Skip to main content

Proteogenomic Tools and Approaches to Explore Protein Coding Landscapes of Eukaryotic Genomes

  • Chapter
  • First Online:
Proteogenomics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 926))

Abstract

Proteogenomic strategies aim to refine genome-wide annotations of protein coding features by using actual protein level observations. Most of the currently applied proteogenomic approaches include integrative analysis of multiple types of high-throughput omics data, e.g., genomics, transcriptomics, proteomics, etc. Recent efforts towards creating a human proteome map were primarily targeted to experimentally detect at least one protein product for each gene in the genome and extensively utilized proteogenomic approaches. The 14 year long wait to get a draft human proteome map, after completion of similar efforts to sequence the genome, explains the huge complexity and technical hurdles of such efforts. Further, the integrative analysis of large-scale multi-omics datasets inherent to these studies becomes a major bottleneck to their success. However, recent developments of various analysis tools and pipelines dedicated to proteogenomics reduce both the time and complexity of such analysis. Here, we summarize notable approaches, studies, software developments and their potential applications towards eukaryotic genome annotation and clinical proteogenomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alfaro, J. A., Sinha, A., Kislinger, T., & Boutros, P. C. (2014). Onco-proteogenomics: Cancer proteomics joins forces with genomics. Nature Methods, 11(11), 1107–1113. Available from: PM:25357240.

    Article  CAS  PubMed  Google Scholar 

  • Armengaud, J. (2009). A perfect genome annotation is within reach with the proteomics and genomics alliance. Current Opinion in Microbiology, 12(3), 292–300. Available from: PM:19410500.

    Article  CAS  PubMed  Google Scholar 

  • Armengaud, J. (2013). Microbiology and proteomics, getting the best of both worlds! Environmental Microbiology, 15(1), 12–23. Available from: PM:22708953.

    Article  CAS  PubMed  Google Scholar 

  • Askenazi, M., Ruggles, K. V., & Fenyo, D. (2015). PGx: Putting peptides to BED. Journal of Proteome Research, 15(3), 795–799. Available from: PM:26638927.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brinkman, D. L., Jia, X., Potriquet, J., Kumar, D., Dash, D., Kvaskoff, D., & Mulvenna, J. (2015). Transcriptome and venom proteome of the box jellyfish Chironex fleckeri. BMC Genomics, 16, 407. Available from: PM:26014501.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brosch, M., Saunders, G. I., Frankish, A., Collins, M. O., Yu, L., Wright, J., Verstraten, R., Adams, D. J., Harrow, J., Choudhary, J. S., & Hubbard, T. (2011). Shotgun proteomics aids discovery of novel protein-coding genes, alternative splicing, and “resurrected” pseudogenes in the mouse genome. Genome Research, 21(5), 756–767. Available from: PM:21460061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burset, M., Seledtsov, I. A., & Solovyev, V. V. (2001). SpliceDB: Database of canonical and non-canonical mammalian splice sites. Nucleic Acids Research, 29(1), 255–259. Available from: PM:11125105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castellana, N., & Bafna, V. (2010). Proteogenomics to discover the full coding content of genomes: A computational perspective. Journal of Proteomics, 73(11), 2124–2135. Available from: PM:20620248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castellana, N. E., Shen, Z., He, Y., Walley, J. W., Cassidy, C. J., Briggs, S. P., & Bafna, V. (2014). An automated proteogenomic method uses mass spectrometry to reveal novel genes in Zea mays. Molecular & Cellular Proteomics, 13(1), 157–167. Available from: PM:24142994.

    Article  CAS  Google Scholar 

  • Crappe, J., Ndah, E., Koch, A., Steyaert, S., Gawron, D., De, K. S., De, M. E., De, M. T., Van, C. W., Van, D. P., & Menschaert, G. (2014). PROTEOFORMER: Deep proteome coverage through ribosome profiling and MS integration. Nucleic Acids Research, 43(5), e29. Available from: PM:25510491.

    Article  PubMed  PubMed Central  Google Scholar 

  • Deutsch, E. W., Sun, Z., Campbell, D., Kusebauch, U., Chu, C. S., Mendoza, L., Shteynberg, D., Omenn, G. S., & Moritz, R. L. (2015). State of the human proteome in 2014/2015 as viewed through PeptideAtlas: Enhancing accuracy and coverage through the AtlasProphet. Journal of Proteome Research, 14(9), 3461–3473. Available from: PM:26139527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eng, J. K., Searle, B. C., Clauser, K. R., & Tabb, D. L. (2011). A face in the crowd: Recognizing peptides through database search. Molecular Cellular Proteomics, 10(11), R111. Available from: PM:21876205.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ezkurdia, I., Vazquez, J., Valencia, A., & Tress, M. (2014). Analyzing the first drafts of the human proteome. Journal of Proteome Research, 13(8), 3854–3855. Available from: PM:25014353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferro, M., Tardif, M., Reguer, E., Cahuzac, R., Bruley, C., Vermat, T., Nugues, E., Vigouroux, M., Vandenbrouck, Y., Garin, J., & Viari, A. (2008). PepLine: A software pipeline for high-throughput direct mapping of tandem mass spectrometry data on genomic sequences. Journal of Proteome Research, 7(5), 1873–1883. Available from: PM:18348511.

    Article  CAS  PubMed  Google Scholar 

  • Frank, A. M., Savitski, M. M., Nielsen, M. L., Zubarev, R. A., & Pevzner, P. A. (2007). De novo peptide sequencing and identification with precision mass spectrometry. Journal of Proteome Research, 6(1), 114–123. Available from: PM:17203955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geer, L. Y., Markey, S. P., Kowalak, J. A., Wagner, L., Xu, M., Maynard, D. M., Yang, X., Shi, W., & Bryant, S. H. (2004). Open mass spectrometry search algorithm. Journal of Proteome Research, 3(5), 958–964. Available from: PM:15473683.

    Article  CAS  PubMed  Google Scholar 

  • Ghali, F., Krishna, R., Perkins, S., Collins, A., Xia, D., Wastling, J., & Jones, A. R. (2014). ProteoAnnotator – Open source proteogenomics annotation software supporting PSI standards. Proteomics, 14(23–24), 2731–2741. Available from: PM:25297486.

    Article  CAS  PubMed  Google Scholar 

  • Horvatovich, P., Lundberg, E. K., Chen, Y. J., Sung, T. Y., He, F., Nice, E. C., Goode, R. J., Yu, S., Ranganathan, S., Baker, M. S., Domont, G. B., Velasquez, E., Li, D., Liu, S., Wang, Q., He, Q. Y., Menon, R., Guan, Y., Corrales, F. J., Segura, V., Casal, J. I., Pascual-Montano, A., Albar, J. P., Fuentes, M., Gonzalez-Gonzalez, M., Diez, P., Ibarrola, N., Degano, R. M., Mohammed, Y., Borchers, C. H., Urbani, A., Soggiu, A., Yamamoto, T., Salekdeh, G. H., Archakov, A., Ponomarenko, E., Lisitsa, A., Lichti, C. F., Mostovenko, E., Kroes, R. A., Rezeli, M., Vegvari, A., Fehniger, T. E., Bischoff, R., Vizcaino, J. A., Deutsch, E. W., Lane, L., Nilsson, C. L., Marko-Varga, G., Omenn, G. S., Jeong, S. K., Lim, J. S., Paik, Y. K., & Hancock, W. S. (2015). Quest for missing proteins: Update 2015 on chromosome-centric human proteome project. Journal of Proteome Research, 14(9), 3415–3431. Available from: PM:26076068.

    Article  CAS  PubMed  Google Scholar 

  • Jaffe, J. D., Berg, H. C., & Church, G. M. (2004). Proteogenomic mapping as a complementary method to perform genome annotation. Proteomics, 4(1), 59–77. Available from: PM:14730672.

    Article  CAS  PubMed  Google Scholar 

  • Jagtap, P. D., Johnson, J. E., Onsongo, G., Sadler, F. W., Murray, K., Wang, Y., Shenykman, G. M., Bandhakavi, S., Smith, L. M., & Griffin, T. J. (2014). Flexible and accessible workflows for improved proteogenomic analysis using the galaxy framework. Journal of Proteome Research, 13(12), 5898–5908. Available from: PM:25301683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, A. R., Siepen, J. A., Hubbard, S. J., & Paton, N. W. (2009). Improving sensitivity in proteome studies by analysis of false discovery rates for multiple search engines. Proteomics, 9(5), 1220–1229. Available from: PM:19253293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelkar, D. S., Kumar, D., Kumar, P., Balakrishnan, L., Muthusamy, B., Yadav, A. K., Shrivastava, P., Marimuthu, A., Anand, S., Sundaram, H., Kingsbury, R., Harsha, H. C., Nair, B., Prasad, T. S., Chauhan, D. S., Katoch, K., Katoch, V. M., Kumar, P., Chaerkady, R., Ramachandran, S., Dash, D., & Pandey, A. (2011). Proteogenomic analysis of Mycobacterium tuberculosis by high resolution mass spectrometry. Molecular Cellular Proteomics, 10(12), M111. Available from: PM:21969609.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelkar, D. S., Provost, E., Chaerkady, R., Muthusamy, B., Manda, S. S., Subbannayya, T., Selvan, L. D., Wang, C. H., Datta, K. K., Woo, S., Dwivedi, S. B., Renuse, S., Getnet, D., Huang, T. C., Kim, M. S., Pinto, S. M., Mitchell, C. J., Madugundu, A. K., Kumar, P., Sharma, J., Advani, J., Dey, G., Balakrishnan, L., Syed, N., Nanjappa, V., Subbannayya, Y., Goel, R., Prasad, T. S., Bafna, V., Sirdeshmukh, R., Gowda, H., Wang, C., Leach, S. D., & Pandey, A. (2014). Annotation of the zebrafish genome through an integrated transcriptomic and proteomic analysis. Molecular Cellular Proteomics, 13(11), 3184–3198. Available from: PM:25060758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, S., & Pevzner, P. A. (2014). MS-GF+ makes progress towards a universal database search tool for proteomics. Nature Communications, 5, 5277. Available from: PM:25358478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, M. S., Pinto, S. M., Getnet, D., Nirujogi, R. S., Manda, S. S., Chaerkady, R., Madugundu, A. K., Kelkar, D. S., Isserlin, R., Jain, S., Thomas, J. K., Muthusamy, B., Leal-Rojas, P., Kumar, P., Sahasrabuddhe, N. A., Balakrishnan, L., Advani, J., George, B., Renuse, S., Selvan, L. D., Patil, A. H., Nanjappa, V., Radhakrishnan, A., Prasad, S., Subbannayya, T., Raju, R., Kumar, M., Sreenivasamurthy, S. K., Marimuthu, A., Sathe, G. J., Chavan, S., Datta, K. K., Subbannayya, Y., Sahu, A., Yelamanchi, S. D., Jayaram, S., Rajagopalan, P., Sharma, J., Murthy, K. R., Syed, N., Goel, R., Khan, A. A., Ahmad, S., Dey, G., Mudgal, K., Chatterjee, A., Huang, T. C., Zhong, J., Wu, X., Shaw, P. G., Freed, D., Zahari, M. S., Mukherjee, K. K., Shankar, S., Mahadevan, A., Lam, H., Mitchell, C. J., Shankar, S. K., Satishchandra, P., Schroeder, J. T., Sirdeshmukh, R., Maitra, A., Leach, S. D., Drake, C. G., Halushka, M. K., Prasad, T. S., Hruban, R. H., Kerr, C. L., Bader, G. D., Iacobuzio-Donahue, C. A., Gowda, H., & Pandey, A. (2014). A draft map of the human proteome. Nature, 509(7502), 575–581. Available from: PM:24870542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krasnov, G. S., Dmitriev, A. A., Kudryavtseva, A. V., Shargunov, A. V., Karpov, D. S., Uroshlev, L. A., Melnikova, N. V., Blinov, V. M., Poverennaya, E. V., Archakov, A. I., Lisitsa, A. V., & Ponomarenko, E. A. (2015). PPLine: An automated pipeline for SNP, SAP, and splice variant detection in the context of proteogenomics. Journal of Proteome Research, 14(9), 3729–3737. Available from: PM:26147802.

    Article  CAS  PubMed  Google Scholar 

  • Krug, K., Carpy, A., Behrends, G., Matic, K., Soares, N. C., & Macek, B. (2013). Deep coverage of the Escherichia coli proteome enables the assessment of false discovery rates in simple proteogenomic experiments. Molecular Cellular Proteomics, 12(11), 3420–3430. Available from: PM:23908556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhring, M., & Renard, B. Y. (2012). iPiG: Integrating peptide spectrum matches into genome browser visualizations. PLoS One, 7(12), e50246. Available from: PM:23226516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, D., Yadav, A. K., Kadimi, P. K., Nagaraj, S. H., Grimmond, S. M., & Dash, D. (2013). Proteogenomic analysis of Bradyrhizobium japonicum USDA110 using GenoSuite, an automated multi-algorithmic pipeline. Molecular Cellular Proteomics, 12(11), 3388–3397. Available from: PM:23882027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, D., Mondal, A. K., Yadav, A. K., & Dash, D. (2014). Discovery of rare protein-coding genes in model methylotroph Methylobacterium extorquens AM1. Proteomics, 14(23–24), 2790–2794. Available from: PM:25158906.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, D., Jain, A., & Dash, D. (2015). Probing the missing human proteome: A computational perspective. Journal of Proteome Research, 14(12), 4949–4958. Available from: PM:26407240.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, D., Mondal, A. K., Kutum, R., & Dash, D. (2016a). Proteogenomics of rare taxonomic phyla: A prospective treasure trove of protein coding genes 2. Proteomics, 16(2), 226–240. Available from: PM:26773550.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, D., Yadav, A. K., Jia, X., Mulvenna, J., & Dash, D. (2016b). Integrated transcriptomic-proteomic analysis using a proteogenomic workflow refines rat genome annotation. Molecular Cellular Proteomics, 15(1), 329–339. Available from: PM:26560066.

    Article  CAS  PubMed  Google Scholar 

  • Low, T. Y., van Heesch, S., van den Toorn, H., Giansanti, P., Cristobal, A., Toonen, P., Schafer, S., Hubner, N., van Breukelen, B., Mohammed, S., Cuppen, E., Heck, A. J., & Guryev, V. (2013). Quantitative and qualitative proteome characteristics extracted from in-depth integrated genomics and proteomics analysis. Cell Reports, 5(5), 1469–1478. Available from: PM:24290761.

    Article  CAS  PubMed  Google Scholar 

  • Nagaraj, S. H., Waddell, N., Madugundu, A. K., Wood, S., Jones, A., Mandyam, R. A., Nones, K., Pearson, J. V., & Grimmond, S. M. (2015). PGTools: A software suite for proteogenomic data analysis and visualization. Journal of Proteome Research, 14(5), 2255–2266. Available from: PM:25760677.

    Article  CAS  PubMed  Google Scholar 

  • Nesvizhskii, A. I. (2014). Proteogenomics: Concepts, applications and computational strategies. Nature Methods, 11(11), 1114–1125. Available from: PM:25357241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson, C. L., Mostovenko, E., Lichti, C. F., Ruggles, K., Fenyo, D., Rosenbloom, K. R., Hancock, W. S., Paik, Y. K., Omenn, G. S., LaBaer, J., Kroes, R. A., Uhlen, M., Hober, S., Vegvari, A., Andren, P. E., Sulman, E. P., Lang, F. F., Fuentes, M., Carlsohn, E., Emmett, M. R., Moskal, J. R., Berven, F. S., Fehniger, T. E., & Marko-Varga, G. (2015). Use of ENCODE resources to characterize novel proteoforms and missing proteins in the human proteome. Journal of Proteome Research, 14(2), 603–608. Available from: PM:25369122.

    Article  CAS  PubMed  Google Scholar 

  • Omenn, G. S., Lane, L., Lundberg, E. K., Beavis, R. C., Nesvizhskii, A. I., & Deutsch, E. W. (2015). Metrics for the human proteome project 2015: Progress on the human proteome and guidelines for high-confidence protein identification. Journal of Proteome Research, 14(9), 3452–3460. Available from: PM:26155816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paik, Y. K., Omenn, G. S., Overall, C. M., Deutsch, E. W., & Hancock, W. S. (2015). Recent advances in the chromosome-centric human proteome project: Missing proteins in the spot light. Journal of Proteome Research, 14(9), 3409–3414. Available from: PM:26337862.

    Article  CAS  PubMed  Google Scholar 

  • Peterson, E. S., McCue, L. A., Schrimpe-Rutledge, A. C., Jensen, J. L., Walker, H., Kobold, M. A., Webb, S. R., Payne, S. H., Ansong, C., Adkins, J. N., Cannon, W. R., & Webb-Robertson, B. J. (2012). VESPA: Software to facilitate genomic annotation of prokaryotic organisms through integration of proteomic and transcriptomic data. BMC Genomics, 13, 131. Available from: PM:22480257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Risk, B. A., Spitzer, W. J., & Giddings, M. C. (2013). Peppy: Proteogenomic search software. Journal of Proteome Research, 12(6), 3019–3025. Available from: PM:23614390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivers, R. C., Kinsinger, C., Boja, E. S., Hiltke, T., Mesri, M., & Rodriguez, H. (2014). Linking cancer genome to proteome: NCI’s investment into proteogenomics. Proteomics, 14(23–24), 2633–2636. Available from: PM:25187343.

    Article  CAS  PubMed  Google Scholar 

  • Sanders, W. S., Wang, N., Bridges, S. M., Malone, B. M., Dandass, Y. S., McCarthy, F. M., Nanduri, B., Lawrence, M. L., & Burgess, S. C. (2011). The proteogenomic mapping tool. BMC Bioinformatics, 12, 115. Available from: PM:21513508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shadforth, I., Xu, W., Crowther, D., & Bessant, C. (2006). GAPP: A fully automated software for the confident identification of human peptides from tandem mass spectra. Journal of Proteome Research, 5(10), 2849–2852. Available from: PM:17022656.

    Article  CAS  PubMed  Google Scholar 

  • Shanmugam, A. K., & Nesvizhskii, A. I. (2015). Effective leveraging of targeted search spaces for improving peptide identification in tandem mass spectrometry based proteomics. Journal of Proteome Research, 14(12), 5169–5178. Available from: PM:26569054.

    Article  CAS  PubMed  Google Scholar 

  • Sheynkman, G. M., Johnson, J. E., Jagtap, P. D., Shortreed, M. R., Onsongo, G., Frey, B. L., Griffin, T. J., & Smith, L. M. (2014). Using Galaxy-P to leverage RNA-Seq for the discovery of novel protein variations. BMC Genomics, 15, 703. Available from: PM:25149441.

    Article  PubMed  PubMed Central  Google Scholar 

  • Steen, H., & Mann, M. (2004). The ABC’s (and XYZ’s) of peptide sequencing. Nature Reviews Molecular Cell Biology, 5(9), 699–711. Available from: PM:15340378.

    Article  CAS  PubMed  Google Scholar 

  • Tabas-Madrid, D., Alves-Cruzeiro, J., Segura, V., Guruceaga, E., Vialas, V., Prieto, G., Garcia, C., Corrales, F. J., Albar, J. P., & Pascual-Montano, A. (2015). Proteogenomics dashboard for the human proteome project 1. Journal of Proteome Research, 14(9), 3738–3749. Available from: PM:26144527.

    Article  CAS  PubMed  Google Scholar 

  • Tanner, S., Shen, Z., Ng, J., Florea, L., Guigo, R., Briggs, S. P., & Bafna, V. (2007). Improving gene annotation using peptide mass spectrometry. Genome Research, 17(2), 231–239. Available from: PM:17189379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X., & Zhang, B. (2013). CustomProDB: An R package to generate customized protein databases from RNA-Seq data for proteomics search 1. Bioinformatics, 29(24), 3235–3237. Available from: PM:24058055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilhelm, M., Schlegl, J., Hahne, H., Moghaddas, G. A., Lieberenz, M., Savitski, M. M., Ziegler, E., Butzmann, L., Gessulat, S., Marx, H., Mathieson, T., Lemeer, S., Schnatbaum, K., Reimer, U., Wenschuh, H., Mollenhauer, M., Slotta-Huspenina, J., Boese, J. H., Bantscheff, M., Gerstmair, A., Faerber, F., & Kuster, B. (2014). Mass-spectrometry-based draft of the human proteome. Nature, 509(7502), 582–587. Available from: PM:24870543.

    Article  CAS  PubMed  Google Scholar 

  • Woo, S., Cha, S. W., Na, S., Guest, C., Liu, T., Smith, R. D., Rodland, K. D., Payne, S., & Bafna, V. (2014). Proteogenomic strategies for identification of aberrant cancer peptides using large-scale next-generation sequencing data. Proteomics, 14(23–24), 2719–2730. Available from: PM:25263569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav, A. K., Kumar, D., & Dash, D. (2011). MassWiz: A novel scoring algorithm with target-decoy based analysis pipeline for tandem mass spectrometry. Journal of Proteome Research, 10(5), 2154–2160. Available from: PM:21417338.

    Article  CAS  PubMed  Google Scholar 

  • Yadav, A. K., Kadimi, P. K., Kumar, D., & Dash, D. (2013). ProteoStats–a library for estimating false discovery rates in proteomics pipelines. Bioinformatics, 29(21), 2799–2800. Available from: PM:23962616.

    Article  CAS  PubMed  Google Scholar 

  • Yates, J. R., III, Eng, J. K., & McCormack, A. L. (1995). Mining genomes: Correlating tandem mass spectra of modified and unmodified peptides to sequences in nucleotide databases. Analytical Chemistry, 67(18), 3202–3210. Available from: PM:8686885.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, G., Fenyo, D., & Neubert, T. A. (2009). Evaluation of the variation in sample preparation for comparative proteomics using stable isotope labeling by amino acids in cell culture. Journal of Proteome Research, 8(3), 1285–1292. Available from: PM:19140678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, B., Wang, J., Wang, X., Zhu, J., Liu, Q., Shi, Z., Chambers, M. C., Zimmerman, L. J., Shaddox, K. F., Kim, S., Davies, S. R., Wang, S., Wang, P., Kinsinger, C. R., Rivers, R. C., Rodriguez, H., Townsend, R. R., Ellis, M. J., Carr, S. A., Tabb, D. L., Coffey, R. J., Slebos, R. J., & Liebler, D. C. (2014). Proteogenomic characterization of human colon and rectal cancer. Nature, 513(7518), 382–387. Available from: PM:25043054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, K., Fu, Y., Zeng, W. F., He, K., Chi, H., Liu, C., Li, Y. C., Gao, Y., Xu, P., & He, S. M. (2015). A note on the false discovery rate of novel peptides in proteogenomics. Bioinformatics, 31(20), 3249–3253. Available from: PM:26076724.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu, Y., Hultin-Rosenberg, L., Forshed, J., Branca, R. M., Orre, L. M., & Lehtio, J. (2014). SpliceVista, a tool for splice variant identification and visualization in shotgun proteomics data. Molecular Cell Proteomics, 13(6), 1552–1562. Available from: PM:24692640.

    Article  CAS  Google Scholar 

  • Zickmann, F., & Renard, B. Y. (2015). MSProGene: Integrative proteogenomics beyond six-frames and single nucleotide polymorphisms. Bioinformatics, 31(12), i106–i115. Available from: PM:26072472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors would like to thank CSIR-IGIB for compute infrastruture and project BSC0121 for publication charges.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Dash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumar, D., Dash, D. (2016). Proteogenomic Tools and Approaches to Explore Protein Coding Landscapes of Eukaryotic Genomes. In: Végvári, Á. (eds) Proteogenomics. Advances in Experimental Medicine and Biology, vol 926. Springer, Cham. https://doi.org/10.1007/978-3-319-42316-6_1

Download citation

Publish with us

Policies and ethics