Skip to main content

Transcriptional Regulation and Epigenetics of Pendrin

  • Chapter
  • First Online:
The Role of Pendrin in Health and Disease

Abstract

The SLC26A4 gene’s 21 exons on chromosome 7q31.1 encode the pendrin (SLC26A4) Cl/anion exchanger. SLC26A4 is highly expressed in the epithelial cells of kidney, thyroid, inner ear and airways, in which the pendrin polypeptide is essential for normal chloride reabsorption, bicarbonate secretion and iodide accumulation. These activities regulate systemic volume and acid-base status, airway surface liquid composition, thyroid hormone synthesis and endolymph ion balance. SLC26A4 biallelic mutations underlie autosomal recessive Pendred syndrome, a major cause of congenital deafness variably accompanied by euthyroid goiter.

Recent studies of transcriptional regulation of pendrin expression have revealed that SLC26A4 promoter binding sites for thyroid transcription factors 1 and 2 (TTF-1/2) and forkhead box transcription factor I1 (FOXI1) are essential for cell-specific promoter activity in thyroid and inner ear, respectively. Systemic pH, Cl concentration, aldosterone, uroguanylin (UGN) and interleukins 4 (IL-4) and 13 (IL-13) each modulate pendrin transcription through distinct regulatory elements. The SLC26A4 promoter elements regulated by pH, Cl and aldosterone remain undefined, but defined binding sites for heat shock factor 1 (HSF1) and signal transducer and activator of transcription protein 6 (STAT6), respectively, mediate transcriptional effects of UGN and IL-4/IL-13 on the SLC26A4 promoter. Recent findings also suggest epigenetic regulation of pendrin gene expression.

Although the detailed molecular mechanisms of pendrin transcriptional and epigenetic regulation remain incomplete, they will provide insight into pendrin roles in acid-base, electrolyte and water homeostasis, blood pressure regulation and airway function. They will, in addition, influence our understanding and potential treatment of hypertension, heart failure, hepatic failure and other fluid retention syndromes, and airway diseases such as asthma and chronic obstructive lung disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams KM, Abraham V, Cohen N, Kolls JK, Kreindler JL (2013) Pendrin is a participant in antimicrobial responses in the lung. Am J Respir Crit Care Med 187:A4741

    Google Scholar 

  • Adams KM, Abraham V, Spielman D, Kolls JK, Rubenstein RC, Conner GE, Cohen NA, Kreindler JL (2014) IL-17A induces pendrin expression and chloride-bicarbonate exchange in human bronchial epithelial cells. PLoS One 9:e103263. doi:10.1371/journal.pone.01032632014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Adler L, Efrati E, Zelikovic I (2008) Molecular mechanisms of epithelial cell-specific expression and regulation of the human anion exchanger (pendrin) gene. Am J Physiol Cell Physiol 294:C1261–C1276

    Article  CAS  PubMed  Google Scholar 

  • Alper SL, Sharma AK (2013) The SLC26 gene family of anion transporters and channels. Mol Aspects Med 34:494–515

    Google Scholar 

  • Alpern RJ et al (2000) Renal acidification mechanisms. In: Brenner BM, Rector FC (eds) Brenner & Rector’s the kidney. Saunders, Philadelphia, pp 455–519

    Google Scholar 

  • Alrefai WA, Tyagi S, Mansour F, Saksena S, Syed I, Ramaswamy K, Dudeja PK (2001) Sulfate and chloride transport in Caco-2 cells: differential regulation by thyroxine and the possible role of DRA gene. Am J Physiol Gastrointest Liver Physiol 280:G603–G613

    CAS  PubMed  Google Scholar 

  • Alrefai WA, Wen X, Jiang W, Katz JP, Steinbrecher KA, Cohen MB, Williams IR, Dudeja PK, Wu GD (2007) Molecular cloning and promoter analysis of downregulated in adenoma (DRA). Am J Physiol Gastrointest Liver Physiol 293:G923–G934

    Google Scholar 

  • Anckar J, Sistonen L (2007) Heat shock factor 1 as a coordinator of stress and developmental pathways. Adv Exp Med Biol 594:78–88

    Article  PubMed  Google Scholar 

  • Anwar S, Riazuddin S, Ahmed ZM, Tasneem S, Ateeq Ul J, Khan SY, Griffith AJ, Friedman TB, Riazuddin S (2009) SLC26A4 mutation spectrum associated with DFNB4 deafness and Pendred’s syndrome in Pakistanis. J Hum Genet 54:266–270

    Google Scholar 

  • Arturi F, Russo D, Bidart JM, Scarpelli D, Schlumberger M, Filetti S (2001) Expression pattern of the pendrin and sodium/iodide symporter genes in human thyroid carcinoma cell lines and human thyroid tumors. Eur J Endocrinol 145:129–135

    Article  CAS  PubMed  Google Scholar 

  • Bidart JM, Lacroix L, Evain-Brion D, Caillou B, Lazar V, Frydman R, Bellet D, Filetti S, Schlumberger M (2000a) Expression of Na+/I- symporter and Pendred syndrome genes in trophoblast cells. J Clin Endocrinol Metab 85:4367–4372

    CAS  PubMed  Google Scholar 

  • Bidart JM, Mian C, Lazar V, Russo D, Filetti S, Caillou B, Schlumberger M (2000b) Expression of pendrin and the Pendred syndrome (PDS) gene in human thyroid tissues. J Clin Endocrinol Metab 85:2028–2033

    Google Scholar 

  • Blomqvist SR, Vidarsson H, Fitzgerald S, Johansson BR, Ollerstam A, Brown R, Persson AEG, Bergstrom G, Enerback S (2004) Distal renal tubular acidosis in mice that lack the forkhead transcription factor Foxi1. J Clin Invest 113:1560–1570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Campbell RM, Tummino PJ (2014) Cancer epigenetics drug discovery and development: the challenge of hitting the mark. J Clin Invest 124:64–69

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Campbell C, Cucci RA, Prasad S, Green GE, Edeal JB, Galer CE, Karniski LP, Sheffield VC, Smith RJ (2001) Pendred syndrome, DFNB4, and PDS/SLC26A4 identification of eight novel mutations and possible genotype-phenotype correlations. Hum Mutat 17:403–411

    Google Scholar 

  • Carlin RW, Sedlacek RL, Quesnell RR, Pierucci-Alves F, Grieger DM, Schultz BD (2006) PVD9902, a porcine vas deferens epithelial cell line that exhibits neurotransmitter-stimulated anion secretion and expresses numerous HCO3(-) transporters. Am J Physiol Cell Physiol 290:C1560–C1571

    Article  CAS  PubMed  Google Scholar 

  • Carrithers SL, Ott CE, Hill MJ, Johnson BR, Cai W, Chang JJ, Shah RG, Sun C, Mann EA, Fonteles MC, Forte LR, Jackson BA, Giannella RA, Greenberg RN (2004) Guanylin and uroguanylin induce natriuresis in mice lacking guanylyl cyclase-C receptor. Kidney Int 65:40–53

    Article  CAS  PubMed  Google Scholar 

  • Catalano MG, Fortunati N, Boccuzzi G (2012) Epigentics modifications and therapeutic prospects in human thyroid cancer. Front Endocrinol 3:1–8

    Article  CAS  Google Scholar 

  • Cetin Y, Kulaksiz H, Redecker P, Bargsten G, Adermann K, Grube D (1995) Bronchiolar nonciliated secretory (Clara) cells: source of guanylin in the mammalian lung. Proc Natl Acad Sci U S A 92:5925–5929

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choi BY, Stewart AK, Madeo AC, Pryor SP, Lenhard S, Kittles R, Eisenman D, Kim HJ, Niparko J, Thomsen J, Arnos KS, Nance WE, King KA, Zalewski CK, Brewer CC, Shawker T, Reynolds JC, Butman JA, Karniski LP, Alper SL, Griffith AJ (2009a) Hypo-functional SLC26A4 variants associated with nonsyndromic hearing loss and enlargement of the vestibular aqueduct: genotype-phenotype correlation or coincidental polymorphisms? Hum Mutat 30:599–608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choi BY, Stewart AK, Nishimura KK, Cha WJ, Seong MW, Park SS, Kim SW, Chun YS, Chung JW, Park SN, Chang SO, Kim CS, Alper SL, Griffith AJ, Oh SH (2009b) Efficient molecular genetic diagnosis of enlarged vestibular aqueducts in East Asians. Genet Test Mol Biomarkers 13:679–687

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choi BY, Kim HM, Ito T, Lee KY, Li X, Monahan K, Wen Y, Wilson E, Kurima K, Saunders T, Petralia RS, Wangemann P, Friedman TB, Griffith A (2011) Mouse model of enlarged vestibular aqueducts defines temporal requirement of Slc26a4 expression for hearing acquisition. J Clin Invest 121:4516–4525

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Comrie MM, Cutler CP, Cramb G (2001) Cloning and expression of guanylin from the European eel (Anguilla anguilla). Biochem Biophys Res Commun 281:1078–1085

    Google Scholar 

  • Dai P, Stewart AK, Chebib F, Hsu A, Rozenfeld J, Huang D, Kang D, Lip V, Fang H, Shao H, Liu X, Shen Y, Yang W, Zelikovic I, Platt OS, Han D, Alper SL, Wu BL (2009) Distinct and novel SLC26A4/Pendrin mutations in Chinese and U.S. patients with non-syndromic hearing loss. Physiol Genomics 38:281–290

    Article  CAS  PubMed  Google Scholar 

  • Das S, Bhattacharyya NP (2014) Transcription regulation of HYPK by heat shock factor 1. PLoS One 9(1):e85552. doi:10.1371/journal.pone.0085552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dentice M, Luongo C, Elefante A, Ambrosio R, Salzano S, Zannini M, Nitsch R, Di Lauro R, Rossi G, Fenzi G, Salvatore D (2005) Pendrin is a novel in vivo downstream target gene of the TTF-1/Nkx-2.1 homeodomain transcription factor in differentiated thyroid cells. Mol Cell Biol 25:10171–10182

    Google Scholar 

  • Dossena S, Rodighiero S, Vezzoli V, Nofziger C, Salvioni E, Boccazzi M, Grabmayer E, Botta G, Meyer G, Fugazzola L, Peccoz PB, Paulmichl M (2009) Functional characterization of wild-type and mutated pendrin (SLC26A4), the anion transporter involved in pendred syndrome. J Mol Endocrinol 43:93–103

    Article  CAS  PubMed  Google Scholar 

  • Dou H, Xu J, Wang Z, Smith AN, Soleimani M, Karet FE, Greinwald JH Jr, Choo D (2004) Co-expression of pendrin, vacuolar H-ATPase alpha4- subunit and carbonic anhydrase II in epithelial cells of the murine endolymphatic sac. J Histochem Cytochem 52:1377–1384

    CAS  PubMed  Google Scholar 

  • Efrati E, Adler L, Tal O, Zelikovic I (2007) The pendrin gene, PDS, is transcriptionally regulated by ambient pH and chloride. J Am Soc Nephrol 8:6A

    Google Scholar 

  • Ehret GB, Reichenbach P, Schindler U, Horvath CM, Fritz S, Nabholz M, Bucher P (2001) DNA binding specificity of different STAT proteins. Comparison of in vitro specificity with natural target sites. J Biol Chem 276:6675–6688

    Google Scholar 

  • Eladari D, Chambrey R, Peti-Peterdi J (2012) A new look at electrolyte transport in the distal tubule. Annu Rev Physiol 74:325–349

    Article  CAS  PubMed  Google Scholar 

  • Espiritu DJ, Bernardo AA, Robey RB, Arruda JA (2002) A central role for Pyk2-Src interaction in coupling diverse stimuli to increased epithelial NBC activity. Am J Physiol Renal Physiol 283:F663–F670

    Article  PubMed  Google Scholar 

  • Everett LA, Glaser B, Beck JC, Idol JR, Buchs A, Heyman M, Adawi F, Hazani E, Nassir E, Baxevanis AD, Sheffield VC, Green ED (1997) Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet 17:411–422

    Google Scholar 

  • Everett LA, Morsli H, Wu DK, Green ED (1999) Expression pattern of the mouse ortholog of the Pendred’s syndrome gene (Pds) suggests a key role for pendrin in the inner ear. Proc Natl Acad Sci U S A 96:9727–9732

    Google Scholar 

  • Fernandez-Lazo Y, Aguilera G, Pham TD, Park AY, Beierwalters WH, Sutliff RL, Verlander JW, Pacack K, Osunkoya AO, Ellis CL, Kim YH, Shipley GL, Wynne BM, Hoover RS, Sen SK, Plotsky PM, Wall SM (2015) Pendrin localizes to the adrenal medulla and modulates catecholamine release. Am J Physiol Endocrinol Metab 309(6):E534–E545. doi:10.1152/ajpendo.00035.2015 [Epub ahead of print]

    Article  CAS  Google Scholar 

  • Fonteles MC, Falcao do Nascimento NR (2011) Guanylin peptide family: history, interaction with ANP, and new pharmacological perspectives. Can J Physiol Pharmacol 89:575–585

    Article  CAS  PubMed  Google Scholar 

  • Fonteles MC, Greenberg RN, Monteiro HS, Currie MG, Forte LR (1998) Natriuretic and kaliuretic activities of guanylin and uroguanylin in the isolated perfused rat kidney. Am J Physiol Renal Physiol 275:F191–F197

    CAS  Google Scholar 

  • Forte LR (2003) A novel role for uroguanylin in the regulation of sodium balance. J Clin Invest 112:1138–1141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Forte LR (2004) Uroguanylin and guanylin peptides: pharmacology and experimental therapeutics. Pharmacol Ther 104:137–167

    Article  CAS  PubMed  Google Scholar 

  • Forte LR, Fan X, Hamra FK (1996) Salt and water homeostasis: uroguanylin is a circulating peptide hormone with natriuretic activity. Am J Kidney Dis 28:296–304

    Article  CAS  PubMed  Google Scholar 

  • Frische S, Kwon TH, Frokiaer J, Madsen KM, Nielsen S (2003) Regulated expression of pendrin in rat kidney in response to chronic NH4Cl or NaHCO3 loading. Am J Physiol Renal Physiol 284:F584–F593

    Article  CAS  PubMed  Google Scholar 

  • Fruhbeck G (2012) Uroguanylin-a new gut-derived weapon against obesity? Nat Rev Endocrinol 8:5–6

    Article  CAS  Google Scholar 

  • Fukae H, Kinoshita H, Fujimoto S, Nakazato M, Eto T (2000) Plasma concentration of uroguanylin in patients on maintenance dialysis therapy. Nephron 84:206–210

    Article  CAS  PubMed  Google Scholar 

  • Garnett JP, Hickman E, Burrows R, Hegyi P, Tiszlavicz L, Cuthbert AW, Fong P, Gray MA (2011) Novel role for pendrin in orchestrating bicarbonate secretion in cystic fibrosis transmembrane conductance regulator (CFTR)-expressing airway serous cells. J Biol Chem 286:41069–41082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gennari FJ, Maddox DA (2000) Renal regulation of acid-base homeostasis integrated response. In: Seldin DW, Giebisch GH (eds) The kidney: physiology and pathophysiology, 3rd edn. Lippincott Williams & Wilkins, Philadelphia, pp 2015–2053

    Google Scholar 

  • Gluck SL (2004) Acid sensing in renal epithelial cells. J Clin Invest 114:1696–1699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gorbunov D, Sturlese M, Nies F, Kluge M, Bellanda M, Battistutta R, Oliver D (2014) Molecular architecture and the structural basis for anion interaction in prestin and SLC26 transporters. Nat Commun 5:3622. doi:10.1038/ncomms4622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Griffith AJ, Wangemann P (2011) Hearing loss associated with enlargement of the vestibular aqueduct: mechanistic insights from clinical phenotypes, genotypes, and mouse models. Hear Res 281:11–17

    Article  PubMed Central  PubMed  Google Scholar 

  • Grimm PR, Lazo-Fernandez Y, Delpire E, Wall SM, Dorsey SG, Weinman EJ, Coleman R, Wade JB, Welling PA (2015) Integrated compensatory network is activated in the absence of NCC phosphorylation. J Clin Invest 125:2136–2150

    Article  PubMed Central  PubMed  Google Scholar 

  • Haila S, Höglund P, Scherer SW, Lee JR, Kristo P, Coyle B, Trembath R, Holmberg C, de la Chapelle A, Kere J (1998) Genomic structure of the human congenital chloride diarrhea (CLD) gene. Gene 214:87–93

    Google Scholar 

  • Hamm LL, Nakhoul NL (2008) Renal acidification. In: Brenner BM (ed) Brenner & Rector’s the kidney, 8th edn. Saunders, Philadelphia, pp 248–279

    Google Scholar 

  • He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Shan J, Kim D, Liao J, Evagelidis A, Alper SL, Hanrahan JW (2012) Basolateral chloride loading by the anion exchanger type 2: role in fluid secretion by the human airway epithelial cell line calu-3. J Physiol 590:5299–5316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hulander M, Kiernan AE, Blomqvist SR, Carlsson P, Samuelsson EJ, Johansson BR, Steel KP, Enerback S (2003) Lack of pendrin expression leads to deafness and expansion of the endolymphatic compartment in inner ears of Foxi1 null mutant mice. Development 130:2013–2025

    Google Scholar 

  • Ishida A, Ohta N, Suzuki Y, Kakehata S, Okubo K, Ikeda H, Shiraishi H, Izuhara K (2012) Expression of pendrin and periostin in allergic rhinitis and chronic rhinosinusitis. Allergol Int 61:589–595

    Article  CAS  PubMed  Google Scholar 

  • Jacques T, Picard N, Miller RL, Riemondy KA, Houillier P, Sohet F, Ramakrishnan SK, Busst CJ, Jayat M, Corniere N, Hassan H, Aronson PS, Hennings JC, Hubner CA, Nelson RD, Chambrey R, Eladari D (2013) Overexpression of pendrin in intercalated cells produces chloride-sensitive hypertension. J Am Soc Nephrol 24:1104–1113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnsen T, Larsen C, Friis J, Hougaard-Jensen F (1987) Pendred’s syndrome. Acoustic, vestibular and radiological findings in 17 unrelated patients. J Laryngol Otol 101:1187–1192

    Article  CAS  PubMed  Google Scholar 

  • Kandasamy N, Fugazzola L, Evans M, Chatterjee K, Karet F (2011) Life-threatening alkalosis in Pendred syndrome. Eur J Endocrinol 165:167–170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kikuchi M, Fujimoto S, Fukae H, Kinoshita H, Kita T, Nakazato M, Eto T (2005) Role of uroguanylin, a peptide with natriuretic activity, in rats with experimental nephrotic syndrome. J Am Soc Nephrol 16:392–397

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Pech V, Spencer KB, Beierwaltes WH, Everett LA, Green ED, Shin W, Verlander JW, Sutliff RL, Wall SM (2007) Reduced ENaC protein abundance contributes to the lower blood pressure observed in pendrin-null mice. Am J Physiol Renal Physiol 293:F1314–F1324

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Pham TD, Zheng W, Hong S, Baylis C, Pech V, Beierwaltes WH, Farley DB, Braverman LE, Verlander JW, Wall SM (2009) Role of pendrin in iodide balance: going with the flow. Am J Physiol Renal Physiol 297:F1069–F1079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim D, Kim J, Burghardt B, Best L, Steward MC (2014) Role of anion exchangers in Cl- and HCO3 - secretion by the human airway epithelial cell line Calu-3. Am J Physiol Cell Physiol 307:C208–C219

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita H, Fujimoto S, Nakazato M, Yokota N, Date Y, Yamaguchi H, Hisanaga S, Eto T (1997) Urine and plasma levels of uroguanylin and its molecular forms in renal diseases. Kidney Int 52:1028–1034

    Article  CAS  PubMed  Google Scholar 

  • Kita T, Smith CE, Fok KF, Duffin KL, Moore WM, Karabatsos PJ, Kachur JF, Hamra FK, Pidhorodeckyj NV, Forte LR, Currie MG (1994) Characterization of human uroguanylin: a member of the guanylin peptide family. Am J Physiol Ren Fluid Electrolyte Physiol 266:F342–F348

    CAS  Google Scholar 

  • Kita T, Kitamura K, Sakata J, Eto T (1999) Marked increase of guanylin secretion in response to salt loading in the rat small intestine. Am J Physiol Gastrointest Liver Physiol 277:G960–G966

    CAS  Google Scholar 

  • Kitazono M, Robey R, Zhan Z, Sarlis NJ, Skarulis MC, Aikou T, Bates S, Fojo T (2001) Low concentrations of the histone deacetylase inhibitor, depsipeptide (FR901228), increase expression of the Na(+)/I(-) symporter and iodine accumulation in poorly differentiated thyroid carcinoma cells. J Clin Endocrinol Metab 86:3430–3435

    CAS  PubMed  Google Scholar 

  • Knepper MA (2015) Systems biology of diuretic resistance. J Clin Invest 125:1793–1795

    Article  PubMed Central  PubMed  Google Scholar 

  • Kobayashi T, Sugimoto T, Saijoh K, Fujii M, Chihara K (1997) Cloning and characterization of the 5’-flanking region of the mouse diastrophic dysplasia sulfate transporter gene. Biochem Biophys Res Commun 238(3):738–743

    Article  CAS  PubMed  Google Scholar 

  • Kopp P (2000) Pendred’s syndrome and genetic defects in thyroid hormone synthesis. Rev Endocr Metab Disord 1:109–121

    Article  CAS  PubMed  Google Scholar 

  • Krause WJ, Freeman RH, Forte LR (1990) Autoradiographic demonstration of specific binding sites for E. coli enterotoxin in various epithelia of the North American opossum. Cell Tissue Res 260:387–394

    Google Scholar 

  • Kulaksiz H, Schmid A, Honscheid M, Ramaswamy A, Certin Y (2002) Clara cell impact in air-side activation of CFTR in small pulmonary airways. Proc Natl Acad Sci U S A 99:6796–6801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuperman DA, Lewis CC, Woodruff PG, Rodriguez MW, Yang YH, Dolganov GM, Fahy JV, Erle DJ (2005) Dissecting asthma using focused transgenic modeling and functional genomics. J Allergy Clin Immunol 116:305–311

    Article  CAS  PubMed  Google Scholar 

  • Lacroix L, Michiels S, Mian C, Arturi F, Caillou B, Filetti S, Schlumberger M, Bidart JM (2006) HEX, PAX-8 and TTF-1 gene expression in human thyroid tissues: a comparative analysis with other genes involved in iodide metabolism. Clin Endocrinol (Oxf) 64:398–404

    Google Scholar 

  • Lee A, Nofziger C, Dossena S, Vanoni S, Diasio R, Paulmichl M (2011) Methylation of the human pendrin promoter. Cell Physiol Biochem 28:397–406

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Yoo JE, Namkung W, Cho HJ, Kim K, Kang JW, Yoon JH, Choi JY (2015) Thick airway surface liquid volume and weak mucin expression in pendrin-deficient human airway epithelia. Physiol Rep 3(8):e12840. doi:10.14814/phy2.12480

    Google Scholar 

  • Leviel F, Hubner CA, Houillier P, Morla L, El Moghrabi S, Brideau G, Hatim H, Parker MD, Kurth I, Kougioumtzes A, Sinning A, Pech V, Riemondy KA, Miller RL, Hummler E, Shull GE, Aronson PS, Doucet A, Wall SM, Chambrey R, Eladari D (2010) The Na + -dependent chloride-bicarbonate exchanger SLC4A8 mediates an electroneutral Na+ reabsorption process in the renal cortical collecting ducts of mice. J Clin Invest 120:1627–1635

    Google Scholar 

  • Li W, Lee J, Vikis HG, Lee SH, Liu G, Aurandt J, Shen TL, Fearon ER, Guan JL, Han M, Rao Y, Hong K, Guan KL (2004) Activation of FAK and Src are receptor-proximal events required for netrin signaling. Nat Neurosci 7:1213–1221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Madeo AC, Manichaikul A, Pryor SP, Griffith AJ (2009) Do mutations of the pendred syndrome gene, SLC26A4, confer resistance to asthma and hypertension? J Med Genet 46:405–406

    Google Scholar 

  • McCallum L, Lip S, Padmanabhan S (2015) The hidden hand of chloride in hypertension. Pflugers Arch Eur J Physiol 467:595–603

    Article  CAS  Google Scholar 

  • Mikita T, Campbell D, Wu P, Williamson K, Schindler U (1996) Requirements for interleukin-4-induced gene expression and functional characterization of Stat6. Mol Cell Biol 16:5811–5820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mohebbi N, Perna A, van der Wijst J, Becker HM, Cappaso G, Wagner CA (2013) Regulation of two renal chloride transporters, AE1 and pendrin, by electrolytes and aldosterone. PLoS One 8(1):e55286. doi:10.1371/journal.pone.0055286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morimoto RI (2008) Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev 22:1427–1438

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morimoto RI, Santoro MG (1998) Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nat Biotechnol 16:833–838

    Article  CAS  PubMed  Google Scholar 

  • Moss NG, Fellner RC, Qian X, Yu SJ, Li Z, Nakazato M, Goy MF (2008) Uroguanylin, an intestinal natriuretic peptide, is delivered to the kidney as an unprocessed propeptide. Endocrinology 149:4486–4498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mueller T, Dieplinger B (2012) The guanylin peptide family and proposed gastrointestinal-renal natriuretic signaling axis. Kidney Int 82:1253–1255

    Article  CAS  PubMed  Google Scholar 

  • Muscella A, Verri SM, Urso L, Dimitri C, Botta G, Paulmichl M, Beck-Peccoz P, Fugazzola L, Storelli C (2008) PKC-ε-dependent cytosol-to-membrane translocation of pendrin in rat thyroid PC Cl3 cells. J Cell Physiol 217:103–112

    Article  CAS  PubMed  Google Scholar 

  • Nakagami Y, Favoreto S Jr, Zhen G, Park SW, Nguyenvu LT, Kuperman DA, Dolganov GM, Huang X, Boushey HA, Avila PC, Erle DJ (2008) The epithelial anion transporter pendrin is induced by allergy and rhinovirus infection, regulates airway surface liquid, and increases airway reactivity and inflammation in an asthma model. J Immunol 181:2203–2210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakao I, Kanaji S, Ohta S, Matsushita H, Arima K, Yuyama N, Yamaya M, Nakayama K, Kubo H, Watanabe M, Sagara H, Sugiyama K, Tanaka H, Toda S, Hayashi H, Inoue H, Hoshino T, Shiraki A, Inoue M, Suzuki K, Aizawa H, Okinami S, Nagai H, Hasegawa M, Fukuda T, Green ED, Izuhara K (2008) Identification of pendrin as a common mediator for mucus production in bronchial asthma and chronic obstructive pulmonary disease. J Immunol 180:6262–6269

    Article  CAS  PubMed  Google Scholar 

  • Nakaya K, Harbidge DG, Wangemann P, Schultz BD, Green ED, Wall SM, Marcus DC (2007) Lack of pendrin HCO3 - transport elevates vestibular endolymphatic [Ca2+] by inhibition of acid-sensitive TRPV5 and TRPV6 channels. Am J Physiol Renal Physiol 292:F1314–F1321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakazato M, Yamaguchi H, Shiomi K, Date Y, Fujimoto S, Kangawa K, Matsuo H, Matsukura S (1994) Identification of 10-kDa proguanylin as a major guanylin molecule in human intestine and plasma and its increase in renal insufficiency. Biochem Biophys Res Commun 205:1966–1975

    Article  CAS  PubMed  Google Scholar 

  • Nofziger C, Vezzoli V, Dossena S, Schonherr T, Studnicka J, Nofziger J, Vanoni S, Stephan S, Silva ME, Meyer G, Paulmichl M (2011) STAT6 links IL-4/IL-13 stimulation with pendrin expression in asthma and chronic obstructive pulmonary disease. Clin Pharmacol Ther 90:399–405

    Article  CAS  PubMed  Google Scholar 

  • Ohbayashi K, Yamaki KI (2000) Both inhalant and intravenous uroguanylin inhibit leukotriene C 4-induced airway changes. Peptides 21:1467–1472

    Google Scholar 

  • Ohbayashi K, Yamaki K, Suzuki R, Takagi K (1998) Effects of uroguanylin and guanylin against antigen-induced bronchoconstriction and airway microvascular leakage in sensitized guinea pigs. Life Sci 62:1833–1844

    Article  CAS  PubMed  Google Scholar 

  • Park HJ, Shaukat S, Liu XZ, Hahn SH, Naz S, Ghosh M, Kim HN, Moon SK, Abe S, Tukamoto K, Riazuddin S, Kabra M, Erdenetungalag R, Radnaabazar J, Khan S, Pandya A, Usami SI, Nance WE, Wilcox ER, Riazuddin S, Griffith AJ (2003) Origins and frequencies of SLC26A4 (PDS) mutations in east and south Asians: global implications for the epidemiology of deafness. J Med Genet 40:242–248

    Google Scholar 

  • Pech V, Kim HY, Weinstein MA, Everett AL, Pham DT, Wall MS (2007) Angiotensin II increases chloride absorption in the cortical collecting duct in mice through a pendrin-dependent mechanism. Am J Physiol Renal Physiol 292:F914–F920

    Article  CAS  PubMed  Google Scholar 

  • Pech V, Pham TD, Hong S, Weinstein AM, Spencer KB, Duke BJ, Walp E, Kim YH, Sutliff RL, Bao HF, Eaton DC, Wall SM (2010) Pendrin modulates ENaC function by changing luminal HCO3 -. J Am Soc Nephrol 21:1928–1941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pedemonte N, Caci E, Sondo E, Caputo A, Rhoden K, Pfeffer U, Di Candia M, Bandettini R, Ravazzolo R, Zegarra-Moran O, Galietta LJ (2007) Thiocyanate transport in resting and IL-4- stimulated human bronchial epithelial cells: role of pendrin and anion channels. J Immunol 178:5144–5153

    Article  CAS  PubMed  Google Scholar 

  • Pela I, Bigozzi M, Bianchi B (2008) Profound hypokalemia and hypochloremic metabolic alkalosis during thiazide therapy in a child with Pendred syndrome. Clin Nephrol 69:450–453

    Article  CAS  PubMed  Google Scholar 

  • Petrovic S, Wang Z, Ma L, Soleimani M (2003) Regulation of the apical Cl-/HCO3- exchanger pendrin in rat cortical collecting duct in metabolic acidosis. Am J Physiol Renal Physiol 284:F103–F112

    Article  CAS  PubMed  Google Scholar 

  • Piala AT, Moon TM, Akella R, He H, Cobb MH, Goldsmith EJ (2014) Chloride sensing by WNK1 involves inhibition of autophosphorylation. Sci Signal 7(324):ra41. doi:10.1126/scisignal.2005050

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Porra V, Bernier-Valentin F, Trouttet-Masson S, Berger-Dutrieux N, Peix JL, Perrin A, Selmi-Ruby S, Rousset B (2002) Characterization and semiquantitative analyses of pendrin expressed in normal and tumoral human thyroid tissues. J Clin Endocrinol Metab 87:1700–1707

    Article  CAS  PubMed  Google Scholar 

  • Potthast R, Ehler E, Scheving LA, Sindic A, Schlatter E, Kuhn M (2001) High salt intake increases uroguanylin expression in mouse kidney. Endocrinology 142:3087–3097

    CAS  PubMed  Google Scholar 

  • Priyamvada S, Anbazhagan AN, Gujral T, Borthakur A, Saksena S, Gil RK, Alrefai WA, Dudjena PK (2015) All-trans-retinoic acid increases SLC26A3 DRA (down-regulated in adenoma) expression in intestinal epithelial cells via HNF-1β. J Biol Chem 290:15066–15077

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qian X, Moss NG, Fellner RC, Goy MF (2008) Circulating prouroguanylin is processed to its active natriuretic form exclusively within the renal tubules. Endocrinology 149:4499–4509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qian X, Moss NC, Fellner RC, Taylor-Blake B, Goy MF (2011) The rat kidney contains high levels of prouroguanylin (the uroguanylin precursor) but does not express GC-C (the enteric uroguanylin receptor). Am J Physiol Renal Physiol 300:F561–F573

    Article  CAS  PubMed  Google Scholar 

  • Quentin F, Chambrey R, Trinh-Trang-Tan MM, Fysekidis M, Cambillau M, Paillard M, Aronson PS, Eladari D (2004) The Cl-/HCO3- exchanger pendrin in the rat kidney is regulated in response to chronic alterations in chloride balance. Am J Physiol Renal Physiol 287:F1179–F1188

    Article  CAS  PubMed  Google Scholar 

  • Raheja G, Singh V, Ma K, Boumendjel R, Borthakur A, Gill RK, Saksena S, Alrefai WA, Ramaswamy K, Dudeja PK (2010) Lactobacillus acidophilus stimulates the expression of SLC26A3 via a transcriptional mechanism. Am J Physiol Gastrointest Liver Physiol 298:G395–G401

    Google Scholar 

  • Reardon W, Trembath RC (1996) Pendred syndrome. J Med Genet 33:1037–1040

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reimold FR, Heneghan JF, Stewart AK, Zelikovic I, Vandorpe DH, Shmukler BE, Alper SL (2011) Pendrin function and regulation in Xenopus oocytes. Cell Physiol Biochem 28:435–440

    Google Scholar 

  • Rillema JA, Hill MA (2003) Prolactin regulation of the pendrin-iodide transporter in the mammary gland. Am J Physiol Endocrinol Metab 284:E25–E28

    Article  CAS  PubMed  Google Scholar 

  • Rothbart SB, Strahl BD (2014) Interpreting the language of histone and DNA modifications. Biochim Biophys Acta 1839:627–643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Royaux IE, Suzuki K, Mori A, Katoh R, Everett LA, Kohn LD, Green ED (2000) Pendrin, the protein encoded by the Pendred syndrome gene (PDS), is an apical porter of iodide in the thyroid and is regulated by thyroglobulin in FRTL-5 cells. Endocrinology 141:839–845

    Google Scholar 

  • Royaux IE, Wall SM, Karniski LP, Everett LA, Suzuki K, Knepper MA, Green ED (2001) Pendrin, encoded by the Pendred syndrome gene, resides in the apical region of renal intercalated cells and mediates bicarbonate secretion. Proc Natl Acad Sci U S A 98:4221–4226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rozenfeld J, Efrati E, Adler L, Tal O, Carrithers SL, Alper SL, Zelikovic I (2011) Transcriptional regulation of the pendrin gene. Cell Physiol Biochem 28:385–396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rozenfeld J, Tal O, Kladnitsky O, Adler L, Efrati E, Carrithers SL, Alper SL, Zelikovic I (2012) The pendrin anion exchanger gene is transcriptionally regulated by uroguanylin: a novel enterorenal link. Am J Physiol Renal Physiol 302:F614–F624

    Article  CAS  PubMed  Google Scholar 

  • Rozenfeld J, Tal O, Kladnitsky O, Adler L, Efrati E, Carrithers SL, Alper SL, Zelikovic I (2013) Pendrin, a novel transcriptional target of the uroguanylin system. Cell Physiol Biochem 32(Suppl 1):221–237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saksena S, Singla A, Goyal S, Katyal S, Bansal N, Gill RK, Alrefai WA, Ramaswamy K, Dudeja PK (2010) Mechanisms of transcriptional modulation of the human anion exchanger SLC26A3 gene expression by IFN-{gamma}. Am J Physiol Gastrointest Liver Physiol 298:G159–G166

    Google Scholar 

  • Scanlon KM, Gau Y, Zhu J, Skerry C, Wall SM, Soleimani M, Carbonetti NH (2014) Epithelial anion transporter pendrin contributes to inflammatory lung pathology in mouse models of Bordetella pertussis infection. Infect Immun 82:4212–4221

    Google Scholar 

  • Schwartz GJ (2001) Plasticity of intercalated cell polarity: effect of metabolic acidosis. Nephron 87:304–313

    Article  CAS  PubMed  Google Scholar 

  • Scott DA, Wang R, Kreman TM, Sheffield VC, Karniski LP (1999) The Pendred syndrome gene encodes a chloride-iodide transport protein. Nat Genet 21:440–443

    Article  CAS  PubMed  Google Scholar 

  • Shan J, Liao J, Robert R, Palmer ML, Fahrenkrug SC, O’Grady SM, Hanrahan JW (2012) Bicarbonate-dependent chloride transport drives fluid secretion by the human airway epithelial cell line Calu-3. J Physiol 590:5273–5297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31:27–36

    Article  CAS  PubMed  Google Scholar 

  • Shcheynikov N, Yang D, Wang Y, Zeng W, Karniski LP, So I, Wall SM, Muallem S (2008) The Slc26a4 transporter functions as an electroneutral Cl-/I-/HCO3 - exchanger: role of Slc26a4 and Slc26a6 in I- and HCO3 - secretion and in regulation of CFTR in the parotid duct. J Physiol 586:3813–3824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sheffield VC, Kraiem Z, Beck JC, Nishimura D, Stone EM, Salameh M, Sadeh O, Glaser B (1996) Pendred syndrome maps to chromosome 7q21-34 and is caused by an intrinsic defect in thyroid iodine organification. Nat Genet 12:424–426

    Article  CAS  PubMed  Google Scholar 

  • Shelden MC, Howitt SM, Price GD (2010) Membrane topology of the cyanobacterial bicarbonate transporter, BicA, a member of the SulP (SLC26A) family. Mol Membr Biol 27:12–23

    Article  CAS  PubMed  Google Scholar 

  • Sindic A, Schlatter E (2006) Cellular effects of guanylin and uroguanylin. J Am Soc Nephrol 17:607–616

    Article  CAS  PubMed  Google Scholar 

  • Sindic A, Schlatter E (2007) Renal electrolyte effects of guanylin and uroguanylin. Curr Opin Nephrol Hypertens 16:10–15

    Article  CAS  PubMed  Google Scholar 

  • Sindic A, Velic A, Basoglu C, Hirsch JR, Edemir B, Kuhn M, Schlatter E (2005) Uroguanylin and guanylin regulate transport of mouse cortical collecting duct independent of guanylate cyclase C. Kidney Int 68:1008–1017

    Article  CAS  PubMed  Google Scholar 

  • Singla A, Kumar A, Priyamvada S, Tahniyath M, Saksena S, Gill RK, Alrefai WA, Dudeja K (2012) LPA stimulates intestinal DRA gene transcription via LPA2 receptor, PI3K/AKT, and c-Fos-dependent pathway. Am J Physiol Gastrointest Liver Physiol 302:G618–G627

    Article  CAS  PubMed  Google Scholar 

  • Soleimani M, Xu J (2006) SLC26 chloride/base exchangers in the kidney in health and disease. Sem Nephrol 26:375–385

    Article  CAS  Google Scholar 

  • Soleimani M, Barone S, Xu J, Shull GF, Siddiqui F, Zahedi K, Amlal H (2012) Double knockout of pendrin and Na-Cl cotransporter (NCC) causes severe salt wasting, volume depletion, and renal failure. Proc Natl Acad Sci U S A 109:13368–13373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki K, Royaux IE, Everett LA, Mori-Aoki A, Suzuki S, Nakamura K, Sakai T, Katoh R, Toda S, Green ED, Kohn LD (2002) Expression of PDS/Pds, the Pendred syndrome gene, in endometrium. J Clin Endocrinol Metab 87:938–941

    Article  CAS  PubMed  Google Scholar 

  • Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vallet M, Picard N, Loffing-Cueni D, Fysekidis M, Bloch-Faure M, Deschênes G, Breton S, Meneton P, Loffing J, Aronson PS, Chambrey R, Eladari D (2006) Pendrin regulation in mouse kidney primarily is chloride-dependent. J Am Soc Nephrol 17:2153–2163

    Article  CAS  PubMed  Google Scholar 

  • Vanoni S, Nofziger C, Dossena S, Soyal SM, Patsch W, Plevani P, Duschl A, Paulmichl M (2013) The human pendrin promoter contains two N4GAS motifs with different functional relevance. Cell Physiol Biochem 32:238–248

    Article  CAS  PubMed  Google Scholar 

  • Verlander JW, Hassell KA, Royaux IE, Glapion DM, Wang ME, Everett LA, Green ED, Wall SM (2003) Deoxycorticosterone upregulates PDS (Slc26a4) in mouse kidney: role of pendrin in mineralocorticoid-induced hypertension. Hypertension 42:356–362

    Article  CAS  PubMed  Google Scholar 

  • Verlander JW, Kim YH, Shin W, Pham TD, Hassell KA, Beierwaltes WH, Green ED, Everett L, Matthews SW, Wall SM (2006) Dietary Cl- restriction upregulates pendrin expression within the apical plasma membrane of type B intercalated cells. Am J Physiol Renal Physiol 291:F833–F839

    Article  CAS  PubMed  Google Scholar 

  • Verlander JW, Hong S, Pech V, Bailey JL, Agazatian D, Matthews SW, Coffman TM, Le T, Inagami T, Whitehill FM, Weiner ID, Farley DB, Kim YH, Wall SM (2011) Angiotensin II acts through the angiotensin 1a receptor to upregulate pendrin. Am J Physiol Renal Physiol 301:F1314–F1325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vihervaara A, Sergelius C, Vasara J, Blom MA, Elsing AN, Roos-Mattjus P, Sistonen L (2013) Transcriptional response to stress in the dynamic chromatin environment of cycling and mitotic cells. Proc Natl Acad Sci U S A 110:E3388–E3397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wagner CA, Finberg KE, Stehberger PA, Lifton RP, Giebisch GH, Aronson PS, Geibel JP (2002) Regulation of the expression of the Cl-/anion exchanger pendrin in mouse kidney by acid-base status. Kidney Int 62:2109–2117

    Article  CAS  PubMed  Google Scholar 

  • Wall SM, Lazo-Fernandez Y (2015) The role of pendrin in renal physiology. Annu Rev Physiol 77:363–378

    Article  CAS  PubMed  Google Scholar 

  • Wall SM, Hassell KA, Royaux IE, Green ED, Chang JY, Shipley GL, Verlander JW (2003) Localization of pendrin in mouse kidney. Am J Physiol Renal Physiol 284(1):F229–F241

    Article  CAS  PubMed  Google Scholar 

  • Wangemann P (2011) The role of pendrin in the development of the murine inner ear. Cell Physiol Biochem 28:527–534

    Article  CAS  PubMed  Google Scholar 

  • West AC, Johnstone RW (2014) New and emerging HDAC inhibitors for cancer treatment. J Clin Invest 124:30–39

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Winter H, Braig C, Zimmermann U, Geisler HS, Fränzer JT, Weber T, Ley M, Engel J, Knirsch M, Bauer K, Christ S, Walsh EJ, McGee J, Köpschall I, Rohbock K, Knipper M (2006) Thyroid hormone receptors TRalpha1 and TRbeta differentially regulate gene expression of Kcnq4 and prestin during final differentiation of outer hair cells. J Cell Sci 119:2975–2984

    Google Scholar 

  • Wu C, Morris JR (2001) Genes, genetics, and epigenetics: a correspondence. Science 293:1103–1105

    Article  CAS  Google Scholar 

  • Xing M, Tokumaru Y, Wu G, Westra WB, Ladenson PW, Sidransky D (2003) Hypermethylation of the Pendred syndrome gene SLC26A4 is an early event in thyroid tumorigenesis. Cancer Res 63:2312–2315

    Google Scholar 

  • Yang T, Vidarsson H, Rodrigo-Blomqvist S, Rosengren SS, Enerback S, Smith RJ (2007) Transcriptional control of SLC26A4 is involved in Pendred syndrome and nonsyndromic enlargement of vestibular aqueduct (DFNB4). Am J Hum Genet 80:1055–1063

    Google Scholar 

  • Yoshida A, Taniguchi S, Hisatome I, Royaux IE, Green ED, Kohn LD, Suzuki K (2002) Pendrin is an iodide-specific apical porter responsible for iodide efflux from thyroid cells. J Clin Endocrinol Metab 87:3356–3361

    Article  CAS  PubMed  Google Scholar 

  • Yoshida A, Hisatome I, Taniguchi S, Sasaki N, Yamamoto Y, Miake J, Fukui H, Shimizu H, Okamura T, Okura T, Igawa O, Shigemasa C, Green ED, Kohn LD, Suzuki K (2004) Mechanism of iodide/chloride exchange by pendrin. Endocrinology 145:4301–4308

    Article  CAS  PubMed  Google Scholar 

  • Yuge S, Inoue K, Hyodo S, Takei Y (2003) A novel guanylin family (guanylin, uroguanylin, and renoguanylin) in eels: possible osmoregulatory hormones in intestine and kidney. J Biol Chem 278:22726–22733

    Article  CAS  PubMed  Google Scholar 

  • Yusa A, Miyazaki K, Kimura N, Izawa M, Kannagi R (2010) Epigenetic silencing of the sulfate transporter gene DTDST induces sialyl Lewisx expression and accelerates proliferation of colon cancer cells. Cancer Res 70:4064–4073

    Google Scholar 

  • Zarnegar R, Brunaud L, Kanauchi H, Wong M, Fung M, Ginzinger D, Duh QY, Clark OH (2002) Increasing the effectiveness of radioactive iodine therapy in the treatment of thyroid cancer using Trichostatin A, a histone deacetylase inhibitor. Surgery 132:984–990; discussion 990

    Article  PubMed  Google Scholar 

  • Zhang ZH, Jow F, Numann R, Hinson J (1998) The airway epithelium: a novel site of action by guanylin. Biochem Biophys Res Commun 244:50–56

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

J. Rozenfeld and O. Kladnitsky were supported by donations from Dora and Sidney Gabrel and Martin Kolinsky, respectively, London, UK, and by the L & A Kessler Family Foundation, Berkeley, CA, USA; SL Alper was supported by NIH grants DK43495 and DK34854 (Harvard Digestive Disease Center) and by the USA-Israel Binational Science Foundation; I. Zelikovic was supported by the USA-Israel Binational Science Foundation, by the Rappaport Institute for Research in the Medical Sciences and by the Dr. Y. Rabinovitz Research Fund, Technion – Israel Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Zelikovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rozenfeld, J., Nofziger, C., Kladnitsky, O., Alper, S.L., Zelikovic, I. (2017). Transcriptional Regulation and Epigenetics of Pendrin. In: Dossena, S., Paulmichl, M. (eds) The Role of Pendrin in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-43287-8_10

Download citation

Publish with us

Policies and ethics