Skip to main content

Positive Feedback Loops Between Inflammatory, Bone and Cancer Cells During Metastatic Niche Construction

  • Chapter
  • First Online:
Systems Biology of Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 936))

Abstract

Bone, which includes several cell populations and numerous cytokines and chemokines that provide cell-cell signaling, is a common destination for many cancer metastases. Bone metastasis skews this signaling to develop vicious cycles between immune, bone and cancer populations that lead to abnormal bone remodeling during cancer niche construction. Temporal models utilize positive feedback systems as an integrative tool providing insights into the rate-limiting processes that determine multiple stages of the bone metastasis. We develop a logical-transient-threshold framework by linking temporal responses of the cancer, bone and immune systems through macrophages during ecological niche construction of cancer in host bone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A second order behavior of variable x under external stimuli f(t) is given by a second order linear differential system as \(\frac{d^{2}x} {dt^{2}} + a_{1}\frac{dx} {dt} + a_{2}x = f(t)\).

References

  1. Surveillance, epidemiology, and end results programturning cancer data into discovery. http://seer.cancer.gov/statfacts/html/prost.html (2014)

  2. Sims NA, John Martin T (2014) Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. BoneKEy Rep 3:481

    PubMed  PubMed Central  Google Scholar 

  3. Roato I (2013) Interaction among cells of bone, immune system, and solid tumors leads to bone metastases. Clin Dev Immunol 2013:1–7

    Article  Google Scholar 

  4. Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG, Rimoldi M, Biswas SK, Allavena P, Mantovani A (2008) Macrophage polarization in tumour progression. In: Seminars in cancer biology, vol 18. Elsevier, pp 349–355

    Google Scholar 

  5. Zarif JC, Taichman RS, Pienta KJ (2014) Tam macrophages promote growth and metastasis within the cancer ecosystem. OncoImmunology 3(7):e941734

    Article  PubMed  PubMed Central  Google Scholar 

  6. Weilbaecher KN, Guise TA, McCauley LK (2011) Cancer to bone: a fatal attraction. Nat Rev Cancer 11(6):411–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liò P, Paoletti N, Moni MA, Atwell K, Merelli E, Viceconti M (2012) Modelling osteomyelitis. BMC Bioinform 13(Suppl 14):S12

    Article  Google Scholar 

  8. Ayati BP, Edwards CM, Webb GF, Wikswo JP (2010) Research a mathematical model of bone remodeling dynamics for normal bone cell populations and myeloma bone disease. Biol Direct 5:1–17

    Article  Google Scholar 

  9. Eftimie R, Bramson JL, Earn DJD (2011) Interactions between the immune system and cancer: a brief review of non-spatial mathematical models. Bull Math Biol 73(1):2–32

    Article  PubMed  Google Scholar 

  10. Ryser MD, Qu Y, Komarova SV (2012) Osteoprotegerin in bone metastases: mathematical solution to the puzzle. PLOS Comput Biol 8(10):e1002703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kotas ME, Medzhitov R (2015) Homeostasis, inflammation, and disease susceptibility. Cell 160(5):816–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Eladdadi A, Kim P, Mallet D (2014) Mathematical models of tumor-immune system dynamics, vol 107. Springer, New York

    Google Scholar 

  13. Papin JA, Reed JL, Palsson BO (2004) Hierarchical thinking in network biology: the unbiased modularization of biochemical networks. Trends Biochem Sci 29(12):641–647

    Article  CAS  PubMed  Google Scholar 

  14. Yosef N, Regev A (2011) Impulse control: temporal dynamics in gene transcription. Cell 144(6):886–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barcellos-Hoff MH, Lyden D, Wang TC (2013) The evolution of the cancer niche during multistage carcinogenesis. Nat Rev Cancer 13(7):511–518

    Article  CAS  PubMed  Google Scholar 

  16. Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331(6024):1559–1564

    Article  CAS  PubMed  Google Scholar 

  17. Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C, Lander ES (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146(4):633–644

    Article  CAS  PubMed  Google Scholar 

  18. Liddiard K, Taylor PR (2015) Understanding local macrophage phenotypes in disease: shape-shifting macrophages. Nat Med 21(2):119–120

    Article  CAS  PubMed  Google Scholar 

  19. Bronte V, Murray PJ (2015) Understanding local macrophage phenotypes in disease: modulating macrophage function to treat cancer. Nat Med 21(2):117–119

    Article  CAS  PubMed  Google Scholar 

  20. Guise TA, Mohammad KS, Clines G, Stebbins EG, Wong DH, Higgins LS, Vessella R, Corey E, Padalecki S, Suva L et al (2006) Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clin Cancer Res 12(20):6213s–6216s

    Google Scholar 

  21. Morris MK, Saez-Rodriguez J, Sorger PK, Lauffenburger DA (2010) Logic-based models for the analysis of cell signaling networks. Biochemistry 49(15):3216–3224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aström KJ, Murray RM (2010) Feedback systems: an introduction for scientists and engineers. Princeton university press, Princeton

    Google Scholar 

  23. Cannon WB (1929) Organization for physiological homeostasis. Physiol Rev 9(3):399–431

    Google Scholar 

  24. Kholodenko BN (2006) Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 7(3):165–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guise TA, Mundy GR (1998) Cancer and bone 1. Endocr Rev 19(1):18–54

    CAS  PubMed  Google Scholar 

  26. Scholtysek C, Kronke G, Schett G (2012) Inflammation-associated changes in bone homeostasis. Inflamm Allergy-Drug Targets (Former Curr Drug Targets-Inflamm Allergy) 11(3):188–195

    CAS  Google Scholar 

  27. Psaila B, Lyden D (2009) The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9(4):285–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oskarsson T, Batlle E, Massagué J (2014) Metastatic stem cells: sources, niches, and vital pathways. Cell Stem Cell 14(3):306–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bussard KM, Gay CV, Mastro AM (2008) The bone microenvironment in metastasis; what is special about bone? Cancer Metastasis Rev 27(1):41–55

    Article  PubMed  Google Scholar 

  30. Sosnoski DM, Krishnan V, Kraemer WJ, Dunn-Lewis C, Mastro AM (2012) Changes in cytokines of the bone microenvironment during breast cancer metastasis. Int J Breast Cancer 2012:1–9

    Article  Google Scholar 

  31. Zheng Y, Zhou H, Dunstan CR, Sutherland RL, Seibel MJ (2013) The role of the bone microenvironment in skeletal metastasis. J Bone Oncol 2(1):47–57

    Article  PubMed  Google Scholar 

  32. Kingsley LA, Fournier PGJ, Chirgwin JM, Guise TA (2007) Molecular biology of bone metastasis. Mol Cancer Ther 6(10):2609–2617

    Article  CAS  PubMed  Google Scholar 

  33. Logothetis CJ, Lin S-H (2005) Osteoblasts in prostate cancer metastasis to bone. Nat Rev Cancer 5(1):21–28

    Article  CAS  PubMed  Google Scholar 

  34. Wang H, Yu C, Gao X, Welte T, Muscarella AM, Tian L, Zhao H, Zhao Z, Du S, Tao J (2015) The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells. Cancer Cell 27(2):193–210

    Article  PubMed  PubMed Central  Google Scholar 

  35. Roodman GD (2001) Biology of osteoclast activation in cancer. J Clin Oncol 19(15):3562–3571

    CAS  PubMed  Google Scholar 

  36. Walsh MC, Kim N, Kadono Y, Rho J, Lee SY, Lorenzo J, Choi Y (2006) Osteoimmunology: interplay between the immune system and bone metabolism. Annu Rev Immunol 24:33–63

    Article  CAS  PubMed  Google Scholar 

  37. Allavena P, Sica A, Solinas G, Porta C, Mantovani A (2008) The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol/Hematol 66(1): 1–9

    Article  Google Scholar 

  38. Vasiliadou I, Holen I The role of macrophages in bone metastasis. J Bone Oncol 2(4):158–166 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  39. Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11(10):889–896

    Article  CAS  PubMed  Google Scholar 

  40. Kim SW, Kim JS, Papadopoulos J, Choi HJ, He J, Maya M, Langley RR, Fan D, Fidler IJ, Kim S-J Consistent interactions between tumor cell il-6 and macrophage tnf-α enhance the growth of human prostate cancer cells in the bone of nude mouse. Int Immunopharmacol 11(7):862–872 (2011)

    Article  CAS  PubMed  Google Scholar 

  41. Colegio OR, Chu N-Q, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513:559–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Han J-H, Choi SJ, Kurihara N, Koide M, Oba Y, Roodman GD (2001) Macrophage inflammatory protein-1α is an osteoclastogenic factor in myeloma that is independent of receptor activator of nuclear factor κb ligand. Blood 97(11):3349–3353

    Article  CAS  PubMed  Google Scholar 

  43. Yago T, Nanke Y, Kawamoto M, Furuya T, Kobashigawa T, Kamatani N, Kotake S (2007) Il-23 induces human osteoclastogenesis via il-17 in vitro, and anti-il-23 antibody attenuates collagen-induced arthritis in rats. Arthritis Res Ther 9(5): R96

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kollet O, Dar A, Lapidot T (2007) The multiple roles of osteoclasts in host defense: bone remodeling and hematopoietic stem cell mobilization. Annu Rev Immunol 25:51–69

    Article  CAS  PubMed  Google Scholar 

  45. Comito G, Giannoni E, Segura CP, Barcellos-de Souza P, Raspollini MR, aroni G, Lanciotti M, Serni S, Chiarugi P (2014) Cancer-associated fibroblasts and m2-polarized macrophages synergize during prostate carcinoma progression. Oncogene 33(19):2423–2431

    Google Scholar 

  46. Purvis JE, Lahav G Encoding and decoding cellular information through signaling dynamics. Cell 152(5):945–956 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Behar M, Hoffmann A (2010) Understanding the temporal codes of intra-cellular signals. Curr Opin Genet Dev 20(6):684–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Davis DM, Purvis JE (2015) Computational analysis of signaling patterns in single cells. In: Seminars in cell & developmental biology, vol 37. Elsevier, pp 35–43

    Google Scholar 

  49. Thomas P, Popović N, Grima R (2014) Phenotypic switching in gene regulatory networks. Proc Natl Acad Sci 111(19):6994–6999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gerlee P (2013) The model muddle: in search of tumor growth laws. Cancer Res 73(8):2407–2411

    Article  CAS  PubMed  Google Scholar 

  51. Malanchi I, Santamaria-Martínez A, Susanto E, Peng H, Lehr H-A, Delaloye J-F, Huelsken J (2012) Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481(7379):85–89

    Article  CAS  Google Scholar 

Download references

Acknowledgements

NCI Grant numbers: U54CA143803, CA163124, CA093900, CA143055 supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth J. Pienta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kianercy, A., Pienta, K.J. (2016). Positive Feedback Loops Between Inflammatory, Bone and Cancer Cells During Metastatic Niche Construction. In: Rejniak, K. (eds) Systems Biology of Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 936. Springer, Cham. https://doi.org/10.1007/978-3-319-42023-3_7

Download citation

Publish with us

Policies and ethics