closure. Parts I and II. J. Fluids Eng. 115(1), 56–69 (1993)

    Article  Google Scholar 

  24. So, R.M.C., Lai, Y.G., Hwang, B.C., Yoo, G.J.: Low-Reynolds-number modelling of flows over a backward-facing step. ZAMP 39(1), 13–27 (1988)

    Article  Google Scholar 

  25. Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic forces. AIAA Paper 92–439 (1992)

    Google Scholar 

  26. Speziale, C.G.: Analytical methods for the development of Reynolds-stress closures in turbulence. Annu. Rev. Fluid Mech. 23, 107–157 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Suga, K.: Near-wall grid dependency of low-Reynolds-number eddy viscosity turbulence models. Trans. Jpn. Soc. Mech. Eng. B 64(626), 3315–3322 (1998)

    Article  Google Scholar 

  28. Wilcox, D.C.: Turbulence Modeling for CFD, 3rd edn. DCW Industries (2006)

    Google Scholar 

  29. Yamamoto, M.: Time average turbulent flow model. Stress equation model (RSM). Turbomachinery 24(4), 240–247 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takeo Kajishima or Kunihiko Taira .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kajishima, T., Taira, K. (2017). Reynolds-Averaged Navier–Stokes Equations. In: Computational Fluid Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-45304-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45304-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45302-6

  • Online ISBN: 978-3-319-45304-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics