Skip to main content

Advertisement

Log in

Understanding Ependymoma Oncogenesis: an Update on Recent Molecular Advances and Current Perspectives

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Remarkable progress has been made in the last decade in understanding the biology and oncogenesis of this relatively rare childhood brain tumor—the ependymoma. Surgery and irradiation are the mainstays of therapeutic options; chemotherapy is yet to predictably affect outcome, and its role is currently being explored in several clinical trials. While WHO scores this tumor into three grades, grading of ependymoma into grade II and grade III is controversial because of its elusive histological criteria where no cut-offs have been defined for mitoses or percentage of tumor depicting increased cellularity. Grading remains unreliable in predicting outcome in several instances. There is a compelling need to integrate the molecular biomarkers highlighted in several studies over the past decade into patient risk stratification to help in better predicting the clinical outcome and to design effective tailored therapy. Genomic and transcriptomic studies lately have defined distinct molecular subgroups within ependymoma arising at three anatomic compartments—supratentorial, posterior fossa, and spinal cord. Review of pertinent literature on several seminal studies that have established a paradigm shift in understanding the oncogenesis of ependymoma has been carried out. The outcome, impact, and clinical relevance of these studies are also discussed. The review provides an update on progress and recent advances in understanding the biology and oncogenesis of ependymoma. The establishment of robust subgroups which are demographically, clinically, and molecularly distinct will provide new avenues for further refinement of therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. McGuire CS, Sainani KL, Fisher PG (2009) Incidence patterns for ependymoma: a surveillance, epidemiology, and end results study. J Neurosurg 110(4):725–9

    Article  PubMed  Google Scholar 

  2. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (2007) WHO Classification of Tumours of the Central Nervous System. International Agency for Research on Cancer (IARC), Lyon

    Google Scholar 

  3. Taylor MD et al (2005) Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8(4):323–35

    Article  CAS  PubMed  Google Scholar 

  4. Louis DN et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109

    Article  PubMed  PubMed Central  Google Scholar 

  5. Merchant TE et al (2004) Preliminary results from a phase II trial of conformal radiation therapy and evaluation of radiation-related CNS effects for pediatric patients with localized ependymoma. J Clin Oncol 22(15):3156–62

    Article  PubMed  Google Scholar 

  6. Kun LE, Kovnar EH, Sanford RA (1988) Ependymomas in children. Pediatr Neurosci 14(2):57–63

    Article  CAS  PubMed  Google Scholar 

  7. Sanford RA, Gajjar A (1997) Ependymomas. Clin Neurosurg 44:559–70

    CAS  PubMed  Google Scholar 

  8. Gajjar A et al (2014) Molecular insights into pediatric brain tumors have the potential to transform therapy. Clin Cancer Res 20(22):5630–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Merchant TE et al (2009) Conformal radiotherapy after surgery for paediatric ependymoma: a prospective study. Lancet Oncol 10(3):258–66

    Article  PubMed  PubMed Central  Google Scholar 

  10. Grundy RG et al (2007) Primary postoperative chemotherapy without radiotherapy for intracranial ependymoma in children: the UKCCSG/SIOP prospective study. Lancet Oncol 8(8):696–705

    Article  PubMed  Google Scholar 

  11. Gatta G et al (2014) Childhood cancer survival in Europe 1999–2007: results of EUROCARE-5—a population-based study. Lancet Oncol 15(1):35–47

    Article  PubMed  Google Scholar 

  12. Dubuc AM et al (2010) The genetics of pediatric brain tumors. Curr Neurol Neurosci Rep 10(3):215–23

    Article  CAS  PubMed  Google Scholar 

  13. Ellison DW et al (2011) Histopathological grading of pediatric ependymoma: reproducibility and clinical relevance in European trial cohorts. J Negat Results Biomed 10:7

    Article  PubMed  PubMed Central  Google Scholar 

  14. Godfraind C (2009) Classification and controversies in pathology of ependymomas. Childs Nerv Syst 25(10):1185–93

    Article  PubMed  Google Scholar 

  15. Johnson RA et al (2010) Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature 466(7306):632–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fouladi M et al (2003) Clear cell ependymoma: a clinicopathologic and radiographic analysis of 10 patients. Cancer 98(10):2232–44

    Article  PubMed  Google Scholar 

  17. Godfraind C et al (2012) Distinct disease-risk groups in pediatric supratentorial and posterior fossa ependymomas. Acta Neuropathol 124(2):247–57

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rousseau E et al (2007) Trisomy 19 ependymoma, a newly recognized genetico-histological association, including clear cell ependymoma. Mol Cancer 6:47

    Article  PubMed  PubMed Central  Google Scholar 

  19. Figarella-Branger D et al (2000) Prognostic factors in intracranial ependymomas in children. J Neurosurg 93(4):605–13

    Article  CAS  PubMed  Google Scholar 

  20. Tihan T et al (2008) The prognostic value of histological grading of posterior fossa ependymomas in children: a Children’s Oncology Group study and a review of prognostic factors. Mod Pathol 21(2):165–77

    PubMed  Google Scholar 

  21. Zamecnik J et al (2003) Pediatric intracranial ependymomas: prognostic relevance of histological, immunohistochemical, and flow cytometric factors. Mod Pathol 16(10):980–91

    Article  PubMed  Google Scholar 

  22. Ernestus RI, Wilcke O, Schroder R (1991) Supratentorial ependymomas in childhood: clinicopathological findings and prognosis. Acta Neurochir (Wien) 111(3–4):96–102

    Article  CAS  Google Scholar 

  23. Ernestus RI et al (1997) The clinical and prognostic relevance of grading in intracranial ependymomas. Br J Neurosurg 11(5):421–8

    Article  CAS  PubMed  Google Scholar 

  24. Horn B et al (1999) A multi-institutional retrospective study of intracranial ependymoma in children: identification of risk factors. J Pediatr Hematol Oncol 21(3):203–11

    Article  CAS  PubMed  Google Scholar 

  25. Jaing TH et al (2004) Multivariate analysis of clinical prognostic factors in children with intracranial ependymomas. J Neurooncol 68(3):255–61

    Article  PubMed  Google Scholar 

  26. Korshunov A et al (2004) The histologic grade is a main prognostic factor for patients with intracranial ependymomas treated in the microneurosurgical era: an analysis of 258 patients. Cancer 100(6):1230–7

    Article  PubMed  Google Scholar 

  27. Rodriguez D et al (2009) Outcomes of malignant CNS ependymomas: an examination of 2408 cases through the Surveillance, Epidemiology, and End Results (SEER) database (1973–2005). J Surg Res 156(2):340–51

    Article  PubMed  Google Scholar 

  28. Raghunathan A et al (2013) Histological predictors of outcome in ependymoma are dependent on anatomic site within the central nervous system. Brain Pathol 23(5):584–94

    Article  PubMed  Google Scholar 

  29. Korshunov A et al (2003) Gene expression patterns in ependymomas correlate with tumor location, grade, and patient age. Am J Pathol 163(5):1721–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sala F et al (1998) Prognostic factors in childhood intracranial ependymomas: the role of age and tumor location. Pediatr Neurosurg 28(3):135–42

    Article  CAS  PubMed  Google Scholar 

  31. Kilday JP et al (2009) Pediatric ependymoma: biological perspectives. Mol Cancer Res 7(6):765–86

    Article  CAS  PubMed  Google Scholar 

  32. Korshunov A et al (2010) Molecular staging of intracranial ependymoma in children and adults. J Clin Oncol 28(19):3182–90

    Article  PubMed  Google Scholar 

  33. Carter M et al (2002) Genetic abnormalities detected in ependymomas by comparative genomic hybridisation. Br J Cancer 86(6):929–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dyer S et al (2002) Genomic imbalances in pediatric intracranial ependymomas define clinically relevant groups. Am J Pathol 161(6):2133–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mendrzyk F et al (2006) Identification of gains on 1q and epidermal growth factor receptor overexpression as independent prognostic markers in intracranial ependymoma. Clin Cancer Res 12(7 Pt 1):2070–9

    Article  CAS  PubMed  Google Scholar 

  36. Ward S et al (2001) Gain of 1q and loss of 22 are the most common changes detected by comparative genomic hybridisation in paediatric ependymoma. Genes Chromosomes Cancer 32(1):59–66

    Article  CAS  PubMed  Google Scholar 

  37. Monoranu CM et al (2008) Correlation between 6q25.3 deletion status and survival in pediatric intracranial ependymomas. Cancer Genet Cytogenet 182(1):18–26

    Article  CAS  PubMed  Google Scholar 

  38. Parker M et al (2014) C11orf95-RELA fusions drive oncogenic NF-kappaB signalling in ependymoma. Nature 506(7489):451–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Witt H et al (2011) Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 20(2):143–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wani K et al (2012) A prognostic gene expression signature in infratentorial ependymoma. Acta Neuropathol 123(5):727–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pajtler KW et al (2015) Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell 27(5):728–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gajjar A et al (2015) Pediatric brain tumors: innovative genomic information is transforming the diagnostic and clinical landscape. J Clin Oncol 33(27):2986–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mack SC et al (2014) Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature 506(7489):445–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hirose Y et al (2001) Chromosomal abnormalities subdivide ependymal tumors into clinically relevant groups. Am J Pathol 158(3):1137–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mazewski C et al (1999) Karyotype studies in 18 ependymomas with literature review of 107 cases. Cancer Genet Cytogenet 113(1):1–8

    Article  CAS  PubMed  Google Scholar 

  46. Ebert C et al (1999) Molecular genetic analysis of ependymal tumors. NF2 mutations and chromosome 22q loss occur preferentially in intramedullary spinal ependymomas. Am J Pathol 155(2):627–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Modena P et al (2006) Identification of tumor-specific molecular signatures in intracranial ependymoma and association with clinical characteristics. J Clin Oncol 24(33):5223–33

    Article  CAS  PubMed  Google Scholar 

  48. Evans DG, Sainio M, Baser ME (2000) Neurofibromatosis type 2. J Med Genet 37(12):897–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Birch BD et al (1996) Frequent type 2 neurofibromatosis gene transcript mutations in sporadic intramedullary spinal cord ependymomas. Neurosurgery 39(1):135–40

    Article  CAS  PubMed  Google Scholar 

  50. Rubio MP et al (1994) Analysis of the neurofibromatosis 2 gene in human ependymomas and astrocytomas. Cancer Res 54(1):45–7

    CAS  PubMed  Google Scholar 

  51. Slavc I et al (1995) Exon scanning for mutations of the NF2 gene in pediatric ependymomas, rhabdoid tumors and meningiomas. Int J Cancer 64(4):243–7

    Article  CAS  PubMed  Google Scholar 

  52. Rogers HA et al (2012) Supratentorial and spinal pediatric ependymomas display a hypermethylated phenotype which includes the loss of tumor suppressor genes involved in the control of cell growth and death. Acta Neuropathol 123(5):711–25

    Article  CAS  PubMed  Google Scholar 

  53. Michalowski MB et al (2006) Methylation of RASSF1A and TRAIL pathway-related genes is frequent in childhood intracranial ependymomas and benign choroid plexus papilloma. Cancer Genet Cytogenet 166(1):74–81

    Article  CAS  PubMed  Google Scholar 

  54. Hamilton DW et al (2005) Epigenetic inactivation of the RASSF1A tumour suppressor gene in ependymoma. Cancer Lett 227(1):75–81

    Article  CAS  PubMed  Google Scholar 

  55. Alonso ME et al (2003) Aberrant promoter methylation of multiple genes in oligodendrogliomas and ependymomas. Cancer Genet Cytogenet 144(2):134–42

    Article  CAS  PubMed  Google Scholar 

  56. Rousseau E et al (2003) CDKN2A, CDKN2B and p14ARF are frequently and differentially methylated in ependymal tumours. Neuropathol Appl Neurobiol 29(6):574–83

    Article  CAS  PubMed  Google Scholar 

  57. Waha A et al (2004) Analysis of HIC-1 methylation and transcription in human ependymomas. Int J Cancer 110(4):542–9

    Article  CAS  PubMed  Google Scholar 

Download references

Competing Interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirti Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, K., Salunke, P. Understanding Ependymoma Oncogenesis: an Update on Recent Molecular Advances and Current Perspectives. Mol Neurobiol 54, 15–21 (2017). https://doi.org/10.1007/s12035-015-9646-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9646-8

Keywords

Navigation