Skip to main content

Ependymoma

  • Chapter
  • First Online:
Brain Tumors in Children

Abstract

Ependymoma is one of the most common pediatric brain tumors and constitutes about 10% of all malignant neoplasms in the pediatric brain. Affected children and infants have a very poor prognosis. The majority of cases arise within the posterior fossa (70%), followed by the supratentorial region (25%) and the spinal cord (5%). Several independent studies have identified compartment-specific molecular subtypes of ependymomas. Within the posterior fossa, two molecular subtypes have been defined: Group A Ependymoma (PF-EPN-A) found in young children and infants, and Group B (PF-EPN-B) tumors diagnosed in adolescents and adults. Two additional predominantly pediatric ependymoma subtypes occur in the supratentorial region. One subgroup, ST-EPN-RELA, is characterized by fusions of the RELA gene, while the other subgroup, ST-EPN-YAP1, is defined by fusions to the oncogene YAP1. These molecular subgroups outperform the current histopathological classification in terms of clinical utility. The vast majority of high-risk ependymoma patients, for whom effective therapeutic concepts are desperately needed, are children with tumors belonging to the molecular subgroups PF-EPN-A and ST-EPN-RELA. This points to the striking relevance of molecular classification for the future clinical management of ependymoma. The mainstays of treatment are maximal safe surgery and radiotherapy, while results from chemotherapeutic approaches have been mostly disappointing. A paucity of identified actionable targets combined with only limited availability of in vitro and in vivo model systems has significantly hampered efforts to better understand tumor biology and to test novel targeted therapies for ependymoma. Several compounds that had been predicted based on preclinical analyses to potentially be effective against primary ependymoma are under clinical evaluation but have not yet demonstrated convincing results. The implementation of a new molecular classification scheme for more precise risk stratification within clinical trials, the identification of novel biology driven therapeutic concepts, as well as the development of adequate preclinical models represent the current paramount challenges for ependymoma research and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allen JC, Siffert J, Hukin J (1998) Clinical manifestations of childhood ependymoma: a multitude of syndromes. Pediatr Neurosurg 28:49–55

    Article  CAS  Google Scholar 

  • Antony R, Wong KE, Patel M, Olch AJ, McComb G, Krieger M, Gilles F, Sposto R, Erdreich-Epstein A, Dhall G et al (2014) A retrospective analysis of recurrent intracranial ependymoma. Pediatr Blood Cancer 61:1195–1201

    Article  Google Scholar 

  • Archer TC, Pomeroy SL (2011) Posterior fossa ependymomas: a tale of two subtypes. Cancer Cell 20:133–134

    Article  CAS  Google Scholar 

  • Atkinson JM, Shelat AA, Carcaboso AM, Kranenburg TA, Arnold LA, Boulos N, Wright K, Johnson RA, Poppleton H, Mohankumar KM et al (2011) An integrated in vitro and in vivo high-throughput screen identifies treatment leads for ependymoma. Cancer Cell 20:384–399

    Article  CAS  Google Scholar 

  • Bandopadhayay P, Silvera VM, Ciarlini PD, Malkin H, Bi WL, Bergthold G, Faisal AM, Ullrich NJ, Marcus K, Scott RM et al (2016) Myxopapillary ependymomas in children: imaging, treatment and outcomes. J Neuro-Oncol 126(1):165–174

    Article  Google Scholar 

  • Bobola MS, Silber JR, Ellenbogen RG, Geyer JR, Blank A, Goff RD (2005) O6-methylguanine-DNA methyltransferase, O6-benzylguanine, and resistance to clinical alkylators in pediatric primary brain tumor cell lines. Clin Cancer Res 11:2747–2755

    Article  CAS  Google Scholar 

  • Bouffet E, Foreman N (1999) Chemotherapy for intracranial ependymomas. Childs Nerv Syst 15:563–570

    Article  CAS  Google Scholar 

  • Bouffet E, Tabori U, Huang A, Bartels U (2009) Ependymoma: lessons from the past, prospects for the future. Childs Nerv Syst 25:1383–1384. author reply 1385

    Article  Google Scholar 

  • Brisson C, Lelong-Rebel I, Mottolese C, Jouvet A, Fevre-Montange M, Saint Pierre G, Rebel G, Belin MF (2002) Establishment of human tumoral ependymal cell lines and coculture with tubular-like human endothelial cells. Int J Oncol 21:775–785

    CAS  PubMed  Google Scholar 

  • Cage TA, Clark AJ, Aranda D, Gupta N, Sun PP, Parsa AT, Auguste KI (2013) A systematic review of treatment outcomes in pediatric patients with intracranial ependymomas. J Neurosurg Pediatr 11:673–681

    Article  Google Scholar 

  • Cashman PM, Kitney RI, Gariba MA, Carter ME (2002) Automated techniques for visualization and mapping of articular cartilage in MR images of the osteoarthritic knee: a base technique for the assessment of microdamage and submicro damage. IEEE Trans Nanobioscience 1:42–51

    Article  Google Scholar 

  • DeWire M, Fouladi M, Turner DC, Wetmore C, Hawkins C, Jacobs C, Yuan Y, Liu D, Goldman S, Fisher P et al (2015) An open-label, two-stage, phase II study of bevacizumab and lapatinib in children with recurrent or refractory ependymoma: a collaborative ependymoma research network study (CERN). J Neuro-Oncol 123:85–91

    Article  CAS  Google Scholar 

  • Dyer S, Prebble E, Davison V, Davies P, Ramani P, Ellison D, Grundy R (2002) Genomic imbalances in pediatric intracranial ependymomas define clinically relevant groups. Am J Pathol 161:2133–2141

    Article  CAS  Google Scholar 

  • Ebert C, von Haken M, Meyer-Puttlitz B, Wiestler OD, Reifenberger G, Pietsch T, von Deimling A (1999) Molecular genetic analysis of ependymal tumors. NF2 mutations and chromosome 22q loss occur preferentially in intramedullary spinal ependymomas. Am J Pathol 155:627–632

    Article  CAS  Google Scholar 

  • Eden CJ, Ju B, Murugesan M, Phoenix TN, Nimmervoll B, Tong Y, Ellison DW, Finkelstein D, Wright K, Boulos N et al (2015) Orthotopic models of pediatric brain tumors in zebrafish. Oncogene 34:1736–1742

    Article  CAS  Google Scholar 

  • Ellison DW, Kocak M, Figarella-Branger D, Felice G, Catherine G, Pietsch T, Frappaz D, Massimino M, Grill J, Boyett JM, Grundy RG (2011) Histopathological grading of pediatric ependymoma: reproducibility and clinical relevance in European trial cohorts. J Negat Results Biomed 10:7

    Article  Google Scholar 

  • Gajjar A, Packer RJ, Foreman NK, Cohen K, Haas-Kogan D, Merchant TE (2013) Children’s Oncology Group’s 2013 blueprint for research: central nervous system tumors. Pediatr Blood Cancer 60:1022–1026

    Article  Google Scholar 

  • Gajjar A, Pfister SM, Taylor MD, Gilbertson RJ (2014) Molecular insights into pediatric brain tumors have the potential to transform therapy. Clin Cancer Res 20:5630–5640

    Article  CAS  Google Scholar 

  • Gilbertson RJ, Bentley L, Hernan R, Junttila TT, Frank AJ, Haapasalo H, Connelly M, Wetmore C, Curran T, Elenius K, Ellison DW (2002) ERBB receptor signaling promotes ependymoma cell proliferation and represents a potential novel therapeutic target for this disease. Clin Cancer Res 8:3054–3064

    CAS  PubMed  Google Scholar 

  • Gilbertson RJ, Gutmann DH (2007) Tumorigenesis in the brain: location, location, location. Cancer Res 67:5579–5582

    Article  CAS  Google Scholar 

  • Godfraind C, Kaczmarska JM, Kocak M, Dalton J, Wright KD, Sanford RA, Boop FA, Gajjar A, Merchant TE, Ellison DW (2012) Distinct disease-risk groups in pediatric supratentorial and posterior fossa ependymomas. Acta Neuropathol 124:247–257

    Article  Google Scholar 

  • Grill J, Kalifa C (1998) High dose chemotherapy for childhood ependymona. J Neuro-Oncol 40:97

    Article  CAS  Google Scholar 

  • Grundy RG, Wilne SA, Weston CL, Robinson K, Lashford LS, Ironside J, Cox T, Chong WK, Campbell RH, Bailey CC et al (2007) Primary postoperative chemotherapy without radiotherapy for intracranial ependymoma in children: the UKCCSG/SIOP prospective study. Lancet Oncol 8:696–705

    Article  Google Scholar 

  • Guan S, Shen R, Lafortune T, Tiao N, Houghton P, Yung WK, Koul D (2011) Establishment and characterization of clinically relevant models of ependymoma: a true challenge for targeted therapy. Neuro-Oncology 13:748–758

    Article  CAS  Google Scholar 

  • Gutmann DH, Hunter-Schaedle K, Shannon KM (2006) Harnessing preclinical mouse models to inform human clinical cancer trials. J Clin Invest 116:847–852

    Article  CAS  Google Scholar 

  • Gutmann DH, Maher EA, Van Dyke T (2006) Mouse models of human cancers consortium workshop on nervous system tumors. Cancer Res 66:10–13

    Article  CAS  Google Scholar 

  • Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, Ng S, Leiserson MD, Niu B, McLellan MD, Uzunangelov V et al (2014) Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 158:929–944

    Article  CAS  Google Scholar 

  • Horowitz ME, Parham DM, Douglass EC, Kun LE, Houghton JA, Houghton PJ (1987) Development and characterization of human ependymoma xenograft HxBr5. Cancer Res 47:499–504

    CAS  PubMed  Google Scholar 

  • Houghton PJ, Morton CL, Tucker C, Payne D, Favours E, Cole C, Gorlick R, Kolb EA, Zhang W, Lock R et al (2007) The pediatric preclinical testing program: description of models and early testing results. Pediatr Blood Cancer 49:928–940

    Article  Google Scholar 

  • Hovestadt V, Jones DT, Picelli S, Wang W, Kool M, Northcott PA, Sultan M, Stachurski K, Ryzhova M, Warnatz HJ et al (2014) Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature 510:537–541

    Article  CAS  Google Scholar 

  • Hussein D, Punjaruk W, Storer LC, Shaw L, Othman R, Peet A, Miller S, Bandopadhyay G, Heath R, Kumari R et al (2011) Pediatric brain tumor cancer stem cells: cell cycle dynamics, DNA repair, and etoposide extrusion. Neuro-Oncology 13:70–83

    Article  CAS  Google Scholar 

  • Jennings MT, Kaariainen IT, Gold L, Maciunas RJ, Commers PA (1994) TGF beta 1 and TGF beta 2 are potential growth regulators for medulloblastomas, primitive neuroectodermal tumors, and ependymomas: evidence in support of an autocrine hypothesis. Hum Pathol 25:464–475

    Article  CAS  Google Scholar 

  • Johnson RA, Wright KD, Poppleton H, Mohankumar KM, Finkelstein D, Pounds SB, Rand V, Leary SE, White E, Eden C et al (2010) Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature 466:632–636

    Article  CAS  Google Scholar 

  • Kilday JP, Mitra B, Domerg C, Ward J, Andreiuolo F, Osteso-Ibanez T, Mauguen A, Varlet P, Le Deley MC, Lowe J et al (2012) Copy number gain of 1q25 predicts poor progression-free survival for pediatric intracranial ependymomas and enables patient risk stratification: a prospective European clinical trial cohort analysis on behalf of the Children’s Cancer Leukaemia Group (CCLG), Societe Francaise d'Oncologie Pediatrique (SFOP), and International Society for Pediatric Oncology (SIOP). Clin Cancer Res 18:2001–2011

    Article  CAS  Google Scholar 

  • Kilday JP, Rahman R, Dyer S, Ridley L, Lowe J, Coyle B, Grundy R (2009) Pediatric ependymoma: biological perspectives. Mol Cancer Res 7:765–786

    Article  CAS  Google Scholar 

  • Korshunov A, Neben K, Wrobel G, Tews B, Benner A, Hahn M, Golanov A, Lichter P (2003) Gene expression patterns in ependymomas correlate with tumor location, grade, and patient age. Am J Pathol 163:1721–1727

    Article  CAS  Google Scholar 

  • Korshunov A, Witt H, Hielscher T, Benner A, Remke M, Ryzhova M, Milde T, Bender S, Wittmann A, Schottler A et al (2010) Molecular staging of intracranial ependymoma in children and adults. J Clin Oncol 28:3182–3190

    Article  Google Scholar 

  • Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W et al (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9:391–403

    Article  CAS  Google Scholar 

  • Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  Google Scholar 

  • Mack SC, Witt H, Piro RM, Gu L, Zuyderduyn S, Stutz AM, Wang X, Gallo M, Garzia L, Zayne K et al (2014) Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature 506:445–450

    Article  CAS  Google Scholar 

  • Massimino M, Gandola L, Giangaspero F, Sandri A, Valagussa P, Perilongo G, Garre ML, Ricardi U, Forni M, Genitori L et al (2004) Hyperfractionated radiotherapy and chemotherapy for childhood ependymoma: final results of the first prospective AIEOP (Associazione Italiana di Ematologia-Oncologia Pediatrica) study. Int J Radiat Oncol Biol Phys 58:1336–1345

    Article  Google Scholar 

  • McLendon RE, Fung KM, Bentley RC, Ahmed Rasheed BK, Trojanowski JQ, Bigner SH, Bigner DD, Friedman HS (1996) Production and characterization of two ependymoma xenografts. J Neuropathol Exp Neurol 55:540–548

    Article  CAS  Google Scholar 

  • Mendrzyk F, Korshunov A, Benner A, Toedt G, Pfister S, Radlwimmer B, Lichter P (2006) Identification of gains on 1q and epidermal growth factor receptor overexpression as independent prognostic markers in intracranial ependymoma. Clin Cancer Res 12:2070–2079

    Article  CAS  Google Scholar 

  • Merchant TE, Li C, Xiong X, Kun LE, Boop FA, Sanford RA (2009) Conformal radiotherapy after surgery for paediatric ependymoma: a prospective study. Lancet Oncol 10:258–266

    Article  Google Scholar 

  • Merchant TE, Mulhern RK, Krasin MJ, Kun LE, Williams T, Li C, Xiong X, Khan RB, Lustig RH, Boop FA, Sanford RA (2004) Preliminary results from a phase II trial of conformal radiation therapy and evaluation of radiation-related CNS effects for pediatric patients with localized ependymoma. J Clin Oncol 22:3156–3162

    Article  Google Scholar 

  • Messahel B, Ashley S, Saran F, Ellison D, Ironside J, Phipps K, Cox T, Chong WK, Robinson K, Picton S et al (2009) Relapsed intracranial ependymoma in children in the UK: patterns of relapse, survival and therapeutic outcome. Eur J Cancer 45:1815–1823

    Article  CAS  Google Scholar 

  • Milde T, Kleber S, Korshunov A, Witt H, Hielscher T, Koch P, Kopp HG, Jugold M, Deubzer HE, Oehme I et al (2011) A novel human high-risk ependymoma stem cell model reveals the differentiation-inducing potential of the histone deacetylase inhibitor Vorinostat. Acta Neuropathol 122:637–650

    Article  CAS  Google Scholar 

  • Modena P, Buttarelli FR, Miceli R, Piccinin E, Baldi C, Antonelli M, Morra I, Lauriola L, Di Rocco C, Garre ML et al (2012) Predictors of outcome in an AIEOP series of childhood ependymomas: a multifactorial analysis. Neuro-Oncology 14:1346–1356

    Article  CAS  Google Scholar 

  • Mohankumar KM, Currle DS, White E, Boulos N, Dapper J, Eden C, Nimmervoll B, Thiruvenkatam R, Connelly M, Kranenburg TA et al (2015) An in vivo screen identifies ependymoma oncogenes and tumor-suppressor genes. Nat Genet 47:878–887

    Article  CAS  Google Scholar 

  • Morton CL, Houghton PJ (2007) Establishment of human tumor xenografts in immunodeficient mice. Nat Protoc 2:247–250

    Article  CAS  Google Scholar 

  • Pajtler KW, Witt H, Sill M, Jones DT, Hovestadt V, Kratochwil F, Wani K, Tatevossian R, Punchihewa C, Johann P et al (2015) Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell 27:728–743

    Article  CAS  Google Scholar 

  • Parker M, Mohankumar KM, Punchihewa C, Weinlich R, Dalton JD, Li Y, Lee R, Tatevossian RG, Phoenix TN, Thiruvenkatam R et al (2014) C11orf95-RELA fusions drive oncogenic NF-kappaB signalling in ependymoma. Nature 506:451–455

    Article  CAS  Google Scholar 

  • Pejavar S, Polley MY, Rosenberg-Wohl S, Chennupati S, Prados MD, Berger MS, Banerjee A, Gupta N, Haas-Kogan D (2012) Pediatric intracranial ependymoma: the roles of surgery, radiation and chemotherapy. J Neuro-Oncol 106:367–375

    Article  Google Scholar 

  • Poppleton H, Gilbertson RJ (2007) Stem cells of ependymoma. Br J Cancer 96:6–10

    Article  CAS  Google Scholar 

  • Purdy E, Johnston DL, Bartels U, Fryer C, Carret AS, Crooks B, Eisenstat DD, Lafay-Cousin L, Larouche V, Wilson B et al (2014) Ependymoma in children under the age of 3 years: a report from the Canadian Pediatric Brain Tumour Consortium. J Neuro-Oncol 117:359–364

    Article  Google Scholar 

  • Reni M, Gatta G, Mazza E, Vecht C (2007) Ependymoma. Crit Rev Oncol Hematol 63:81–89

    Article  Google Scholar 

  • Robison NJ, Campigotto F, Chi SN, Manley PE, Turner CD, Zimmerman MA, Chordas CA, Werger AM, Allen JC, Goldman S et al (2014) A phase II trial of a multi-agent oral antiangiogenic (metronomic) regimen in children with recurrent or progressive cancer. Pediatr Blood Cancer 61:636–642

    Article  Google Scholar 

  • Rubio MP, Correa KM, Ramesh V, MacCollin MM, Jacoby LB, von Deimling A, Gusella JF, Louis DN (1994) Analysis of the neurofibromatosis 2 gene in human ependymomas and astrocytomas. Cancer Res 54:45–47

    CAS  PubMed  Google Scholar 

  • Servidei T, Meco D, Trivieri N, Patriarca V, Vellone VG, Zannoni GF, Lamorte G, Pallini R, Riccardi R (2012) Effects of epidermal growth factor receptor blockade on ependymoma stem cells in vitro and in orthotopic mouse models. Int J Cancer 131:E791–E803

    Article  CAS  Google Scholar 

  • Strother DR, Lafay-Cousin L, Boyett JM, Burger P, Aronin P, Constine L, Duffner P, Kocak M, Kun LE, Horowitz ME, Gajjar A (2014) Benefit from prolonged dose-intensive chemotherapy for infants with malignant brain tumors is restricted to patients with ependymoma: a report of the Pediatric Oncology Group randomized controlled trial 9233/34. Neuro-Oncology 16:457–465

    Article  Google Scholar 

  • Taylor MD, Poppleton H, Fuller C, Su X, Liu Y, Jensen P, Magdaleno S, Dalton J, Calabrese C, Board J et al (2005) Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8:323–335

    Article  CAS  Google Scholar 

  • Tihan T, Zhou T, Holmes E, Burger PC, Ozuysal S, Rushing EJ (2008) The prognostic value of histological grading of posterior fossa ependymomas in children: a Children’s Oncology Group study and a review of prognostic factors. Mod Pathol 21:165–177

    Article  Google Scholar 

  • van Vuurden DG, Hulleman E, Meijer OL, Wedekind LE, Kool M, Witt H, Vandertop PW, Wurdinger T, Noske DP, Kaspers GJ, Cloos J (2011) PARP inhibition sensitizes childhood high grade glioma, medulloblastoma and ependymoma to radiation. Oncotarget 2:984–996

    PubMed  PubMed Central  Google Scholar 

  • Venkatramani R, Ji L, Lasky J, Haley K, Judkins A, Zhou S, Sposto R, Olshefski R, Garvin J, Tekautz T et al (2013) Outcome of infants and young children with newly diagnosed ependymoma treated on the "Head Start" III prospective clinical trial. J Neuro-Oncol 113:285–291

    Article  CAS  Google Scholar 

  • Vescovi AL, Galli R, Reynolds BA (2006) Brain tumour stem cells. Nat Rev Cancer 6:425–436

    Article  CAS  Google Scholar 

  • Villano JL, Parker CK, Dolecek TA (2013) Descriptive epidemiology of ependymal tumours in the United States. Br J Cancer 108:2367–2371

    Article  CAS  Google Scholar 

  • Wani K, Armstrong TS, Vera-Bolanos E, Raghunathan A, Ellison D, Gilbertson R, Vaillant B, Goldman S, Packer RJ, Fouladi M et al (2012) A prognostic gene expression signature in infratentorial ependymoma. Acta Neuropathol 123:727–738

    Article  CAS  Google Scholar 

  • Witt H, Mack SC, Ryzhova M, Bender S, Sill M, Isserlin R, Benner A, Hielscher T, Milde T, Remke M et al (2011) Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 20:143–157

    Article  CAS  Google Scholar 

  • Wright KD, Daryani VM, Turner DC, Onar-Thomas A, Boulos N, Orr BA, Gilbertson RJ, Stewart CF, Gajjar A (2015) Phase I study of 5-fluorouracil in children and young adults with recurrent ependymoma. Neuro-Oncology 17:1620–1627

    Article  CAS  Google Scholar 

  • Yu L, Baxter PA, Voicu H, Gurusiddappa S, Zhao Y, Adesina A, Man TK, Shu Q, Zhang YJ, Zhao XM et al (2010) A clinically relevant orthotopic xenograft model of ependymoma that maintains the genomic signature of the primary tumor and preserves cancer stem cells in vivo. Neuro-Oncology 12:580–594

    Article  CAS  Google Scholar 

  • Zacharoulis S, Ashley S, Moreno L, Gentet JC, Massimino M, Frappaz D (2010) Treatment and outcome of children with relapsed ependymoma: a multi-institutional retrospective analysis. Childs Nerv Syst 26:905–911

    Article  Google Scholar 

  • Zacharoulis S, Ji L, Pollack IF, Duffner P, Geyer R, Grill J, Schild S, Jaing TH, Massimino M, Finlay J, Sposto R (2008) Metastatic ependymoma: a multi-institutional retrospective analysis of prognostic factors. Pediatr Blood Cancer 50:231–235

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Witt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Witt, H., Pajtler, K.W. (2018). Ependymoma. In: Gajjar, A., Reaman, G., Racadio, J., Smith, F. (eds) Brain Tumors in Children. Springer, Cham. https://doi.org/10.1007/978-3-319-43205-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43205-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43203-8

  • Online ISBN: 978-3-319-43205-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics