Skip to main content

Novel Techniques to Study the Bone-Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1225))

Abstract

Many cancers commonly metastasize to bone. After entering the bone, cancer cells can interact with surrounding stromal cells, which ultimately influences metastasis progression. Extracellular vesicles, direct cell contact and gap junctions, and cytokines are all mechanisms of intercellular communication that have been observed to occur in the bone microenvironment. These methods of cellular crosstalk can occur between cancer cells and a variety of stromal cells, with each interaction having a different impact on cancer progression. Communication between cancer cells and bone-resident cells has previously been implicated in processes such as cancer cell trafficking and arrest in bone, cancer cell dormancy, cancer cell reactivation, and proliferation. In this chapter we review innovative techniques and model systems that can be used to study bidirectional crosstalk between cancer cells and stromal cells in the bone, with an emphasis specifically on bone-metastatic breast cancer. Investigating how metastatic cancer cells interact with, and are influenced by, the bone microenvironment is crucial to better understanding of the progression of bone metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67(1):7–30

    Article  PubMed  Google Scholar 

  2. Florencio-Silva R et al (2015) Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int 2015:421746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Capulli M, Paone R, Rucci N (2014) Osteoblast and osteocyte: games without frontiers. Arch Biochem Biophys 561:3–12

    Article  CAS  PubMed  Google Scholar 

  4. Takahashi N et al (2002) Cells of bone: osteoclast generation. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology. Academic Press, San Diego, CA, pp 109–126

    Google Scholar 

  5. Stenbeck G (2002) Formation and function of the ruffled border in osteoclasts. Semin Cell Dev Biol 13(4):285–292

    Article  CAS  PubMed  Google Scholar 

  6. Bonewald LF (2011) The amazing osteocyte. J Bone Miner Res 26(2):229–238

    Article  CAS  PubMed  Google Scholar 

  7. Bussard KM, Gay CV, Mastro AM (2008) The bone microenvironment in metastasis; what is special about bone? Cancer Metastasis Rev 27:41–55

    Article  PubMed  Google Scholar 

  8. Mazo IB, von Andrian UH (1999) Adhesion and homing of blood-borne cells in bone marrow microvessels. J Leukoc Biol 66:25–32

    Article  CAS  PubMed  Google Scholar 

  9. Phadke PA et al (2006) Kinetics of metastatic breast cancer cell trafficking in bone. Clin Cancer Res 12:1431–1440

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bussard KM et al (2010) Localization of MCP-1, VEGF, and IL-6 in the bone microenvironment of mice bearing metastatic breast cancer. Clin Exp Metastasis 27:331–340

    Article  CAS  PubMed  Google Scholar 

  11. Marks SC Jr, Odgren PR (2002) Structure and development of the skeleton. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology. Academic Press, San Diego, CA, pp 3–16

    Chapter  Google Scholar 

  12. Pedersen EA et al (2012) The prostate cancer bone marrow niche: more than just ‘fertile soil’. Asian J Androl 14(3):423–427

    Article  PubMed  PubMed Central  Google Scholar 

  13. Taichman RS (2005) Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 105(7):2631–2639

    Article  CAS  PubMed  Google Scholar 

  14. Walker ND et al (2019) Exosomes from differentially activated macrophages influence dormancy or resurgence of breast cancer cells within bone marrow stroma. Cell Death Dis 10(2):59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lim PK et al (2011) Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res 71(5):1550–1560

    Article  CAS  PubMed  Google Scholar 

  16. Bliss SA et al (2016) Mesenchymal stem cell-derived exosomes stimulate cycling quiescence and early breast cancer dormancy in bone marrow. Cancer Res 76(19):5832–5844

    Article  CAS  PubMed  Google Scholar 

  17. Vera-Ramirez L, Hunter KW (2017) Tumor cell dormancy as an adaptive cell stress response mechanism. F1000Res 6:2134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Guise TA (2002) The vicious cycle of bone metastases. J Musculoskelet Neuronal Interact 2(6):570–572

    CAS  PubMed  Google Scholar 

  19. Coleman RE (1997) Skeletal complications of malignancy. Cancer 80(8 Suppl):1588–1594

    Article  CAS  PubMed  Google Scholar 

  20. Wang H et al (2015) The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells. Cancer Cell 27(2):193–210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Kolb AD et al (2019) Osteoblasts are “educated” by crosstalk with metastatic breast cancer cells in the bone tumor microenvironment. Breast Cancer Res 21(1):31

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lasser C, Jang SC, Lotvall J (2018) Subpopulations of extracellular vesicles and their therapeutic potential. Mol Asp Med 60:1–14

    Article  CAS  Google Scholar 

  23. Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289

    Article  CAS  PubMed  Google Scholar 

  24. Gyorgy B et al (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 68(16):2667–2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Minciacchi VR et al (2015) Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles. Oncotarget 6(13):11327–11341

    Article  PubMed  PubMed Central  Google Scholar 

  26. Thakur BK et al (2014) Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res 24(6):766–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guescini M et al (2010) Astrocytes and glioblastoma cells release exosomes carrying mtDNA. J Neural Transm (Vienna) 117(1):1–4

    Article  CAS  Google Scholar 

  28. Melo SA et al (2015) Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523(7559):177–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sato S, Weaver AM (2018) Extracellular vesicles: important collaborators in cancer progression. Essays Biochem 62(2):149–163

    Article  PubMed  PubMed Central  Google Scholar 

  30. Costa-Silva B et al (2015) Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 17(6):816–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hoshino A et al (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527(7578):329–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Peinado H et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18(6):883–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Grange C et al (2011) Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res 71(15):5346–5356

    Article  CAS  PubMed  Google Scholar 

  34. Tiedemann K et al (2019) Exosomal release of L-plastin by breast cancer cells facilitates metastatic bone osteolysis. Transl Oncol 12(3):462–474

    Article  PubMed  Google Scholar 

  35. Liu X et al (2018) Metastatic breast cancer cells overexpress and secrete miR-218 to regulate type I collagen deposition by osteoblasts. Breast Cancer Res 20(1):127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Faict S et al (2018) Exosomes play a role in multiple myeloma bone disease and tumor development by targeting osteoclasts and osteoblasts. Blood Cancer J 8(11):105

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nakata R et al (2017) Contribution of neuroblastoma-derived exosomes to the production of pro-tumorigenic signals by bone marrow mesenchymal stromal cells. J Extracell Vesicles 6(1):1332941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ringuette Goulet C et al (2018) Exosomes induce fibroblast differentiation into cancer-associated fibroblasts through TGFbeta signaling. Mol Cancer Res 16(7):1196–1204

    Article  CAS  PubMed  Google Scholar 

  39. Webber JP et al (2015) Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes. Oncogene 34(3):290–302

    Article  CAS  PubMed  Google Scholar 

  40. Yan W et al (2018) Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nat Cell Biol 20(5):597–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lu H et al (2018) Exosomal alphavbeta6 integrin is required for monocyte M2 polarization in prostate cancer. Matrix Biol 70:20–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gabrusiewicz K et al (2018) Glioblastoma stem cell-derived exosomes induce M2 macrophages and PD-L1 expression on human monocytes. Oncoimmunology 7(4):e1412909

    Article  PubMed  PubMed Central  Google Scholar 

  43. Salimu J et al (2017) Dominant immunosuppression of dendritic cell function by prostate-cancer-derived exosomes. J Extracell Vesicles 6(1):1368823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Nabet BY et al (2017) Exosome RNA unshielding couples stromal activation to pattern recognition receptor signaling in cancer. Cell 170(2):352–366.e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vallabhaneni KC et al (2017) Stromal cell extracellular vesicular cargo mediated regulation of breast cancer cell metastasis via ubiquitin conjugating enzyme E2 N pathway. Oncotarget 8(66):109861–109876

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gardiner C et al (2016) Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. J Extracell Vesicles 5:32945

    Article  PubMed  CAS  Google Scholar 

  47. Tkach M, Kowal J, Thery C (2018) Why the need and how to approach the functional diversity of extracellular vesicles. Philos Trans R Soc Lond Ser B Biol Sci 373(1737):20160479

    Article  CAS  Google Scholar 

  48. Thery C et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7(1):1535750

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kowal J et al (2016) Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A 113(8):E968–E977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu Y, Deng W, Klinke DJ 2nd (2015) Exosomes: improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst 140(19):6631–6642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Overmiller AM et al (2017) Desmoglein 2 modulates extracellular vesicle release from squamous cell carcinoma keratinocytes. FASEB J 31(8):3412–3424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Escola JM et al (1998) Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J Biol Chem 273(32):20121–20127

    Article  CAS  PubMed  Google Scholar 

  53. Matsumoto A et al (2017) Accelerated growth of B16BL6 tumor in mice through efficient uptake of their own exosomes by B16BL6 cells. Cancer Sci 108(9):1803–1810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hu JL et al (2019) CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer 18(1):91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zomer A et al (2015) In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell 161(5):1046–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lai CP et al (2015) Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat Commun 6:7029

    Article  CAS  PubMed  Google Scholar 

  57. Sethi N et al (2011) Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19(2):192–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zheng H et al (2017) Therapeutic antibody targeting tumor- and osteoblastic niche-derived jagged1 sensitizes bone metastasis to chemotherapy. Cancer Cell 32(6):731–747.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lu X et al (2011) VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging a4b1-positive osteoclast progenitors. Cancer Cell 20:701–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lawson MA et al (2015) Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nat Commun 6:8983

    Article  CAS  PubMed  Google Scholar 

  61. Stains JP, Civitelli R (2005) Gap junctions in skeletal development and function. Biochim Biophys Acta 1719(1–2):69–81

    Article  CAS  PubMed  Google Scholar 

  62. Donahue HJ et al (1995) Cell-to-cell communication in osteoblastic networks: cell line-dependent hormonal regulation of gap junction function. J Bone Miner Res 10(6):881–889

    Article  CAS  PubMed  Google Scholar 

  63. Chaible LM et al (2011) Delayed osteoblastic differentiation and bone development in Cx43 knockout mice. Toxicol Pathol 39(7):1046–1055

    Article  CAS  PubMed  Google Scholar 

  64. Monaghan P et al (1996) Gap junction distribution and connexin expression in human breast. Exp Cell Res 223(1):29–38

    Article  CAS  PubMed  Google Scholar 

  65. Laird DW et al (1999) Deficiency of connexin43 gap junctions is an independent marker for breast tumors. Cancer Res 59(16):4104–4110

    CAS  PubMed  Google Scholar 

  66. Chasampalioti M et al (2019) Connexin 43 is an independent predictor of patient outcome in breast cancer patients. Breast Cancer Res Treat 174(1):93–102

    Article  CAS  PubMed  Google Scholar 

  67. Li Z et al (2008) Expressing connexin 43 in breast cancer cells reduces their metastasis to lungs. Clin Exp Metastasis 25(8):893–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Plante I et al (2011) Cx43 suppresses mammary tumor metastasis to the lung in a Cx43 mutant mouse model of human disease. Oncogene 30(14):1681–1692

    Article  CAS  PubMed  Google Scholar 

  69. Wang H et al (2018) The osteogenic niche is a calcium reservoir of bone micrometastases and confers unexpected therapeutic vulnerability. Cancer Cell 34(5):823–839.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Stewart WW (1978) Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer. Cell 14(3):741–759

    Article  CAS  PubMed  Google Scholar 

  71. Raptis LH et al (1994) A novel technique for the study of intercellular, junctional communication: electroporation of adherent cells on a partly conductive slide. DNA Cell Biol 13(9):963–975

    Article  CAS  PubMed  Google Scholar 

  72. el-Fouly MH, Trosko JE, Chang CC (1987) Scrape-loading and dye transfer. A rapid and simple technique to study gap junctional intercellular communication. Exp Cell Res 168(2):422–430

    Article  CAS  PubMed  Google Scholar 

  73. Abbaci M et al (2008) Advantages and limitations of commonly used methods to assay the molecular permeability of gap junctional intercellular communication. BioTechniques 45(1):33–52, 56–62

    Article  CAS  PubMed  Google Scholar 

  74. Goldberg GS, Bechberger JF, Naus CC (1995) A pre-loading method of evaluating gap junctional communication by fluorescent dye transfer. BioTechniques 18(3):490–497

    CAS  PubMed  Google Scholar 

  75. Abbaci M et al (2007) Gap junctional intercellular communication capacity by gap-FRAP technique: a comparative study. Biotechnol J 2(1):50–61

    Article  CAS  PubMed  Google Scholar 

  76. Manjarrez-Marmolejo J, Franco-Perez J (2016) Gap junction blockers: an overview of their effects on induced seizures in animal models. Curr Neuropharmacol 14(7):759–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sagar GD, Larson DM (2006) Carbenoxolone inhibits junctional transfer and upregulates Connexin43 expression by a protein kinase A-dependent pathway. J Cell Biochem 98(6):1543–1551

    Article  CAS  PubMed  Google Scholar 

  78. Harks EG et al (2001) Fenamates: a novel class of reversible gap junction blockers. J Pharmacol Exp Ther 298(3):1033–1041

    CAS  PubMed  Google Scholar 

  79. Pan F, Mills SL, Massey SC (2007) Screening of gap junction antagonists on dye coupling in the rabbit retina. Vis Neurosci 24(4):609–618

    Article  PubMed  PubMed Central  Google Scholar 

  80. Weingart R, Bukauskas FF (1998) Long-chain n-alkanols and arachidonic acid interfere with the Vm-sensitive gating mechanism of gap junction channels. Pflugers Arch 435(2):310–319

    Article  CAS  PubMed  Google Scholar 

  81. Davidson JS, Baumgarten IM (1988) Glycyrrhetinic acid derivatives: a novel class of inhibitors of gap-junctional intercellular communication. Structure-activity relationships. J Pharmacol Exp Ther 246(3):1104–1107

    CAS  PubMed  Google Scholar 

  82. Muller A et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56

    Article  CAS  PubMed  Google Scholar 

  83. Shulby SA et al (2004) CX3CR1-fractalkine expression regulates cellular mechanisms involved in adhesion, migration, and survival of human prostate cancer cells. Cancer Res 64(14):4693–4698

    Article  CAS  PubMed  Google Scholar 

  84. Jamieson-Gladney WL et al (2011) The chemokine receptor CX(3)CR1 is directly involved in the arrest of breast cancer cells to the skeleton. Breast Cancer Res 13(5):R91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Jamieson WL et al (2008) CX3CR1 is expressed by prostate epithelial cells and androgens regulate the levels of CX3CL1/fractalkine in the bone marrow: potential role in prostate cancer bone tropism. Cancer Res 68(6):1715–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bussard KM, Venzon DJ, Mastro AM (2010) Osteoblasts are a major source of inflammatory cytokines in the tumor microenvironment of bone metastatic breast cancer. J Cell Biochem 111:1138–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shupp AB et al (2018) Cancer metastases to bone: concepts, mechanisms, and interactions with bone osteoblasts. Cancers (Basel) 10(6):E182

    Article  CAS  Google Scholar 

  88. Yumoto K et al (2016) Axl is required for TGF-beta2-induced dormancy of prostate cancer cells in the bone marrow. Sci Rep 6:36520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lee E et al (2016) Growth arrest-specific 6 (GAS6) promotes prostate cancer survival by G1 arrest/S phase delay and inhibition of apoptosis during chemotherapy in bone marrow. J Cell Biochem 117(12):2815–2824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li J et al (2017) Characterization of human cancer cell lines by reverse-phase protein arrays. Cancer Cell 31(2):225–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tibes R et al (2006) Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol Cancer Ther 5(10):2512–2521

    Article  CAS  PubMed  Google Scholar 

  92. Khanna C, Hunter K (2005) Modeling metastasis in vivo. Carcinogenesis 26(3):513–523

    Article  CAS  PubMed  Google Scholar 

  93. Clarke R (1996) Human breast cancer cell line xenografts as models of breast cancer. The immunobiologies of recipient mice and the characteristics of several tumorigenic cell lines. Breast Cancer Res Treat 39(1):69–86

    Article  CAS  PubMed  Google Scholar 

  94. DeRose YS et al (2013) Patient-derived models of human breast cancer: protocols for in vitro and in vivo applications in tumor biology and translational medicine. Curr Protoc Pharmacol Chap. 14:Unit14.23

    Google Scholar 

  95. Wright LE et al (2016) Murine models of breast cancer bone metastasis. Bonekey Rep 5:804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Campbell JP et al (2012) Models of bone metastasis. J Vis Exp 67:e4260

    Google Scholar 

  97. Kang Y et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Res 3:537–549

    CAS  Google Scholar 

  98. Yoneda T et al (2001) A bone-seeking clone exhibits different biological properties from the MDA-MD-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Miner Res 16:1486–1495

    Article  CAS  PubMed  Google Scholar 

  99. Schlimok G et al (1987) Micrometastatic cancer cells in bone marrow: in vitro detection with anti-cytokeratin and in vivo labeling with anti-17-1A monoclonal antibodies. Proc Natl Acad Sci U S A 84(23):8672–8676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Passlick B et al (1994) Immunohistochemical assessment of individual tumor cells in lymph nodes of patients with non-small-cell lung cancer. J Clin Oncol 12(9):1827–1832

    Article  CAS  PubMed  Google Scholar 

  101. Espina V et al (2006) Laser-capture microdissection. Nat Protoc 1(2):586–603

    Article  CAS  PubMed  Google Scholar 

  102. Shahriari K et al (2017) Cooperation among heterogeneous prostate cancer cells in the bone metastatic niche. Oncogene 36(20):2846–2856

    Article  CAS  PubMed  Google Scholar 

  103. Klein CA et al (2002) Combined transcriptome and genome analysis of single micrometastatic cells. Nat Biotechnol 20(4):387–392

    Article  CAS  PubMed  Google Scholar 

  104. Schardt JA et al (2005) Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early mutational events in breast cancer. Cancer Cell 8(3):227–239

    Article  CAS  PubMed  Google Scholar 

  105. Schmidt-Kittler O et al (2003) From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci U S A 100(13):7737–7742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jang JS et al (2019) Molecular signatures of multiple myeloma progression through single cell RNA-Seq. Blood Cancer J 9(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  107. Matei I, Rampersaud S, Lyden D (2018) Engineered niches model the onset of metastasis. Nat Biomed Eng 2:885–887

    Article  PubMed  Google Scholar 

  108. Vanderburgh JP, Guelcher SA, Sterling JA (2018) 3D bone models to study the complex physical and cellular interactions between tumor and the bone microenvironment. J Cell Biochem 119:5053–5059

    Article  CAS  PubMed  Google Scholar 

  109. Cassereau L et al (2015) A 3D tension bioreactor platform to study the interplay between ECM stiffness and tumor phenotype. J Biotechnol 193:66–69

    Article  CAS  PubMed  Google Scholar 

  110. Petersen OW et al (1992) Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Natl Acad Sci U S A 89(19):9064–9068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103(4):655–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Caliari SR, Burdick JA (2016) A practical guide to hydrogels for cell culture. Nat Methods 13(5):405–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Carter DR, Hayes W (1977) The compressive behavior of bone as a two-phase porous structure. J Bone Jt Surg 59A:954–962

    Article  Google Scholar 

  114. Yao Q et al (2015) Design, construction, and mechanical testing of digital 3D anatomical data-based PCL-HA bone tissue engineering scaffold. J Mater Sci Mater Med 26(1):5360

    PubMed  Google Scholar 

  115. Bruyas A et al (2018) Systemic characterization of 3D-printed PCL/B-TCP scaffolds for biomedical devices and bone tissue engineering: influence of composition and porosity. J Mater Res 33(14):1948–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Patricio T et al (2013) Characterisation of PCL and PCL/PLA scaffolds for tissue engineering. Proc CIRP 5:110–114

    Article  Google Scholar 

  117. Carpenter RA et al (2018) Implantable pre-metastatic niches for the study of the microenvironmental regulation of disseminated human tumour cells. Nat Biomed Eng 2:915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Dhurjati R et al (2006) Extended-term culture of bone cells in a compartmentalized bioreactor. Tissue Eng 12(11):3045–3054

    Article  CAS  PubMed  Google Scholar 

  119. Krishnan V et al (2014) In vitro mimics of bone remodeling and the vicious cycle of cancer in bone. J Cell Physiol 229(4):453–462

    Article  CAS  PubMed  Google Scholar 

  120. Krishnan V, Vogler EA, Mastro AM (2015) Three-dimensional in vitro model to study osteobiology and osteopathology. J Cell Biochem 116(12):2715–2723

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen M. Bussard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shupp, A.B., Kolb, A.D., Bussard, K.M. (2020). Novel Techniques to Study the Bone-Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1225. Springer, Cham. https://doi.org/10.1007/978-3-030-35727-6_1

Download citation

Publish with us

Policies and ethics