Skip to main content

Accurate Prediction of Protein Sequences for Proteogenomics Data Integration

  • Protocol
  • First Online:
Clinical Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2420))

Abstract

This book chapter discusses proteogenomics data integration and provides an overview into the different omics layer involved in defining the proteome of a living organism. Various aspects of genome variability affecting either the sequence or abundance level of proteins are discussed in this book chapter, such as the effect of single-nucleotide variants or larger genomic structural variants on the proteome. Next, various sequencing technologies are introduced and discussed from a proteogenomics data integration perspective such as those providing short- and long-read sequencing and listing their respective advantages and shortcomings for accurate protein variant prediction using genomic/transcriptomics sequencing data. Finally, the various bioinformatics tools used to process and analyze DNA/RNA sequencing data are discussed with the ultimate goal of obtaining accurately predicted sample-specific protein sequences that can be used as a drop-in replacement in existing approaches for peptide and protein identification using popular database search engines such as MSFragger, SearchGUI/PeptideShaker.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yates AD, Achuthan P, Akanni W et al (2020) Ensembl 2020. Nucleic Acids Res 48:D682–D688. https://doi.org/10.1093/nar/gkz966

    Article  CAS  PubMed  Google Scholar 

  2. Homo_sapiens—Ensembl genome browser 103. https://www.ensembl.org/Homo_sapiens/Info/Annotation#assembly. Accessed 22 Feb 2021

  3. Phan L, Jin Y, Zhang H, Qiang W, Shekhtman E, Shao D, Revoe D, Villamarin R, Ivanchenko E, Kimura M, Wang ZY, Hao L, Sharopova N, Bihan M, Sturcke A, Lee M, Popova N, Wu W, Bastiani C, Ward M, Holmes JB, Lyoshin V, Kaur K, Mo E, BLK (2020) ALFA: allele frequency aggregator

    Google Scholar 

  4. McCarthy S, Das S, Kretzschmar W et al (2016) A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet 48:1279–1283. https://doi.org/10.1038/ng.3643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Auton A, Abecasis GR, Altshuler DM et al (2015) A global reference for human genetic variation. Nature 526:68–74

    Article  PubMed  Google Scholar 

  6. Boomsma DI, Wijmenga C, Slagboom EP et al (2014) The genome of the Netherlands: design, and project goals. Eur J Hum Genet 22:221–227. https://doi.org/10.1038/ejhg.2013.118

    Article  CAS  PubMed  Google Scholar 

  7. Karczewski KJ, Francioli LC, Tiao G et al (2020) The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581:434–443. https://doi.org/10.1038/s41586-020-2308-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brodnicki TC (2007) Somatic mutation and autoimmunity. Cell 131:1220–1221

    Article  CAS  PubMed  Google Scholar 

  9. Ross KA (2014) Coherent somatic mutation in autoimmune disease. PLoS One 9:e101093. https://doi.org/10.1371/journal.pone.0101093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mills MC, Rahal C (2019) A scientometric review of genome-wide association studies. Commun Biol 2:9

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mueller WF, Larsen LSZ, Garibaldi A et al (2015) The silent sway of splicing by synonymous substitutions. J Biol Chem 290:27700–27711. https://doi.org/10.1074/jbc.M115.684035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang Y, Peng X, Ying P et al (2019) AWESOME: a database of SNPs that affect protein post-translational modifications. Nucleic Acids Res 47:D874–D880. https://doi.org/10.1093/nar/gky821

    Article  CAS  PubMed  Google Scholar 

  13. Zeng Z, Bromberg Y (2019) Predicting functional effects of synonymous variants: a systematic review and perspectives. Front Genet 10:914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rosenfeld JA, Malhotra AK, Lencz T (2010) Novel multi-nucleotide polymorphisms in the human genome characterized by whole genome and exome sequencing. Nucleic Acids Res 38:6102–6111. https://doi.org/10.1093/nar/gkq408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Q, Pierce-Hoffman E, Cummings BB et al (2020) Landscape of multi-nucleotide variants in 125,748 human exomes and 15,708 genomes. Nat Commun 12:827. https://doi.org/10.1038/s41467-019-12438-5

    Article  CAS  Google Scholar 

  16. Bartonek L, Braun D, Zagrovic B (2020) Frameshifting preserves key physicochemical properties of proteins. Proc Natl Acad Sci U S A 117:5907–5912. https://doi.org/10.1073/pnas.1911203117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Houseley J, Tollervey D (2009) The many pathways of RNA degradation. Cell 136:763–776

    Article  CAS  PubMed  Google Scholar 

  18. Jakubosky D, D’Antonio M, Bonder MJ et al (2020) Properties of structural variants and short tandem repeats associated with gene expression and complex traits. Nat Commun 11:1–15. https://doi.org/10.1038/s41467-020-16482-4

    Article  CAS  Google Scholar 

  19. Matsukawa T, Aplan PD (2020) Clinical and molecular consequences of fusion genes in myeloid malignancies. Stem Cells 38:1366–1374. https://doi.org/10.1002/stem.3263

    Article  CAS  PubMed  Google Scholar 

  20. Pajic P, Pavlidis P, Dean K et al (2019) Independent amylase gene copy number bursts correlate with dietary preferences in mammals. elife 8:e44628. https://doi.org/10.7554/eLife.44628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Perry GH, Dominy NJ, Claw KG et al (2007) Diet and the evolution of human amylase gene copy number variation. Nat Genet 39:1256–1260. https://doi.org/10.1038/ng2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gibbons JG, Branco AT, Yu S, Lemos B (2014) Ribosomal DNA copy number is coupled with gene expression variation and mitochondrial abundance in humans. Nat Commun 5:4850. https://doi.org/10.1038/ncomms5850

    Article  CAS  PubMed  Google Scholar 

  23. Malone JH (2015) Balancing copy number in ribosomal DNA. Proc Natl Acad Sci U S A 112:2635–2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu Y, Beyer A, Aebersold R (2016) On the dependency of cellular protein levels on mRNA abundance. Cell 165:535–550

    Article  CAS  PubMed  Google Scholar 

  25. Liu Y, Borel C, Li L et al (2017) Systematic proteome and proteostasis profiling in human trisomy 21 fibroblast cells. Nat Commun 8(1):1212. https://doi.org/10.1038/s41467-017-01422-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rao X, Thapa KS, Chen AB et al (2019) Allele-specific expression and high-throughput reporter assay reveal functional genetic variants associated with alcohol use disorders. Mol Psychiatry 26(4):1–10. https://doi.org/10.1038/s41380-019-0508-z

    Article  CAS  Google Scholar 

  27. Ken-Dror G, Humphries SE, Drenos F (2013) The use of haplotypes in the identification of interaction between SNPs. Hum Hered 75:44–51. https://doi.org/10.1159/000350964

    Article  CAS  PubMed  Google Scholar 

  28. Spooner W, McLaren W, Slidel T et al (2018) Haplosaurus computes protein haplotypes for use in precision drug design. Nat Commun 9:4128. https://doi.org/10.1038/s41467-018-06542-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Trerotola M, Relli V, Simeone P, Alberti S (2015) Epigenetic inheritance and the missing heritability. Hum Genomics 9:17

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zakarya R, Adcock I, Oliver BG (2019) Epigenetic impacts of maternal tobacco and e-vapour exposure on the offspring lung. Clin Epigenetics 11:32

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dekker J, Belmont AS, Guttman M et al (2017) The 4D nucleome project. Nature 549:219–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dixon JR, Jung I, Selvaraj S et al (2015) Chromatin architecture reorganization during stem cell differentiation. Nature 518:331–336. https://doi.org/10.1038/nature14222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu M, Ren B (2017) The three-dimensional organization of mammalian genomes. Annu Rev Cell Dev Biol 33:265–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Treangen TJ, Salzberg SL (2012) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13:36–46

    Article  CAS  Google Scholar 

  35. Bloom K, Costanzo V (2017) Centromere structure and function. Prog Mol Subcell Biol 56:515–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shay JW, Wright WE (2019) Telomeres and telomerase: three decades of progress. Nat Rev Genet 20:299–309. https://doi.org/10.1038/s41576-019-0099-1

    Article  CAS  PubMed  Google Scholar 

  37. Lomvardas S, Barnea G, Pisapia DJ et al (2006) Interchromosomal interactions and olfactory receptor choice. Cell 126:403–413. https://doi.org/10.1016/j.cell.2006.06.035

    Article  CAS  PubMed  Google Scholar 

  38. Ong CT, Corces VG (2011) Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat Rev Genet 12:283–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schoenfelder S, Fraser P (2019) Long-range enhancer–promoter contacts in gene expression control. Nat Rev Genet 20:437–455

    Article  CAS  PubMed  Google Scholar 

  40. Plaschka C, Hantsche M, Dienemann C et al (2016) Transcription initiation complex structures elucidate DNA opening. Nature 533:353–358. https://doi.org/10.1038/nature17990

    Article  CAS  PubMed  Google Scholar 

  41. Li C, Zhang J (2019) Stop-codon read-through arises largely from molecular errors and is generally nonadaptive. PLoS Genet 15:e1008141. https://doi.org/10.1371/journal.pgen.1008141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stadtman TC (1996) Selenocysteine. Annu Rev Biochem 65:83–100

    Article  CAS  PubMed  Google Scholar 

  43. Pan Q, Shai O, Lee LJ et al (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40:1413–1415. https://doi.org/10.1038/ng.259

    Article  CAS  PubMed  Google Scholar 

  44. Chen J, Weiss WA (2015) Alternative splicing in cancer: implications for biology and therapy. Oncogene 34:1–14

    Article  PubMed  Google Scholar 

  45. Conley AB, Jordan IK (2012) Cell type-specific termination of transcription by transposable element sequences. Mob DNA 3:15. https://doi.org/10.1186/1759-8753-3-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang J, Alvin Chew BL, Lai Y et al (2019) Quantifying the RNA cap epitranscriptome reveals novel caps in cellular and viral RNA. Nucleic Acids Res 47:e130. https://doi.org/10.1093/nar/gkz751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Christofi T, Zaravinos A (2019) RNA editing in the forefront of epitranscriptomics and human health. J Transl Med 17:319

    Article  PubMed  PubMed Central  Google Scholar 

  48. Picardi E, Manzari C, Mastropasqua F et al (2015) Profiling RNA editing in human tissues: towards the inosinome Atlas. Sci Rep 5:14941. https://doi.org/10.1038/srep14941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ben-Dov E, Shapiro OH, Siboni N, Kushmaro A (2006) Advantage of using inosine at the 3′ termini of 16S rRNA gene universal primers for the study of microbial diversity. Appl Environ Microbiol 72:6902–6906. https://doi.org/10.1128/AEM.00849-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Davidson NO (1994) RNA editing of the apolipoprotein B gene. A mechanism to regulate the atherogenic potential of intestinal lipoproteins? Trends Cardiovasc Med 4:231–235

    Article  CAS  PubMed  Google Scholar 

  51. Zhang P, Wu W, Chen Q, Chen M (2019) Non-coding RNAs and their integrated networks. J Integr Bioinform 16:20190027

    Article  PubMed Central  Google Scholar 

  52. Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet. 15 Spec No

    Google Scholar 

  53. Wilkinson ME, Charenton C, Nagai K (2020) RNA splicing by the spliceosome. Annu Rev Biochem 89:359–388. https://doi.org/10.1146/annurev-biochem-091719-064225

    Article  CAS  PubMed  Google Scholar 

  54. Bracken CP, Scott HS, Goodall GJ (2016) A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet 17:719–732

    Article  CAS  PubMed  Google Scholar 

  55. Ozata DM, Gainetdinov I, Zoch A et al (2019) PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet 20:89–108

    Article  CAS  PubMed  Google Scholar 

  56. Pelechano V, Steinmetz LM (2013) Gene regulation by antisense transcription. Nat Rev Genet 14:880–893

    Article  CAS  PubMed  Google Scholar 

  57. Uszczynska-Ratajczak B, Lagarde J, Frankish A et al (2018) Towards a complete map of the human long non-coding RNA transcriptome. Nat Rev Genet 19:535–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yao RW, Wang Y, Chen LL (2019) Cellular functions of long noncoding RNAs. Nat Cell Biol 21:542–551

    Article  CAS  PubMed  Google Scholar 

  59. Ji Z, Song R, Regev A, Struhl K (2015) Many lncRNAs, 5′UTRs, and pseudogenes are translated and some are likely to express functional proteins. Elife 4. https://doi.org/10.7554/eLife.08890

  60. Borbolis F, Syntichaki P (2015) Cytoplasmic mRNA turnover and ageing. Mech Ageing Dev 152:32–42. https://doi.org/10.1016/j.mad.2015.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Franks A, Airoldi E, Slavov N (2017) Post-transcriptional regulation across human tissues. PLoS Comput Biol 13:e1005535. https://doi.org/10.1371/journal.pcbi.1005535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Qu Z, Vondriska TM (2009) The effects of cascade length, kinetics and feedback loops on biological signal transduction dynamics in a simplified cascade model. Phys Biol 6:016007. https://doi.org/10.1088/1478-3975/6/1/016007

    Article  CAS  PubMed  Google Scholar 

  63. Powers KT, Szeto JYA, Schaffitzel C (2020) New insights into no-go, non-stop and nonsense-mediated mRNA decay complexes. Curr Opin Struct Biol 65:110–118

    Article  CAS  PubMed  Google Scholar 

  64. Veitia RA (2005) Gene dosage balance: deletions, duplications and dominance. Trends Genet 21:33–35

    Article  CAS  PubMed  Google Scholar 

  65. Head SR, Kiyomi Komori H, LaMere SA et al (2014) Library construction for next-generation sequencing: overviews and challenges. BioTechniques 56:61–77. https://doi.org/10.2144/000114133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351

    Article  CAS  PubMed  Google Scholar 

  67. Logsdon GA, Vollger MR, Eichler EE (2020) Long-read human genome sequencing and its applications. Nat Rev Genet 21:597–614. https://doi.org/10.1038/s41576-020-0236-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Landrum MJ, Lee JM, Benson M et al (2018) ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res 46:D1062–D1067. https://doi.org/10.1093/nar/gkx1153

    Article  CAS  PubMed  Google Scholar 

  69. Warr A, Robert C, Hume D et al (2015) Exome sequencing: current and future perspectives. G3 Genes Genomes Genet 5:1543–1550. https://doi.org/10.1534/g3.115.018564

    Article  Google Scholar 

  70. Meienberg J, Bruggmann R, Oexle K, Matyas G (2016) Clinical sequencing: is WGS the better WES? Hum Genet 135:359–362. https://doi.org/10.1007/s00439-015-1631-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Seaby EG, Pengelly RJ, Ennis S (2016) Exome sequencing explained: a practical guide to its clinical application. Brief Funct Genomics 15:374–384. https://doi.org/10.1093/bfgp/elv054

    Article  CAS  PubMed  Google Scholar 

  72. Wu J, Xiao J, Zhang Z et al (2014) Ribogenomics: the science and knowledge of RNA. Genomics Proteomics Bioinformat 12:57–63. https://doi.org/10.1016/j.gpb.2014.04.002

    Article  CAS  Google Scholar 

  73. Cui P, Lin Q, Ding F et al (2010) A comparison between ribo-minus RNA-sequencing and polyA-selected RNA-sequencing. Genomics 96:259–265. https://doi.org/10.1016/j.ygeno.2010.07.010

    Article  CAS  PubMed  Google Scholar 

  74. Liu Q, Shvarts T, Sliz P, Gregory RI (2020) RiboToolkit: an integrated platform for analysis and annotation of ribosome profiling data to decode mRNA translation at codon resolution. Nucleic Acids Res 48:W218–W229. https://doi.org/10.1093/nar/gkaa395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Calviello L, Ohler U (2017) Beyond read-counts: ribo-seq data analysis to understand the functions of the transcriptome. Trends Genet 33:728–744

    Article  CAS  PubMed  Google Scholar 

  76. Spangenberg L, Shigunov P, Abud APR et al (2013) Polysome profiling shows extensive posttranscriptional regulation during human adipocyte stem cell differentiation into adipocytes. Stem Cell Res 11:902–912. https://doi.org/10.1016/j.scr.2013.06.002

    Article  CAS  PubMed  Google Scholar 

  77. Mousset CM, Hobo W, Woestenenk R et al (2019) Comprehensive phenotyping of T cells using flow cytometry. Cytom Part A 95:647–654. https://doi.org/10.1002/cyto.a.23724

    Article  Google Scholar 

  78. Mund A, Coscia F, Hollandi R et al (2021) AI-driven deep visual proteomics defines cell identity and heterogeneity proteomics program, 2 protein signaling program, and 3 protein imaging platform. bioRxiv 2021.01.25.427969. https://doi.org/10.1101/2021.01.25.427969

  79. Marx V (2017) How to deduplicate PCR. Nat Methods 14:473–476. https://doi.org/10.1038/nmeth.4268

    Article  CAS  PubMed  Google Scholar 

  80. Sena JA, Galotto G, Devitt NP et al (2018) Unique molecular identifiers reveal a novel sequencing artefact with implications for RNA-Seq based gene expression analysis. Sci Rep 8:13121. https://doi.org/10.1038/s41598-018-31064-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hwang B, Lee JH, Bang D (2018) Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med 50:96

    Article  PubMed Central  Google Scholar 

  82. Qiu P (2020) Embracing the dropouts in single-cell RNA-seq analysis. Nat Commun 11:1169. https://doi.org/10.1038/s41467-020-14976-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Specht H, Slavov N (2018) Transformative opportunities for single-cell proteomics. J Proteome Res 17:2565–2571

    Article  PubMed  PubMed Central  Google Scholar 

  84. Petrany MJ, Swoboda CO, Sun C et al (2020) Single-nucleus RNA-seq identifies transcriptional heterogeneity in multinucleated skeletal myofibers. Nat Commun 11:1–12. https://doi.org/10.1038/s41467-020-20063-w

    Article  CAS  Google Scholar 

  85. Wu H, Kirita Y, Donnelly EL, Humphreys BD (2019) Advantages of single-nucleus over single-cell RNA sequencing of adult kidney: rare cell types and novel cell states revealed in fibrosis. J Am Soc Nephrol 30:23–32. https://doi.org/10.1681/ASN.2018090912

    Article  CAS  PubMed  Google Scholar 

  86. Yao Y, Nishimura M, Murayama K et al (2019) A simple method for sequencing the whole human mitochondrial genome directly from samples and its application to genetic testing. Sci Rep 9:17411. https://doi.org/10.1038/s41598-019-53449-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Green ED (2001) Strategies for the systematic sequencing of complex genomes. Nat Rev Genet 2:573–583. https://doi.org/10.1038/35084503

    Article  CAS  PubMed  Google Scholar 

  88. Gaspar JM (2018) NGmerge: merging paired-end reads via novel empirically-derived models of sequencing errors. BMC Bioinformatics 19:536. https://doi.org/10.1186/s12859-018-2579-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Edwards HS, Krishnakumar R, Sinha A et al (2019) Real-time selective sequencing with rubric: read until with basecall and reference-informed criteria. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-47857-3

    Article  CAS  Google Scholar 

  90. Kovaka S, Fan Y, Ni B et al (2021) Targeted nanopore sequencing by real-time mapping of raw electrical signal with UNCALLED. Nat Biotechnol 39(4):1–11. https://doi.org/10.1038/s41587-020-0731-9

    Article  CAS  Google Scholar 

  91. Loose M, Malla S, Stout M (2016) Real-time selective sequencing using nanopore technology. Nat Methods 13:751–754. https://doi.org/10.1038/nmeth.3930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Miga KH, Koren S, Rhie A et al (2020) Telomere-to-telomere assembly of a complete human X chromosome. Nature 585:79–84. https://doi.org/10.1038/s41586-020-2547-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bayega A, Wang YC, Oikonomopoulos S et al (2018) Transcript profiling using long-read sequencing technologies. In: Methods in molecular biology. Humana Press, pp 121–147

    Google Scholar 

  94. Thibodeau ML, O’Neill K, Dixon K et al (2020) Improved structural variant interpretation for hereditary cancer susceptibility using long-read sequencing. Genet Med 22:1892–1897. https://doi.org/10.1038/s41436-020-0880-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Navin NE, Hicks J (2010) Tracing the tumor lineage. Mol Oncol 4:267–283

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wenger AM, Peluso P, Rowell WJ et al (2019) Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat Biotechnol 37:1155–1162. https://doi.org/10.1038/s41587-019-0217-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data

    Google Scholar 

  99. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  PubMed  Google Scholar 

  101. Grabherr MG, Haas BJ, Yassour M et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652. https://doi.org/10.1038/nbt.1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pertea M, Pertea GM, Antonescu CM et al (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295. https://doi.org/10.1038/nbt.3122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. McKenna A, Hanna M, Banks E et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303. https://doi.org/10.1101/gr.107524.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. McLaren W, Gil L, Hunt SE et al (2016) The Ensembl variant effect predictor. Genome Biol 17:122. https://doi.org/10.1186/s13059-016-0974-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ruggles KV, Tang Z, Wang X et al (2016) An analysis of the sensitivity of proteogenomic mapping of somatic mutations and novel splicing events in cancer. Mol Cell Proteomics 15:1060–1071. https://doi.org/10.1074/mcp.M115.056226

    Article  CAS  PubMed  Google Scholar 

  106. Choong WK, Wang JH, Sung TY (2020) MinProtMaxVP: generating a minimized number of protein variant sequences containing all possible variant peptides for proteogenomic analysis. J Proteome 223:103819. https://doi.org/10.1016/j.jprot.2020.103819

    Article  CAS  Google Scholar 

  107. Haas BJ, Papanicolaou A, Yassour M et al (2013) De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512. https://doi.org/10.1038/nprot.2013.084

    Article  CAS  PubMed  Google Scholar 

  108. Vaudel M, Barsnes H, Berven FS et al (2011) SearchGUI: an open-source graphical user interface for simultaneous OMSSA and X!Tandem searches. Proteomics 11:996–999. https://doi.org/10.1002/pmic.201000595

    Article  CAS  PubMed  Google Scholar 

  109. Vaudel M, Burkhart JM, Zahedi RP et al (2015) PeptideShaker enables reanalysis of MS-derived proteomics data sets: to the editor. Nat Biotechnol 33:22–24

    Article  CAS  PubMed  Google Scholar 

  110. Kong AT, Leprevost FV, Avtonomov DM et al (2017) MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat Methods 14:513–520. https://doi.org/10.1038/nmeth.4256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhang J, Xin L, Shan B et al (2012) PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification. Mol Cell Proteomics 11:M111.010587. https://doi.org/10.1074/mcp.M111.010587

    Article  CAS  PubMed  Google Scholar 

  112. Perkins DN, Pappin DJC, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. In: Electrophoresis. Wiley-VCH Verlag, pp 3551–3567

    Google Scholar 

  113. den Dunnen JT, Dalgleish R, Maglott DR et al (2016) HGVS recommendations for the description of sequence variants: 2016 update. Hum Mutat 37:564–569. https://doi.org/10.1002/humu.22981

    Article  CAS  Google Scholar 

  114. Bischoff R, Permentier H, Guryev V, Horvatovich P (2016) Genomic variability and protein species—improving sequence coverage for proteogenomics. J Proteome 134:25–36. https://doi.org/10.1016/j.jprot.2015.09.021

    Article  CAS  Google Scholar 

  115. Barbieri R, Guryev V, Brandsma CA et al (2016) Proteogenomics: key driver for clinical discovery and personalized medicine. In: Advances in experimental medicine and biology. Springer, New York, pp 21–47

    Google Scholar 

  116. Horvatovich P, Brandsma C-A, Suits F et al (2019) Proteogenomics and multi-omics data integration for personalized medicine. In: Handbook of biomarkers and precision medicine. Chapman and Hall/CRC, pp 422–431

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank Prof. Dr. Rainer Bischoff for his input, feedback, and discussions related to the content of this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Horvatovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hagemeijer, Y.P., Guryev, V., Horvatovich, P. (2022). Accurate Prediction of Protein Sequences for Proteogenomics Data Integration. In: Corrales, F.J., Paradela, A., Marcilla, M. (eds) Clinical Proteomics. Methods in Molecular Biology, vol 2420. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1936-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1936-0_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1935-3

  • Online ISBN: 978-1-0716-1936-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics