Skip to main content

Nanoparticles Synthesized by Microorganisms

  • Chapter
  • First Online:
Extremophiles: Applications in Nanotechnology

Abstract

Microorganisms capable of synthesizing nanoparticles are prevalent microflora of the terrestrial and marine ecosystems. These microorganisms are involved in biogeochemical cycling of metals in processes such as precipitation (biomineralization), decomposition (bioweathering), and degradation (biocorrosion). The biosynthesis of metal NPs by microbes is a function of heavy metal toxicity resistance mechanisms. Resistance mechanisms range from redox enzymes that convert toxic metal ions to inert forms, structural proteins that bind protein, or through the use of efflux proteins that transport metal ions by proton motive force, chemiosmotic gradients, or ATP hydrolysis, which work together to coordinate synthesis nanoparticle synthesis. This chapter focuses on the biological systems; bacteria, fungi, actinomycetes, and algae for utilization in nanotechnology, especially in the development of a reliable and eco-friendly processes for the synthesis of metallic nanoparticles. The rich microbial diversity points to their innate potential for acting as potential biofactories for nanoparticles synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Absar A, Satyajyoti S, Khan MI, Rajiv K, Sastry M (2005) Extra/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnol 1:47–53

    Article  CAS  Google Scholar 

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124:12108–12109

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003a) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B 28:313–318

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Ramani R, Srinivas V, Sastry M (2003b) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14:824–828

    Article  CAS  Google Scholar 

  • Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S (2009) Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater Lett 63:1231–1234

    Article  CAS  Google Scholar 

  • Acharya BK (1972) Elementary pharmacology and therapeutics. New Height Publishing, New Delhi, pp 154–155

    Google Scholar 

  • Argyo C, Weiss V, Bräuchle C, Bein T (2014) Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery. Chem Mater 26:435–451

    Article  CAS  Google Scholar 

  • Arumugam A, Karthikeyan C, Hameed ASH, Gopinath K, Gowri S, Karthika V (2015) Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Mat Sci Eng C 49:408–415

    Article  CAS  Google Scholar 

  • Auger S, Gomez MP, Danchin A, Martin-Verstraete I (2005) The PatB protein of Bacillus subtilis is aC-S-lyase. Biochimie 87:231–238

    Article  CAS  PubMed  Google Scholar 

  • Ayano H, Miyake M, Terasawa K, Kuroda M, Soda S, Sakaguchi T, Ike M (2014) Isolation of a selenite-reducing and cadmium-resistant bacterium Pseudomonas sp. strain RB for microbial synthesis of CdSe nanoparticles. J Biosci Bioeng 117:576–581

    Article  CAS  PubMed  Google Scholar 

  • Babu MMG, Gunasekaran P (2009) Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate. Colloids Surf B 74:191–195

    Article  CAS  Google Scholar 

  • Bai HJ, Zhang ZM (2009) Microbial synthesis of semiconductor lead sulfide nanoparticles using immobilized Rhodobacter sphaeroides. Mater Lett 63:764–766

    Article  CAS  Google Scholar 

  • Bai HJ, Zhang ZM, Gong J (2006) Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides. Biotechnol Lett 28:1135–1139

    Article  CAS  PubMed  Google Scholar 

  • Bai HJ, Zhang ZM, Guo Y, Yang GE (2009) Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids Surf B Biointerfaces 70: 142–146

    Google Scholar 

  • Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14(22):3303–3305

    Article  CAS  Google Scholar 

  • Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahmad A, Sastryet M (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 15:2583–2589

    Article  CAS  Google Scholar 

  • Bansal V, Poddar P, Ahmad A, Sastry M (2006) Room temperature biosynthesis of ferroelectric barium titanate nanoparticles. J Am Chem Soc 128:11958–11963

    Article  CAS  PubMed  Google Scholar 

  • Bao H, Lu Z, Cui X, Qiao Y, Guo J, Anderson JM, Li CM (2010) Extracellular microbial synthesis of biocompatible CdTe quantum dots. Acta Biomater 6:3534–3541

    Article  CAS  PubMed  Google Scholar 

  • Baesman SM, Bullen TD, Dewald J, Zhang D, Curran S, Islam FS, Beveridge TJ, Oremland RS (2007) Formation of tellurium nanocrystals during anaerobic growth of bacteria that use Te oxyanions as respiratory electron acceptors. Appl Environ Microbiol 73:2135–2143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahrami K, Nazari P, Sepehrizadeh Z, Zarea B, Shahverdi AR (2012) Microbial synthesis of antimony sulfide nanoparticles and their characterization. Ann Microbiol 62:1419–1425

    Article  CAS  Google Scholar 

  • Bazylinski DA, Frankel RB, Heywood BR, Mann S, King JW, Donaghay PL, Hanson AK (1995) Controlled biomineralization of magnetite (Fe3O4) and greigite (Fe3S4) in a magnetotactic bacterium. Appl Environ Microbiol 61:3232–3239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloid Surf B 47:160–164

    Article  CAS  Google Scholar 

  • Bharde A, Wani A, Shouche Y, Pattayil A, Bhagavatula L, Sastry M (2005) Bacterial aerobic synthesis of nanocrystalline magnetite. J Am Chem Soc 127:9326–9327

    Article  CAS  PubMed  Google Scholar 

  • Bharde AA, Parikh RY, Baidakova M, Jouen S, Hannoyer B, Enoki T, Prasad BLV, Shouche YS, Ogale S, Sastry M (2008) Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles. Langmuir 24:5787–5794

    Article  CAS  PubMed  Google Scholar 

  • Behboudnia M, Majlesara MH, Khanbabaee B (2005) Preparation of ZnS nanorods by ultrasonic waves. Mater Sci Eng B 122:160–163

    Article  CAS  Google Scholar 

  • Berman JD (1997) Human leishmaniasis: clinical, diagnostic, and chemotherapeutic developments in the last 10 years. Clin Infect Dis 24:684–703

    Article  CAS  PubMed  Google Scholar 

  • Bond GC (2002) Gold: a relatively new catalyst. Catal Today 72:5–9

    Article  CAS  Google Scholar 

  • Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87:1181–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bose S, Hochella MF, Gorby YA, Kennedy DW, McCready DE, Madden AS, Lower BH (2009) Bioreduction of hematite nanoparticles by the dissimilatory iron reducing bacterium Shewanella oneidensis MR-1. Geochim et Cosmochim Acta 73:962–976

    Article  CAS  Google Scholar 

  • Burgos WD, McDonongh JT, Senko JM, Zhang G, Dohnalkova AC, Kekky SD, Gorby Y, Kenner KM (2008) Characterization of uraninite nanoparticles produced by Shewanella oneidensis MRI. Geochim Cosmochim Acta 72:4901–4915

    Article  CAS  Google Scholar 

  • Carotenuto G, Hison CL, Capezzuto F, Palomba M, Perlo P, Conte P (2009) Synthesis and thermoelectric characterisation of bismuth nanoparticles. J Nanopart Res 11:1729–1738

    Article  CAS  Google Scholar 

  • Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Coll Surf B 83:42–48

    Article  CAS  Google Scholar 

  • Chauhan A, Zubair S, Tufail S, Shherwani S, Sajid M, Raman SC, Azam A (2011) Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer. Int J Nanomed 6:2305–2319

    CAS  Google Scholar 

  • Chen R, Nufter NNT, Moussa L, Morris HK, Whitemore PM (2008) Silver sulfide nanoparticles assembly obtained by reaction an assembled silver nanoparticles template with hydrogen sulfide gas. Nanotechnology 19:45604–45915

    Article  CAS  Google Scholar 

  • Chwalibog A, Sawosz E, Hotowy A, Szeliga J, Mitura S, Mitura K, Grodzik M, Orlowski P, Sokolowska A (2010) Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int J Nanomed 5:1085–1094

    Article  CAS  Google Scholar 

  • Coker VS, Bennett JA, Telling DD, Henkel T, Charnock JM, van der Laan G, Pattrick RA, Pearce CI, Cutting RS, Shannon IJ, Wood J, Arenholz E, Lyon IC, Lloyd JR (2010) Microbial engineering of nanoheterostructures: biological synthesis of a magnetically recoverable palladium nanocatalyst. ACS Nano 4:2577–2584

    Article  CAS  PubMed  Google Scholar 

  • Cornell A, Schwertmann U (2003) The iron oxides: structures, properties, reactions, occurrences and used. Wiley, New York, Weinheim, p 664

    Book  Google Scholar 

  • Cuevas N, Durán M, Diez C, Tortella GR, Rubilar O (2015) Extracellular biosynthesis of copper and copper oxide nanoparticles by Stereum hirsutum, a native white-rot fungus from chilean forests. J Nanomater. Article ID 789089, 1–7.

    Google Scholar 

  • Cui R, Liu HH, Xie HY, Zhang ZL, Yang YR, Pang DW, Xie ZX, Chen BB, Hu B, Shen P (2009) Living yeast cells as a controllable biosynthesizer for fluorescent quantum dots. Adv Funct Mater 19:2359–2364

    Article  CAS  Google Scholar 

  • Cunningham DP, Lundie LL Jr (1993) Precipitation of cadmium by Clostridium thermoaceticum. Appl Environ Microbiol 59:7–14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dahle JT, Arai Y (2015) Environmental geochemistry of cerium: applications and toxicology of cerium oxide nanoparticles. Int J Environ Res Public Health 12:1253–1278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dameron CT, Reese RN, Mehra RK, Kortan AR, Carooll PJ, Steigerwald ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596–597

    Article  CAS  Google Scholar 

  • Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  PubMed  Google Scholar 

  • de Windt W, Aelterman P, Verstraete W (2005) Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ Microbiol 7:314–325

    Article  PubMed  Google Scholar 

  • Debabova VG, Voeikova TA, Shebanova AS, Shaitanb KV, Emel’yanova LK, Novikova LM, Kirpichnikov MP (2013) Bacterial synthesis of silver sulfide nanoparticles. Nanotechnol Russ 8:269–276

    Article  Google Scholar 

  • Dhanjal S, Cameotra S (2010) Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb Cell Fact 9:1–11

    Article  CAS  Google Scholar 

  • Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762

    Article  CAS  PubMed  Google Scholar 

  • El-Rafie HM, El-Rafie HM, Zahran MK (2013) Green synthesis of silver nanoparticles using polysaccharides extracted from marine macroalgae. Carbohydr Polym 96:403–410

    Article  CAS  PubMed  Google Scholar 

  • El-Shanshoury AERR, Elsilk SE, Ebeid ME (2012) Rapid biosynthesis of cadmium sulfide (CdS) nanoparticles using culture supernatants of Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633 and Lactobacillus acidophilus DSMZ 20079T. Afr J Biotechnol 11:7957–7965

    CAS  Google Scholar 

  • Eshed M, Pol S, Gedanken A, Balasubramanian M (2011) Zirconium nanoparticles prepared by the reduction of zirconium oxide using the RAPET method Beilstein. J Nanotechnol 2:198–203

    CAS  Google Scholar 

  • Faramazi MA, Sadighi A (2013) Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Adv Colloid Interface Sci 189–190:1–20

    Article  CAS  Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed: Nanotechnol Biol Med 6:103–109

    Google Scholar 

  • Filella M, Belzile N, Chen YW (2002a) Antimony in the environment: a review focused on natural waters: I. Occurrence. Earth Sci Rev 57:125–176

    Article  CAS  Google Scholar 

  • Filella M, Belzile N, Chen YW (2002b) Antimony in the environment: a review focused on natural waters: II. relevant solution chemistry. Earth Sci Rev 59:265–285

    Article  CAS  Google Scholar 

  • Fordyce FM (2005) Selenium deficiency and toxicity in the environment. In: Selinus O, Alloway B, Centeno JA, Finkelman RB, Fuge R, Lindh U, Smedley P (eds) Essentials of medical geology. Elsevier Academic Press, Amsterdam, pp 373–416

    Google Scholar 

  • Friedrichs S, Meyer RR, Sloan J, Kirkland AI, Hutchison JI, Green MLH (2001) Complete characterization of a Sb2O3/(21,-8)SWNP inclusion composites. Chem Commun 10:929–930

    Article  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  CAS  PubMed  Google Scholar 

  • Gaumet M, Vargas A, Gurny R, Delie F (2008) Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm 69:1–9

    Article  CAS  PubMed  Google Scholar 

  • Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140

    Article  CAS  Google Scholar 

  • Giotta L, Agostiano A, Italiano F, Milano F, Trotta M (2006) Heavy metal ion influence on the photosynthetic growth of Rhodobacter sphaeroides. Chemosphere 62:1490–1499

    Article  CAS  PubMed  Google Scholar 

  • Goel S, Chen F, Cai W (2014) Synthesis and biomedical applications of copper sulfide nanoparticles: from sensors to theranostics. Small 4:631–645

    Article  CAS  Google Scholar 

  • Gong XQ, Selloni A (2005) Reactivity of anatase TiO2 nanoparticles: the role of the minority (001) surface. J Phys Chem B 109:19560–19562

    Article  CAS  PubMed  Google Scholar 

  • Grigorescu CEA, Stradling RA (2001) Antimony-based infrared materials and devices. Thin Films 28:147–191

    Article  CAS  Google Scholar 

  • Guo L, Wu Z, LiuT Wang W, Zhu H (2000) Synthesis of novel Sb2O3 nanorods. Chem Phys Lett 318:49–52

    Article  CAS  Google Scholar 

  • Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SR, Muniyandi J, Hariharan N, Eom SH (2009) Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B 74:328–335

    Article  CAS  Google Scholar 

  • Haldar AK, Sen P, Roy S (2011) Use of antimony in the treatment of leishmaniasis. current status and future directions. Mol Biol Int. Article ID 571242, 23 p

    Google Scholar 

  • Harada M, Asakura K, Toshima N (1993) Catalytic activity and structural analysis of polymer-protected gold/palladium bimetallic clusters prepared by the successive reduction of hydrogen tetrachloroaurate(III) and palladium dichloride. J Phys Chem 97:5103–5114

    Article  CAS  Google Scholar 

  • He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett. 61:3984–3987

    Article  CAS  Google Scholar 

  • Hennebel T, Nevel S, Verschuere S, De Corte S, De Gusseme B, Cuvelier C, Fitts JF, van der Lelie D, Boon N, Verstraeteet W (2011) Palladium nanoparticles produced by fermentatively cultured bacteria Rhodopseudomonas capsulate. Mater Lett 61:3984–3987

    Google Scholar 

  • Holmes JD, Richardson DJ, Saed S, Evans-Gowing R, Russell DA, Sodeau JR (1997) Cadmium-specific formation of metal sulfide ‘‘Q-particle’’ by Klebsiella pneumoniae. Microbiology 143:2521–2530

    Article  CAS  PubMed  Google Scholar 

  • Holt KB, Bard AJ (2005) Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag. Biochemistry 44:13214–13223

    Article  CAS  PubMed  Google Scholar 

  • Honary S, Barabadi H, Gharaei-Fathabad E, Naghibi F (2012) Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmani. Dig J Nanomater Bios 7:999–1005

    Google Scholar 

  • Hossain M, Su M (2012) Nanoparticle location and material dependent dose enhancement in X-ray radiation therapy. J Phys Chem 116:23047–23052

    CAS  Google Scholar 

  • Hosseini M, Schaffie M, Pazouki M, Darezereshki E, Ranjbar M (2012) Biologically synthesized copper sulfide nanoparticles: production and characterization. Mater Sci Semicond Process 15:222–225

    Article  CAS  Google Scholar 

  • Huang B, Zhang J, Hou J, Chen C (2003) Free radical scavenging efficiency of Nano-Se in vitro. Free Radical Biol Med 35:805–813

    Article  CAS  Google Scholar 

  • Hunter WJ, Manter DK (2008) Bio-reduction of selenite to elemental red selenium by Tetrathiobacter kashmirensis. Curr Microbiol 57:83–88

    Article  CAS  PubMed  Google Scholar 

  • Husseiny MI, El-Aziz AM, Badr Y, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta Part A 67:1003–1006

    Article  CAS  Google Scholar 

  • Isago H, Miura K, Oyama Y (2008) Synthesis and properties of a highly soluble dihydoxo (tetra-tert-butylphthalocyaninato) antimony(V) complex as a precursor toward water-soluble phthalocyanines. J Inorg Biochem 102:380–387

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Bhargava S, Majumdar J, Tarafdar C, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale. 3:635–641

    Article  CAS  PubMed  Google Scholar 

  • Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K, Karthik L, Rao KV (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A: Mol Biomol Spectrosc 90:78–84

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K (2010) Ferroelectric BaTiO3 nanoparticles: biosynthesis and characterization. Colloids Surf B 75:330–334

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K, Kulkarni AR (2009a) Synthesis of TiO2 nanoparticles using microorganisms. Colloids Surf B 71:226–229

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K, Prasad K (2009b) A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem Eng J 43:303–306

    Article  CAS  Google Scholar 

  • Jiang S, Lee JH, Kim MG, Mynng NV, Fredrickson JK, Sadowsky MJ, Hur HG (2009) Biogenic formation of AsS nanotubes by diverse Shewanella strains. Appl Environ Microbiol 75:6896–6898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang XM, Wang LM, Wang J, Chen CY (2012) Gold nanomaterials: preparation, chemical modification, biomedical applications and potential risk assessment. Appl Biochem Biotechnol 166:1533–1551

    Article  CAS  PubMed  Google Scholar 

  • Jianping X, Jim YL, Daniel ICW, Yen PT (2007) Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions. Small 3:668–672

    Google Scholar 

  • Johnson CA, Moench H, Wersin P, Kugler P, Wenger C (2005) Solubility of antimony and other elements in samples taken from shooting ranges. J Environ Qual 34:248–254

    CAS  PubMed  Google Scholar 

  • Juibari MM, Abbasalizadeh S, Jouzani GS, Noruzi M (2011) Intensified biosynthesis of silver nanoparticles using a native extremophilic Ureibacillus thermosphaericus strain. Mater Lett 65:1014–1017

    Article  CAS  Google Scholar 

  • Kalabegishvili TL, Kirkesali EL, Rcheulishvili AN, Ginturi EN, Murusidze IG, Pataraya DT, Gurielidze MA, Tsertsvadze GI, Gabunia VN, Lomidze LG, Gvarjaladze DN, Frontasyeva N (2012) Synthesis of gold and silver nanoparticles by some microorganisms. Nano Stud 6:5–14

    Google Scholar 

  • Kalimuthu K, Suresh Babu R, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B 65:150–153

    Article  CAS  Google Scholar 

  • Kalishwaralal K, Deepak V, Ram Kumar Pandian S, Kottaisamy M, BarathmaniKanth S, Kartikeyan B, Gurunathan S (2010) Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B 77:257–262

    Article  CAS  Google Scholar 

  • Kang SH, Bozhilov KN, Myung NV, Mulchandani A, Chen W (2008) Microbial synthesis of CdS nanocrystals in genetically engineered E. coli. Angew Chem Int Ed 47:5186–5189

    Article  CAS  Google Scholar 

  • Kapoor S, Lawless D, Kennepohl P, Meisel D, Serpone N (1994) Reduction and aggregation of silver ions in aqueous gelatine solutions. Langmuir 10:3018–3022

    Article  CAS  Google Scholar 

  • Kashefi K, Lovley DR (2000) Reduction of Fe(III), Mn(IV), and toxic metals at 100°C by Pyrobaculum islandicum. Appl Environ Microbiol 66:1050–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato H (2011) In vitro assays: tracking nanoparticles inside cells. Nat Nanotechnol 6:139–140

    Article  CAS  PubMed  Google Scholar 

  • Khiewa PS, Radimana S, Huanga NM, Ahmada MS, Nadarajah K (2005) Preparation and characterization of ZnS nanoparticles synthesized from chitosan laurate micellar solution. Mater Lett 59:989–993

    Article  CAS  Google Scholar 

  • Kirthi AV, Rahuman AA, Rajakumar G, Marimuthu S, Santhoshkumar T, Jayaseelan C, Elango G, Zahir AA, Kamaraj C, Bagavan A (2011) Biosynthesis of titanium dioxide nanoparticles using bacterium Bacillus subtilis. Mater Lett 65:2745–2747

    Article  CAS  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA 96:13611–13614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S (2004) Microbial synthesis of gold nanoparticles by metal reducing bacterium. Trans Mater Res Soc Jpn 29:2341–2443

    CAS  Google Scholar 

  • Konishi Y, Tsukiyama T, Tachimi T, Saitoh N, Nomura T, Nagamine S (2007a) Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae. Electrochim Acta 53:186–192

    Article  CAS  Google Scholar 

  • Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H, Takahashi Y, Uruga T (2007b) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128:648–653

    Article  CAS  PubMed  Google Scholar 

  • Kowshik M, Deshmuke N, Vogal W, Urban J, Kulkarni SK, Paknikar KM (2002) Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng 78:583–588

    Article  CAS  PubMed  Google Scholar 

  • Kumar SA, Ansary AA, Ahmad A, Khan MI (2007) Extracellular biosynthesis of CdSe quantum dots by fungus, Fusarium oxysporum. J Biomed Nanotechnol 3:190–194

    Article  CAS  Google Scholar 

  • Labrenz M, Druschel GK, Thomsen-Ebert T, Gilbert B, Welch SA, Kemner KM, Logan GA, Summons RE, De Stasio G, Bond PL, Lai B, Kelly SD, Banfield JF (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290:1744–1747

    Article  CAS  PubMed  Google Scholar 

  • Lai JCK, Lai MB, Edgley KL, BhushanA, Dukhande V, Daniels CK, Leung SW (2007a) Silicon dioxide nanoparticles can exert cytotoxic effects on neural cells. Chapter 8: bio materials and tissues. In: Proceedings of 2007 nanotechnology conference and trade show, Vol 2, pp 741–743

    Google Scholar 

  • Lai JCK, Schoen MP, Perez Gracia A, Naidu DS, Leung SW (2007b) Prosthetic devices: challenges and implications of robotic implants and biological interfaces. Proc Inst Mech Eng H 221:173–183

    Article  CAS  PubMed  Google Scholar 

  • Lee GJ, Lee HM, Rhee CK (2007) Bismuth nano-powder electrode for trace analysis of heavy metals using anodic stripping voltammetry. Electrochem Commun 9:2514–2518

    Article  CAS  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2006a) Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-thiosulfate and gold(III)-chloride complexes. Langmuir 22:2780–2787

    Article  CAS  PubMed  Google Scholar 

  • Lengke MF, Ravel M, Fleet ME, Wanger G, Gordon RA, Southam G (2006b) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex. Environ Sci Technol 40:6304–6309

    Article  CAS  PubMed  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2006c) Synthesis of platinum nanoparticles by reaction of filamentous cyanobacteria with platinum(IV)-chloride complex. Langmuir 22:7318–7323

    Article  CAS  PubMed  Google Scholar 

  • Lengke M, Fleet M, Southam G (2007) Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex. Langmuir 10:1021–1030

    Google Scholar 

  • Li X, Xu H, Chen ZH, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 2011: 16. Article ID 270974. doi:10.1155/2011/270974

    Google Scholar 

  • Liangwei D, Hong J, Xiaohua L, Erkang W (2007) Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin. Electrochem Commun 9:1165–1170

    Article  CAS  Google Scholar 

  • Lin G, Tan DZ, Luo FF, Chen DP, Zhao QZ, Qiu JR (2011) Linear and nonlinear optical properties of glasses doped with Bi nanoparticles. J Non-Cryst Solids 357:2312–2315

    Article  CAS  Google Scholar 

  • Liu JH, Wang AQ, Chi YS, Lin HP, Mou CY (2005) Synergistic effect in an Au–Ag alloy nanocatalyst: CO oxidation. J Phys Chem B. 109:40–43

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Wang A, Li L, Zhang T, Mou CY, Lee JF (2013) Synthesis of Au–Ag alloy nanoparticles supported on silica gel via galvanic replacement reaction. Prog Nat Sci Mater Int 23:317–325

    Article  Google Scholar 

  • Lin, N, Huang J, Chang PR, Feng L, Yud J (2011) Effect of polysaccharide nanocrystals on structure properties and drug release kinetics of alginate-based microspheres. Colloids Surf B Biointerfaces 85:270–279

    Google Scholar 

  • Lloyd JR, Yong P, Macaskie LE (1998) Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. Appl Environ Microbiol 64:4607–4609

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahdieh M, Zolanvari A, Azimee AS, Mahdieh M (2012) Green biosynthesis of silver nanoparticles by Spirulina platensis. Scientia Iranica F 19:926–929

    Article  CAS  Google Scholar 

  • Malarkodi C, Rajeshkumar S, Vanaja M, Paulkumar K, Gnanajobitha G, Annadurai G (2013) Eco-friendly synthesis and characterization of gold nanoparticles using Klebsiella pneumoniae. J Nanostruct Chem 3:30

    Article  Google Scholar 

  • Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492

    Article  CAS  PubMed  Google Scholar 

  • Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356

    Article  CAS  PubMed  Google Scholar 

  • Mo Z, Line P, Guo R, Deng Z, Zhao Y, Sun Y (2012) Graphene sheets/Ag 2S nanocomposites: synthesis and their application in super capacitor materials. Mater Lett 68:416–418

    Article  CAS  Google Scholar 

  • Mody VV, Siwale R, Singh A, Mody HR (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci. 2:282–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohampuria P, Rana N, Kumar Y (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    Article  CAS  Google Scholar 

  • Mousavi RA, Sepahy AA, Fazeli MR (2012) Biosynthesis, purification and characterization of cadmium sulfide nanoparticles using Enterobacteriaceae and their application. Proceedings of the International Conference Nanomaterials: Applications and Properties 1:5, Sumy State University, Alushta, The Crimea, Ukraine Kindly refer: http://essuir.sumdu.edu.ua/handle/123456789/34903.

  • Mubarak-Ali D, Sasikala M, Gunasekaran M, Thajuddin N (2011) Biosynthesis and characterization of silver nanoparticles using marine cyanobacterium Oscillatoria willei ntdm01. Dig J Nano Biostruct 6:385–390

    Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R (2001a) Bioreduction of AuCl4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angewandte Chemie—Int Ed. 40:3585–3588

    Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001b) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519

    Article  CAS  Google Scholar 

  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem 3:461–463

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee P, Roy M, Mandal B, Dey G, Mukherjee P, Ghatak J, Tyagi AK, Kale SP (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus Trichoderma asperellum. Nanotechnology 19:75103–75110

    Article  CAS  Google Scholar 

  • Munusamy S, Bhakyaraj K, Vijayalakshmi L, Stephen A, Narayanan V (2016) Synthesis and characterization of cerium oxide nanoparticles using Curvularia lunata and their antibacterial properties. Int J Innovative Res Sci Eng. ISSN (Online) 2347–3207

    Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2:293–298

    Article  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1–13

    Article  CAS  PubMed  Google Scholar 

  • Nazari P, Faramarzi MA, Sepehrizadeh Z, Mofid MR, Bazaz RD, Shahverdi AR (2012) Biosynthesis of bismuth nanoparticles using Serratia marcescens isolated from the Caspian Sea and their characterization. IET Nanobiotechnol 6:58–62

    Article  CAS  PubMed  Google Scholar 

  • Ni YH, Yin G, Hong JM, Xu Z (2004) Rapid fabrication and optical properties of zinc sulfide nanocrystallines in a heterogeneous system. Mater Res Bull 39:1967–1972

    Article  CAS  Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    Article  CAS  PubMed  Google Scholar 

  • Oremland RS, Herbel MJ, Switzer-Blum J, Langley S, Beveridge TJ, Ajayan PM, Sutto T, Ellis AV, Curran S (2004) Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Appl Environ Microbiol 70:52–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan J, Feng SS (2009) Targeting and imaging cancer cells by folate-decorated, quantum dots (QDs)-loaded nanoparticles of biodegradable polymers. Biomaterials 30:1176–1183

    Article  CAS  PubMed  Google Scholar 

  • Pan R, Wua Y, Liew K (2010) Investigation of growth mechanism of nano-scaled cadmium sulfide within titanium dioxide nanotubes via solution deposition method. Appl Surf Sci 256: 6564–6568

    Google Scholar 

  • Pan X, Ramirez IM, Mernaugh R, Liu J (2010) Nanocharacterization and bactericidal performance of silver modified titania photocatalyst. Colloids Surf B 77:82–89

    Article  CAS  Google Scholar 

  • Panacek A, Kvitek L, Procek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevěčná T, Zbořil R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Physical Chem B 110:16248–16253

    Article  CAS  Google Scholar 

  • Parikh RP, Singh S, Prasad BLV, Patole MS, Sastry M, Shouche YS (2008) Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: towards understanding biochemical synthesis mechanism. ChemBioChem 9:1415–1422

    Article  CAS  PubMed  Google Scholar 

  • Pearce CI, Coker VS, Charnock JM, Pattrick RAD, Mosselmans JFW, Law N, Beveridge TJ, Lloyd JR (2008) Microbial manufacture of chalcogenide-based nanoparticles via the reduction of selenite using Veillonella atypica: an in situ EXAFS study. Nanotechnology 19:156603–156615

    Google Scholar 

  • Peng D, Zhang J, Liu Q, Taylor EW (2007) Size effect of elemental selenium nanoparticles (Nano-Se) at supranutritional levels on selenium accumulation and glutathione S-transferase activity. J Inorg Biochem 101:1457–1463

    Article  CAS  PubMed  Google Scholar 

  • Perez-Gonzalez T, Jimenez-Lopez C, Neal AL, Rull-Perez F, Rodriguez-Navarro A, Fernandez-Vivas A, Iañez-Pareja E (2010) Magnetite biomineralization induced by Shewanella oneidensis. Geochimicaet Cosmochimica Acta. 74:967–979

    Article  CAS  Google Scholar 

  • Prakash N, Sharma N, Prakash R, Raina K, Fellowes J, Pearce C, Lloyd J, Pattrick R (2009) Aerobic microbial manufacture of nanoscale selenium: exploiting nature’s bio-nanomineralization potential. Biotechnol Lett 31:1857–1862

    Article  CAS  PubMed  Google Scholar 

  • Prasad K, Jha AK (2010) Biosynthesis of CdS nanoparticles: an improved green and rapid procedure. J Colloid Interface Sci 342:68–72

    Article  CAS  PubMed  Google Scholar 

  • Prasad K, Jha AK, Kulkarni AR (2007) Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Res Lett 2:248–250

    Article  CAS  PubMed Central  Google Scholar 

  • Qiao ZP, Xie Y, Qian YT, Zhu YJ (2000) g-Irradiation preparation and characterization of nanocrystalline ZnS. Mater Chem Phys 62:88–90

    Article  CAS  Google Scholar 

  • Qu J, Li G, Liu N, He J (2013) Preparation of BiVO4/bentonite catalysts and their photocatalytic properties under simulated solar irradiation. Mater Sci Semicond Process 16:99–105

    Article  CAS  Google Scholar 

  • Rajeshkumar S, Malordi C, Vanaja M, Ghananajobitha G, Paulkumar K, Kannan C, Annadurai G (2013) Antibacterial activity of algae mediated synthesis of gold nanoparticles from Turbinaria conoides. Des Pharm Chem 5:224–229

    CAS  Google Scholar 

  • Rajeshkumar S, Malarkodi C, Paulkumar K, Vanaja M, Gnanajobitha G, Annadurai G (2014) Algae mediated green fabrication of silver nanoparticles and examination of its antifungal activity against clinical pathogens. Int J Met. doi:10.1155/2014/692643, http://dx.doi.org/

    Google Scholar 

  • Rangarajan V, Majumder S, Sen R (2014) Biosurfactant-mediated nanoparticles synthesis: a green and sustainable approach. In: Mulligan CN, Sharma SK, Mudhoo A (eds) Biosurfactants: research trends and applications. CRC Press Taylor & Francis Group, Boca Raton, Florida, pp 217–229

    Chapter  Google Scholar 

  • Reim N, Littig A, Behn D, Mews A (2013) Controlled electrodeposition of bismuth nanocatalysts for the solution—liquid—solid synthesis of CdSe nanowires on transparent conductive substrates. J Am Chem Soc 135:18520–18527

    Article  CAS  PubMed  Google Scholar 

  • Rubilar O, Rai M, Tortella G, Diez MC, Seabra AB, Durán N (2013) Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications. Biotechnol Lett 35:1365–1375

    Article  CAS  PubMed  Google Scholar 

  • Sahoo PK, Panigrahy B, Sahoo S, Satpati AK, Li D, Bahadur D (2013) In situ synthesis and properties of reduced grapheme oxide/Bi nanocomposites: as an electroactive material for analysis of heavy metals. Biosens Bioelectron 43:293–296

    Article  CAS  PubMed  Google Scholar 

  • Saklani V, Jain VK (2012) Microbial synthesis of silver nanoparticles: a review. J Biotechnol Biomater S13:1–3

    Google Scholar 

  • Sandoval A, Aguilar A, Louis C, Traverse A, Zanella R (2011) Bimetallic Au–Ag/TiO2 catalyst prepared by deposition-precipitation: high activity and stability in CO oxidation. J Catal 281:40–49

    Article  CAS  Google Scholar 

  • Sanghi R, Verma P (2009) A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus. Chem Eng J 155:886–891

    Article  CAS  Google Scholar 

  • Sastry M, Ahmad A, Khan I, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85:162–170

    CAS  Google Scholar 

  • Sawle BD, Salimath B, Deshpande R, Bedre MD, Prabhakar BK, Venkataraman A (2008) Biosynthesis and stabilization of Au and Au-Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci Technol Adv Mater 9:1–6

    Google Scholar 

  • Schaffie M, Hosseini MR (2014) Biological process for synthesis of semiconductor copper sulfide nanoparticle from mine wastewaters. J Environ Chem Eng 2:386–391

    Article  CAS  Google Scholar 

  • Senapati S, Mandal D, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2004) Fungus mediated synthesis of silver nanoparticles: a novel biological approach. Indian J Phys A 78A:101–105

    CAS  Google Scholar 

  • Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles. Small 1:517–520

    Article  CAS  PubMed  Google Scholar 

  • Shah R, Oza G, Pandey S, Sharon M (2012) Biogenic fabrication of gold nanoparticles using Halomonas salina. J Microbiol Biotechnol Res 2:485–492

    CAS  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2008) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96

    Article  PubMed  CAS  Google Scholar 

  • Sindhu R, Pandey A, Binod P (2015) Microbial diversity of nanoparticle biosynthesis. In: Singh O (ed) Bio-nanoparticles: biosynthesis and sustainable biotechnological implications, first edition. Wiley, New York, pp 187–203

    Google Scholar 

  • Singaravelu G, Arockiamary JS, Kumar VG, Govindaraju K (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B 57:97–101

    Article  CAS  Google Scholar 

  • Singh S, Bhatta UM, Satyam PV, Dhawan A, Sastry M, Prasad BLV (2008) Bacterial synthesis of silicon/silica nanocomposites. J Mater Chem. 18:2601–2606

    Article  CAS  Google Scholar 

  • Sinha A, Khare SK (2011) Mercury bioaccumulation and simultaneous nanoparticle synthesis by Enterobacter sp. cells. Bioresour Technol 102:4281–4284

    Article  CAS  PubMed  Google Scholar 

  • Slawson RM, Van Dyke MI, Lee H, Trevor JT (1992) Germanium and silver resistance, accumulation and toxicity in microorganisms. Plasmid 27:73–79

    Article  Google Scholar 

  • Southam G, Beveridge TJ (1996) The occurrence of sulfur and phosphorus within bacterially derived crystalline and pseudocrystalline octahedral gold formed in vitro. Geochim Cosmochim Acta 60:4369–4376

    Article  CAS  Google Scholar 

  • Sun Y, Xia YN (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    Article  CAS  PubMed  Google Scholar 

  • Suresh AK, Pelletier DA, Wang W, Broich ML, Moon JW, Gu B, Allison DP, Joy DC, Phelps TJ, Doktycz MJ (2011) Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis. Acta Biomater 7:2148–2152

    Article  CAS  PubMed  Google Scholar 

  • Sweeney RY, Mao C, Gao X, Burt JL, Belcher AM, Georgiou G, Iverson BL (2004) Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol 11:1553–1559

    Article  CAS  PubMed  Google Scholar 

  • Sweet MJ, Singleton I (2011) Silver nanoparticles: a microbial perspective. In: Advances in applied microbiology, 1st ed. ISBN: 978-0-12-3887044-5

    Google Scholar 

  • Syed A, Ahmad A (2013) Extracellular biosynthesis of CdTe quantum dots by the fungus Fusarium oxysporum and their antibacterial activity. Spectrochim Acta Part A: Mol Biomol Spectrosc 106:41–47

    Article  CAS  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2009) Biological synthesis of metallic nanoparticles. Nanomed NBM 6:257–262

    Article  CAS  Google Scholar 

  • Tiquia SM (2008) Diversity of sulfate-reducing genes (dsrAB) in sediments from Puget Sound. Environ Technol 29:1095–1108

    Article  CAS  PubMed  Google Scholar 

  • Tiquia SM, Gurczynski S, Zholi A, Devol A (2006) Diversity of biogeochemical cycling genes from Puget Sound sediments using DNA microarrays. Environ Technol 27:1377–1389

    Article  CAS  PubMed  Google Scholar 

  • Torres SK, Campos VL, León CG, Rodríguez-Llamazares SM, Rojas SM, Gonzalez M, Smith C, Mondaca MA (2012) Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity. J Nanopart Res 14:1236

    Article  CAS  Google Scholar 

  • Tripathi RM, Bhadwal AS, Singh P, Shrivastav A, Singh MP, Shrivastav BR (2014) Mechanistic aspects of biogenic synthesis of CdS nanoparticles using Bacillus licheniformis. Adv Nat Sci: Nanosci Nanotechnol 5:025006

    Google Scholar 

  • Tubtimtae A, Wu KL, Hao T, Lev MW, Wang GJ (2010) Ag2S quantum dot sensitized solar cells. Electrochem Commun 12:1158–1160

    Article  CAS  Google Scholar 

  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf B 53:55–59

    Article  CAS  Google Scholar 

  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:1413–1418

    Article  CAS  Google Scholar 

  • Wang FD, Buhro WE (2010) An easy shortcut synthesis of size controlled bismuth nanoparticles and their use in the SLS growth of high-quality colloidal cadmium selenide quantum wires. Small 6:573–581

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Cui ZL, Zhang ZK (2007) Bi nanoparticles and Bi2O3 nanorods formed by thermal plasma and heat treatment. Surf Coat Technol 201:5330–5332

    Article  CAS  Google Scholar 

  • Watson JHP, Ellwood DC, Soper AK, Charnock J (1999) Nanosized strongly-magnetic bacterially-produced iron sulfide materials. J Magn Magn Mater 203:69–72

    Article  CAS  Google Scholar 

  • Wei Y, Gin A, Razeghi M (2006) Quantum photovoltaic devices based on antimony compound semiconductors. Phys Astron 118:515–545

    CAS  Google Scholar 

  • Wu W, Xiao XH, Zhang SF, Zhou JA, Fan LX, Ren F, Jiang CZ (2010a) Large-scale and controlled synthesis of iron oxide magnetic short nanotubes: shape evolution, growth mechanism, and magnetic properties. J Phys Chem C 114:16092–16103

    Article  CAS  Google Scholar 

  • Wu T, Zhou XG, Zhang H, Zhong XH (2010b) Bi2S3 nanostructures: a new photocatalyst. Nano Res 3:379–386

    Article  CAS  Google Scholar 

  • Wu W, Wu Z, Yu T, Jiang C, Kim WS (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16: 023501 (43 p) doi:10.1088/1468-6996/16/2/023501

    Google Scholar 

  • Xu C, Qu X (2014) Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater 6:e90. doi:10.1038/am.2013.88

    Google Scholar 

  • Yacaman MJ, Ascencio JA, Liu HB, Gardea-Torresdey J (2001) Structure shape and stability of nanometric sized particles. J Vac Sci Technol B 19:1091–1103

    Article  CAS  Google Scholar 

  • Yadav V, Sharma N, Prakash R, Raina K, Bharadwaj LM, Prakas N (2008) Generation of selenium containing nanostructures by soil bacterium, Pseudomonas aeruginosa. Biotechnology 7:299–304

    Article  CAS  Google Scholar 

  • Yan S, Shen K, Xu X, Yi S, Wu J, Xiao X (2011) Formation Ag2S nanowires and Ag2S/CdS hetero structures via simple solvothermal route. Synth Met 161:1646–1650

    Article  CAS  Google Scholar 

  • Yang H, Santra S, Holloway PH (2005) Syntheses and applications of Mn-doped II-VI semiconductor nanocrystals. J Nanosci Nanotechnol 5:1364–1375

    Article  CAS  PubMed  Google Scholar 

  • Yang YJ, Tao X, Hou Q, Chen JF (2009) Fluorescent mesoporous silica nanotubes incorporating CdS quantum dots for controlled release of ibuprofen. Acta Biomater 5:3488–3496

    Article  CAS  PubMed  Google Scholar 

  • Ye C, Meng G, Zhang L, Wang G, Wang Y (2002) A facile vapour-solid synthetic route to Sb2O3 fibrils and tubules. Chem Phys Lett 363:34–38

    Article  CAS  Google Scholar 

  • Ye C, Wang G, Kong M, Zhang L (2006) Controlled synthesis of Sb2O3 nanoparticles, nanowires and nanoribbon. J Nanomater. Article ID 95670, 5 p

    Google Scholar 

  • Yong P, Rowson NA, Farr JPG, Harris IR, Macaskie LE (2002a) Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnol Bioeng 80:369–379

    Article  CAS  PubMed  Google Scholar 

  • Yong P, Rowson NA, Farr JPG, Harris IR, Macaskie L (2002b) Bioaccumulation of palladium by Desulfovibrio desulfuricans. J Chem Technol Biotechnol 77:593–601

    Article  CAS  Google Scholar 

  • Zare B, Faramarzi MA, Sepehrizadeh Z, Shakibaie M, Rezaie S, Shahverdi AR (2012) Biosynthesis and recovery of rod-shaped tellurium nanoparticles and their bactericidal activities. Mat Res Bull. 47:3719–3725

    Article  CAS  Google Scholar 

  • Zhang W, Chena Z, Liua H, Zhang L, Gaoa P, Daping L (2011) Biosynthesis and structural characteristics of selenium nanoparticles by Pseudomonas alcaliphila. Colloids Surf B 88:196–201

    Article  CAS  Google Scholar 

  • Zhang C, Zhang S, Yu L, Zhang Z, Zhang P, Wu Z (2012) Size controlled synthesis of monodisperse Ag2S nanoparticles by a solventless thermolytic methods. Mater Lett 85:77–80

    Article  CAS  Google Scholar 

  • Zhao Y, Zhang D, Shi W, Wang F (2007) A gamma ray irradiation reduction route to prepare rodlike Ag2S nanocrystallines at room temperature. Mater Lett 61:3232–3234

    Article  CAS  Google Scholar 

  • Zhou L, Wang WZ, Xu HL, Sun SM, Shang M (2009) Bi2O3 hierarchical nanostructures: controllable synthesis growth mechanism and their application in photocatalysis. Chem Eur J 15:1776–1782

    Article  CAS  PubMed  Google Scholar 

  • Zheng D, Hu C, Gan T, Dang X, Hu S (2010) Preparation and application of a novel vanillin sensor based on biosynthesis of Au–Ag alloy nanoparticles. Sens Actuators B: Chem 148:247–252

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Tiquia-Arashiro .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Tiquia-Arashiro, S., Rodrigues, D. (2016). Nanoparticles Synthesized by Microorganisms. In: Extremophiles: Applications in Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-45215-9_1

Download citation

Publish with us

Policies and ethics