Skip to main content

Phytoremediation Potential of Selected Mangrove Plants for Trace Metal Contamination in Indian Sundarban Wetland

  • Chapter
  • First Online:
Phytoremediation

Abstract

Uptake, accumulation and distribution pattern of trace metals in mangrove plants organs along with rhizosediment were studied in Indian Sundarban Mangrove Wetland. The mean concentration of metals in rhizosediments was as follows (expressed in mg kg−1) 36.03 ± 24.88 for Cu, 11,097.10 ± 12,880.67 for Fe, 709.04 ± 274.25 for Mn, 14.10 ± 10.88 for Pb, 76.63 ± 77.20 for Cr and 40.42 ± 5.74 for Zn. In the context of geochemical characteristics of the sediment, values of geoaccumulation index (I geo) and pollution load index (PLI) suggest no metal pollution, but enrichment factor (EF) ensures their anthropogenic sources. Concentrations of Cr and Cu were higher than sediment quality guidelines at some sampling sites, implying potential adverse impacts of these metals. In mangrove organs, the concentration of metals showed the following descending order (expressed in mg kg−1): Mn (2298.77) > Fe (1796.47) > Cr (61.30) > Cu (36.51) > Zn (33.13) > Pb (2.55). Sonneratia apetala displays a high bioconcentration factor for Fe (10.7) and Mn (5.99) as well as high translocation factor for Mn (31.99), Pb (18.01) and Zn (9.95) and therefore may be employed as a biological indicator to protect this productive environment as the species showed its potential in accumulating metals in its tissues. Pearson’s correlation coefficient indicated that a significant positive correlation existed amongst the metals. One-way ANOVA shows that there are significant differences between metal concentrations of mangrove organs in monitored sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tam NFY, Wong YS (1995) Retention and distribution of heavy metals in mangrove soils receiving wastewater. Environ Pollut 94:283–291

    Article  Google Scholar 

  2. Tam NFY, Wong YS (2000) Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environ Pollut 110:195–205

    Article  CAS  PubMed  Google Scholar 

  3. Chowdhury R, Favas PJC, Pratas J, Jonathan MP, Ganesh PS, Sarkar SK (2015) Accumulation of trace metals by mangrove plants in Indian Sundarban Wetland: Prospects for Phytoremediation. Int J Phytorem 17:885–894

    Article  CAS  Google Scholar 

  4. Silva CAR, Rainbow PS, Smith BD (2003) Biomonitoring of trace metal contamination in mangrove-lined Brazilian coastal systems using the oyster Crassostrea rhizophorae: comparative study of regions affected by oil, salt pond and shrimp farming activities. Hydrobiologia 501:199–206

    Google Scholar 

  5. Sykes M, Yang V, Blankenburg J, AbuBakr S (1999) Biotechnology: working with nature to improve forest resources and products. In: International environmental conference, pp 631–637

    Google Scholar 

  6. Khan S, Afzal M, Iqbal S, Khan QM (2013) Plant—bacterial partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90:1317–1332

    Article  CAS  PubMed  Google Scholar 

  7. United States Environmental Protection Agency (USEPA) (2004) Hazard summary. Lead compounds. http://www.epa.gov/ttn/atw/hlthef/lead.html

  8. Mench M, Schwitzguebel JP, Schroeder P, Bert V, Gawronski S, Gupta S (2009) Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ Sci Pollut Res 16:876–900

    Article  CAS  Google Scholar 

  9. Garbisu C, Alkorta I (2003) Basic concepts on heavy metal soil bioremediation. Eur J Miner Process Environ Prot 3:58–66

    Google Scholar 

  10. Marmiroli N, Marmiroli M, Maestri E (2006) Phytoremediation and phytotechnologies: a review for the present and the future. In: Twardowska I, Allen HE, Haggblom MH (eds) Soil and water pollution monitoring, protection and remediation. Springer, The Netherlands

    Google Scholar 

  11. Clemens SP, Micheal G, Kramer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7(7):309–314

    Article  CAS  PubMed  Google Scholar 

  12. Tomlinson PB (1986) The botany of mangroves, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  13. Rodriguez HG, Mondal B, Sarkar NC, Ramaswamy A, Rajkumar D, Maiti RK (2012) Comparative morphology and anatomy of few mangrove species in Sundarbans, West Bengal, India and its adaptation to Saline Habitat. Int J Biores Stress Manage 3(1):1–17

    Google Scholar 

  14. Naidoo S, Olaniran AO (2014) Treated wastewater effluent as a source of microbial pollution of surface water resources. Int J Environ Res Public Health 11(1):249–270

    Article  CAS  Google Scholar 

  15. Kularatne RK (2014) Phytoremediation of Pb by Avicennia marina (Forsk.) Vierh and spatial variation of Pb in the Batticaloa Lagoon, Sri Lanka during driest periods: a field study. Int J Phytoremediation 16(5):509–523

    Article  CAS  PubMed  Google Scholar 

  16. Maiti SK, Chowdhury A (2013) Effects of anthropogenic pollution on Mangrove biodiversity: a review. J Environ Protect 4:1428–1434

    Article  Google Scholar 

  17. Alongi DM, Sasekumar A, Chong VC, Pfitzner J, Trott LA, Tirendi F, Dixon P, Brunskill GJ (2004) Sediment accumulation and organic material flux in a managed mangrove ecosystem: estimates of land-ocean-atmosphere exchange in peninsular Malaysia. Mar Geol 208:383–402

    Article  CAS  Google Scholar 

  18. Yang X, Wu X, Hao HJ, He ZJ (2008) Mechanisms and assessment of water eutrophication. J Zhejiang Univ Sci B Mar 9(3):197–209

    Article  CAS  Google Scholar 

  19. MacFarlane GR, Koller CE, Blomberg SP (2007) Accumulation and partitioning of heavy metals in mangroves: a synthesis of field-based studies. Chemosphere 69:1454–1464

    Article  CAS  PubMed  Google Scholar 

  20. MacFarlane GR, Burchett MD (2002) Toxicity, growth and accumulation relationships of copper, lead and zinc in the grey mangrove Avicennia marina (Forsk.) Vierh. Mar Environ Res 54:65–84

    Article  CAS  PubMed  Google Scholar 

  21. Zhou YW, Peng YS, Li XL, Chen GZ (2011) Accumulation and partitioning of heavy metals in mangrove rhizosphere sediments. Environ Earth Sci 64:799–807

    Article  CAS  Google Scholar 

  22. He B, Li R, Chai M, Qiu G (2014) Threat of heavy metal contamination in eight mangrove plants from the Futian mangrove forest. China Environ Geochem Health 36:467–476

    Article  CAS  PubMed  Google Scholar 

  23. Sarkar SK, Binelli A, Chatterjee M, Bhattacharya BD, Parolini M, Riva C, Jonathan MP (2012) Distribution and ecosystem risk assessment of polycyclic aromatic hydrocarbons (PAHs) in core sediments of Sundarban mangrove wetland, India. Polycycl Aromat Compd 32:1–26

    Article  CAS  Google Scholar 

  24. Mukherjee AK (1975) The Sundarban of India and its biota. J Bombay Nat History Soc 72:1–20

    Google Scholar 

  25. Jain SK, Sastry ARK (1983) Botanv of some tiger habitats in India. Botanical Survey of India, Howrah, pp 40–44

    Google Scholar 

  26. Sarkar SK, Bhattacharya A, Giri S, Bhattacharya B, Sarkar D, Nayek DC et al (2005) Spatiotemporal variation in benthic polychaetes (Annelida) and relationships with environmental variables in a tropical estuary. Wetl Ecol Manag 13:55–67

    Article  Google Scholar 

  27. Watts MJ, Barlow TS, Button M, Sarkar SK, Bhattacharya BD, Alam MA, Gomes A (2013) Arsenic speciation in polychaetes (Annelida) and sediments from the intertidal mudflat of Sundarban mangrove wetland. India Environ Geochem Health 35:13–25

    Article  CAS  PubMed  Google Scholar 

  28. Mudroch A, Azcue JM (1995) Manual of aquatic sediment sampling. CRC Press, Boca Raton

    Google Scholar 

  29. Marchand C, Baltzer F, Lallier-Vergès E, Albéric P (2004) Pore-water chemistry in mangrove sediments: relationship with species composition and developmental stages. (French Guiana). Mar Geol 208:361–381

    Article  CAS  Google Scholar 

  30. Walkey A, Black TA (1934) An examination of the Dugtijaraff method for determining soil organic matter and proposed modification of the chronic and titration method. Soil Sci 37:23–38

    Google Scholar 

  31. Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A (ed) Methods of soil analysis. Part 1. Physical and mineralogical methods, 2nd edn. American Society of Agronomy, Madison

    Google Scholar 

  32. Folk RL, Ward WC (1957) Brazos River bar: a study of the significance of grain size parameters. J Sediment Petrol 27:3–26

    Article  Google Scholar 

  33. Friedman GM, Sanders JE (1978) Principles of sedimentology. Wiley, New York

    Google Scholar 

  34. Finley DS (1999) Patterns of calcium oxalate crystals in young tropical leaves: a possible role as an anti-herbivory defense. Rev biol Trop 47:1–2

    Google Scholar 

  35. Silva CAR, Silva AP, Da O, De SR (2006) Concentration, stock and transport rate of heavy metals in a tropical red mangrove, Natal. Brazil Mar Chem 99(1):2–11

    Article  CAS  Google Scholar 

  36. MacFarlane GR, Pulkownik A, Burchett MD (2003) Accumulation and distribution of heavy metals in the grey mangrove, Avicennia marina (Forsk.)Vierh.: biological indication potential. Environ Pollut 123:139–151

    Article  CAS  PubMed  Google Scholar 

  37. Annon (2003) Mangrove ecosystem: biodiversity and its influence on the natural recruitment of selected commercially important finfish and shellfish species in fisheries. National Agricultural Technology Project (NATP). Indian Council of Agriculture Research (ICAR). Principal Investigator: George JP; Co-PI: Chakraborty SK, Damroy SN, pp 1–514

    Google Scholar 

  38. Naskar KR (2004) Manual of Indian Mangroves, 1st edn. Daya Publishing House, New Delhi, India

    Google Scholar 

  39. Hutchings P, Saenger P (1987) The ecology of Mangroves. University of Queensland, Queensland Press, St. Lucia

    Google Scholar 

  40. Waisel Y, Ethel A, Sagami M (1986) Salt tolerance of leaves of mangrove Avicennia marina. Physiol Plantarum 67:67–72

    Google Scholar 

  41. Rahman MA, Ahmed A, Shahid IZ (2011) Phytochemical and pharmacologhical properties of Bruguiera gymnorrhiza root extract. Int J Pharmaceut Res 3(3):63–67

    Google Scholar 

  42. Liao B, Zheng S, Chen Y, Li M, Li Y (2004) Biological characteristics and ecological adaptability for non-indigenous mangrove species. Chin J Ecol 23:10–15 (Chinese)

    Google Scholar 

  43. Chen Y, Liao B, Peng Y, Xu S, Zheng S, Chen D (2003) Researches on the northern introduction of mangrove species Sonneratla apetala Buch-Ham. Guangdong Forest 19:9–12

    Google Scholar 

  44. Ren H, Lu HF, Shen WJ, Huang C, Guo Q, Li Z, Jian S (2009) Jian. Sonneratia apetala Buch. Ham in the mangrove ecosystems of China: an invasive species or restoration species? Ecol Eng 35:1243–1248

    Google Scholar 

  45. Fourqurean JW, Smith TJ, Possley J, Collins TM, Lee D, Namoff S (2010) Are mangroves in the tropical Atlantic ripe for invasion? Exotic mangrove trees in the forests of South Florida. Biol Invas 12:2509–2522

    Article  Google Scholar 

  46. Yu-Hong L, Hong-You H, Jing-Chun L, Gui-Lan W (2010) Distribution and mobility of copper, zinc and lead in plant-sediment systems of Quanzhou Bay Estuary, China. Int J Phytorem 12:291–305

    Article  CAS  Google Scholar 

  47. Ghani A (2003) Medicinal plants of Bangladesh, 2nd edn. The Asiatic Society of Bangladesh, Bangladesh, India

    Google Scholar 

  48. Nobi EP, Dilipan E, Thangaradjou T, Sivakumar K, Kannan L (2010) Geochemical and geo-statistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands, India. Estuar Coast Shelf Sci 87:253–264

    Google Scholar 

  49. Zahra A, Hashni MZ, Malik RN, Ahmed Z (2014) Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah-Feeding tributary of the Rawal Lake Reservoir. Pakistan Sci Total Environ 470–471:925–933

    Article  PubMed  CAS  Google Scholar 

  50. Chandrasekaran A, Ravisankar R, Harikrishnan N, Satapathy KK, Prasad MVR, Kanagasabapathy KV (2015) Multivariate statistical analysis of heavy metal concentration in soils of Yelagiri Hills, Tamilnadu, India—spectroscopical approach. Spectrochimica Acta Part A: Mol Biomol Spectrosc 137:589–600

    Article  CAS  Google Scholar 

  51. Tomlinson DC, Wilson JG, Harris CR, Jeffrey DW (1980) Problems in the assessment of heavy metals in estuaries and the formation pollution index. Helgoland Marine Res 33:566–575

    Google Scholar 

  52. Müller G (1981) Die Schwermetallbelastung der Sedimenten des Neckars und Seiner Nebenflusse. Chemiker-Zeitung 6:157–164

    Google Scholar 

  53. Müller G (1979) Schwermetalle in den sedimenten des Rheins—Veranderunge seit. Umschau 1971(79):778–783

    Google Scholar 

  54. Bhuiyan MAH, Parvez L, Islam MA, Dampare SB, Suzuki S (2010) Heavy metal pollution of coal mine-affected agricultural soils in the Northern Part of Bangladesh. J Hazard Mater 173:384–392

    Article  CAS  PubMed  Google Scholar 

  55. Turekian YY, Wedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Geol Soc America 72:175–192

    Article  CAS  Google Scholar 

  56. Sezgin N, Ozcan HK, Demir G, Nemlioglu S, Bayat C (2003) Determination of heavy metal concentrations in street dusts in Istanbul E-5 highway. Environ Int 29:979–985

    Article  CAS  Google Scholar 

  57. Duzgoren-Aydin NS, Wong CSC, Song Z, Aydin A, Li XD, You M (2006) Fate of heavy metal contaminants in road dusts and gully sediments of Guangzhou, SE China: a chemical and mineralogical assessment. Hum Ecol Risk Assess 12:374–389

    Article  CAS  Google Scholar 

  58. Zhang J, Liu CL (2002) Riverine composition and estuarine chemistry of particulate metals in China—weathering features, anthropogenic impact and chemical fluxes. Estuar Coast Shelf Sci 54:1051–1070

    Article  CAS  Google Scholar 

  59. Hakanson L (1980) An ecological risk index for aquatic pollution control, a sediment-ecological approach. Water Res 14:975–1001

    Article  Google Scholar 

  60. MacDonald DD, Ingersoll CG, Berger T (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31

    Article  CAS  PubMed  Google Scholar 

  61. Long ER, MacDonald DD, Smith SL, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manag 19:18–97

    Article  Google Scholar 

  62. Usman ARA, Mohamed HM (2009) Effect of microbial inoculation and EDTA on the uptake and translocation of heavy metals by corn and sunflower. Chemosphere 76:893–899

    Article  CAS  PubMed  Google Scholar 

  63. Usman ARA, Lee SS, Awad YM, Lim KJ, Yang JE, Ok YS (2012) Soil pollution assessment and identification of hyperaccumulating plants in chromated copper arsenate (CCA) contaminated sites, Korea. Chemosphere 87:872–878

    Article  CAS  PubMed  Google Scholar 

  64. Phaenark C, Pokethitiyook P, Kruatrachue M, Ngernsansaruay C (2009) Cd and Zn accumulation in plants from the padaeng zinc mine area. Int J Phytorem 11:479–495

    Article  CAS  Google Scholar 

  65. Chen Y, Shen Z, Li X (2004) The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Appl Geochem 19:1553–1565

    Article  CAS  Google Scholar 

  66. Wang ZH, Feng J, Jiang T, Gu YG (2013) Assesment of metal contamination in surface sediments from Zehlin Bay, the South China Sea. Mar Pollut Bull 76:383–388

    Article  CAS  PubMed  Google Scholar 

  67. Lu X, Wang L, Li LY, Lei K, Huang L, Kang D (2010) Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. J Hazard Mater 173:744–749

    Article  CAS  PubMed  Google Scholar 

  68. Casas D, Ercilla G, Lykousis V, Ioakim C, Perissoratis C (2006) Physical properties and their relationship to sedimentary processes and texture in sediments from mud volcanoes in the Anaximander Mountains (Eastern Mediterranean). Scientia Marina 70(4):643–659

    Article  Google Scholar 

  69. Bhattacharya A, Sarkar SK (2003) Impact of over exploitation of shellfish: northeastern coast of India. Ambio 32(1):70–75

    Article  PubMed  Google Scholar 

  70. Gabriel AVS, Salmo SG III (2014) Assessment of trace metal bioaccumulation by Avicennia marina (Forsk.) in the last remaining mangrove stands in Manila Bay, the Philippines. Bull Environ Contam Toxicol 93:722–727

    Article  CAS  PubMed  Google Scholar 

  71. Lacerda LD (1997) Trace metals in mangrove plants: why such low concentrations? In: Kjerfve B, Lacerda LD, Diop HS (eds) Mangrove ecosystem studies in Latin America and Africa. UNESCO, Paris

    Google Scholar 

  72. Matijević S, Kušpilić G, Kljaković-Gašpić Z (2007) The redox potential of sediment from the Middle Adriatic region. Acta Adriat 48:191–204

    Google Scholar 

  73. Signes-Pastor A, Burló F, Mitra K, Carbonell-Barrachina AA (2007) Arsenic biogeochemistry as affected by phosphorus fertilizer addition, redox potential and pH in a West Bengal (India) soil. Geoderma 137:504–510

    Article  CAS  Google Scholar 

  74. Jiang X, Teng A, Xu W, Liu X (2014) Distribution and pollution assessment of heavy metals in surface sediments in the Yellow Sea. Mar Pollut Bull 83:366–375

    Article  CAS  PubMed  Google Scholar 

  75. Fernandez-Cadena JC, Andrade S, Silva-Coello CL, De la Iglesia R (2014) Heavy metal concentration in mangrove surface sediments from the north-west coast of South America. Mar Pollut Bull 82:221–226

    Article  CAS  PubMed  Google Scholar 

  76. Ra K, Kim ES, Kim KY, Kim JY, Lee JM, Choi JY (2013) Assessment of heavy metals contaminationand its ecological risk in the surface sediments along the coast of Korea. J Coast Res 65:105–110

    Article  Google Scholar 

  77. Kathiresan K, Saravanakumar K, Mullai P (2014) Bioaccumulation of trace elements by Avicennia marina. J Coastal Life Med 2(11):888–894

    CAS  Google Scholar 

  78. Suresh G, Ramasamy V, Sundarragan M, Paramasivam K (2015) Spatial and vertical distributions of heavy metals and their potential toxicity levels in various beach sediments from high-background-radiation area, Kerala, India. Mar Pollut Bull 91:389–400

    Article  CAS  PubMed  Google Scholar 

  79. Chakraborty P, Ramteke D, Chakraborty S, Nath BN (2014) Changes in metal contamination levels in estuarine sediments around India—an assessment. Mar Pollut Bull 78(1):15–25

    Article  CAS  PubMed  Google Scholar 

  80. Nagarajan R, Jonathan MP, Roy PD, Wai-Hwa L, Prasanna MV, Sarkar SK, NavarreteLópez M (2013) Metal concentrations in sediments from tourist beaches of Miri City, Sarawak, Malaysia (Borneo Island). Mar Pollut Bull 73:369–373

    Article  CAS  PubMed  Google Scholar 

  81. Al-Trabulsy HAM, Khater AEM, Habbani FI (2013) Heavy elements concentrations, physiochemical characteristics and natural radionuclides levels along the Saudi coastline of the Gulf of Aqaba. Arabian J Chem 6(2):183–189

    Article  CAS  Google Scholar 

  82. Paul VI, Jayakumar P (2010) A comparative analytical study on the cadmium and humic acid contents of two Lentic water bodies in Tamil, India. Iran J Environ Health Sci Eng 7:137–144

    CAS  Google Scholar 

  83. Kamaruzzaman BY, Ong MC, Azhar MSN, Shahbudin S, Jalal KCA (2008) Geochemistry of sediment in the major estuarine mangrove forest of Terengganu region, Malaysia. Am J Applied Sci 5:1707–1712

    Article  CAS  Google Scholar 

  84. Ramanathan AL, Subramaniam V, Ramesh R, Chidambaram S, James A (1999) Environmental geochemistry of the Pichavaram Mangrove ecosystem (Tropical), Southeast Coast of India. Environ Geol 37:223–233

    Article  CAS  Google Scholar 

  85. Thomas G, Fernandez TV (1997) Incidence of heavy metals in the mangrove flora and sediments in Kerala, India. Hydrobiologia 352:77–87

    Article  CAS  Google Scholar 

  86. Badr N, El-Fiky A, Mostafa A, Al-Mur B (2009) Metal pollution records in core sediments of some Red Sea coastal areas, Kingdom of Saudi Arabia. Environ Monit Assess 155:509–526

    Article  CAS  PubMed  Google Scholar 

  87. Harikumar PS, Jisha TS (2010) Distribution pattern of trace metal pollutants in the sediments of an urban wetlands in the southwest coast of India. Int J Eng 2(5):840–850

    Google Scholar 

  88. Defew LH, Mair JM, Guzman HM (2005) An assessment of metal contamination in mangrove sediments and leaves from Punta Mala Bay, Pacific Panama. Mar Poll Bull 50:547–552

    Article  CAS  Google Scholar 

  89. Gao X, Zhuang W, Chen CTA, Zhang Y (2015) Sediment quality of the SW coastal Laizhou Bay, Bohai Sea, China: a comprehensive assessment based on the analysis of heavy metals. PLoS One 10(3):e0122190. doi:10.1371/journal.pone.0122190

    Google Scholar 

  90. Silva Filho EV, Jonathan MP, Chatterjee M, Sarkar SK, Sella SM, Bhattacharya A et al (2011) Ecological consideration of trace element contamination in sediment cores from Sundarban wetland, India. Environ Earth Sci 63:1213–1225

    Article  CAS  Google Scholar 

  91. Ali H, Khan E, Anwar SM (2013) Phytoremediation of heavy metals concepts and applications. Chemosphere 91:869–881

    Article  CAS  PubMed  Google Scholar 

  92. Usman ARA, Alkreda RS, Al-Wabel MI (2013) Heavy metal contamination in sediments and mangroves from the coast of Red Sea: Avicennia marina as potential metal bioaccumulator. Ecotoxicol Environ Safety 97:263–270

    Article  CAS  PubMed  Google Scholar 

  93. Morelli G, Gasparon M (2014) Metal contamination of estuarine intertidal sediments of Moreton Bay, Australia. Mar Pollut Bull 89:435–443

    Article  CAS  PubMed  Google Scholar 

  94. Bastami KD, Neyestani MR, Shemirani F, Soltani F, Haghparast S, Akbari A (2015) Heavy metal pollution assessment in relation to sediment properties in the coastal sediments of the southern Caspian Sea. Mar Pollut Bull 92:237–243

    Article  CAS  PubMed  Google Scholar 

  95. Baker AJM, Walker PL (1990) Ecophysiology of metal uptake by tolerant plants. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton

    Google Scholar 

  96. Durner EF (2013) Principles of horticultural physiology, 1st edn. CABI, Oxfordshire, UK

    Google Scholar 

  97. Marchand C, Fernandez JM, Moreton B, Landi L, Lallier-Vergès E, Baltzer F (2012) The partitioning of transitional metals (Fe, Mn, Ni, Cr) in mangrove sediments downstream of a ferralitised ultramafic watershed (New Caledonia). Chem Geol 300–301:70–80

    Article  CAS  Google Scholar 

  98. Rajkumar M, Prasad MNV, Swaminathan S, Freitas H (2013) Climate change driven plant–metal–microbe interactions. Environ Int 53:74–86

    Article  CAS  PubMed  Google Scholar 

  99. Shaw AJ (1990) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton

    Google Scholar 

  100. Parvaresh H, Abedi Z, Farshchi P, Karami M, Khorasani N, Karbassi A (2010) Bioavailability and concentration of heavy metals in the sediments and leaves of Grey Mangrove, Avicennia marina (Forsk.) Vierh, in Sirik Azini Creek, Iran. Biol Trace Elem Res 143(2):1121–1130

    Article  PubMed  CAS  Google Scholar 

  101. Bonanno G, Giudice RL (2010) Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecol Indicat 10:639–645

    Article  CAS  Google Scholar 

  102. Rahman MM, Chongling Y, Md Rahman M, Islam KS (2009) Accumulation, distribution and toxicological effects induced by chromium n the development of mangrove plant Kandelia candel (L.) Druce. Ambi-Agua, Taubaté 4(1):6–19

    Article  Google Scholar 

  103. Kotmire SY, Bhosale LJ (1979) Some aspects of chemical composition of mangrove leaves and sediments. Mahasagar 12:149–154

    CAS  Google Scholar 

  104. De Lacerda LD, Carvalho CEV, Tanizaki KF, Ovalle ARC, Renzende CE (1993) The biogeochemistry and trace metal distribution of mangrove rhizospheres. Biotropica 25:252–257

    Article  Google Scholar 

  105. Verkleij JAC, Schat H (1990) Mechanisms of metal tolerance in higher plants. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, pp 179–193

    Google Scholar 

  106. Cambrollé J, Redondo-Gómez S, Mateos-Naranjo E, Figueroa ME (2008) Comparison of the role of two Spartina species in terms of phytostabilization and bioaccumulation of metals in the estuarine sediment. Mar Pollut Bull 56:2037–2042

    Article  PubMed  CAS  Google Scholar 

  107. Zheng WJ, Chen XY, Lin P (1997) Accumulation and biological cycling of heavy metal elements in Rhizophora stylosa mangroves in Yingluo Bay, China. Mar Ecol Prog Ser 159:293–301

    Article  CAS  Google Scholar 

  108. Li S, Lin B (2006) Accessing information sharing and information quality in supply chain management. Decis Support Syst 42(3):1641–1656

    Article  Google Scholar 

  109. Das S (1999) An adaptive feature of some mangroves of Sundarbans, West Bengal. J Plant Biol 42(2):109–116

    Article  Google Scholar 

  110. Chua SY, Hashim NR (2008) Heavy metal concentrations in the soils and shrubs near a metal processing plant in Peninsular Malaysia. ICFAI J Environ Sci 2(2):19–29

    Google Scholar 

  111. Sinegani AAS, Ebrahimi P (2007) The potential of Razan-Hamadan highway indigenous plant species for the phytoremediation of lead contaminated land. Soil Environ 26:10–14

    Google Scholar 

  112. Bu-Olayan AH, Thomas BV (2009) Translocation and bioaccumulation of trace metals in desert plants of Kuwait Governorates. Res J Environ Sci 3(5):581–587

    Article  CAS  Google Scholar 

  113. Nazli MF, Hashim NR (2010) Heavy metal concentrations in an important mangrove species, Sonneratia caseolaris, in Peninsular Malaysia. Environ Asia 3:50–55

    Google Scholar 

  114. Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyper accumulate metallic metals—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  115. Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant based technology for the removal of metals from the environment. Bioresour Technol 77:229–236

    Article  CAS  PubMed  Google Scholar 

  116. Vassilev A, Vangronsveld J, Yordanov I (2002) Cadmium phytoextraction: present state, biological backgrounds and research needs. Bulg J Plant Physiol 28:68–95

    Google Scholar 

  117. Baker AJM, Whiting SN (2002) In search of the Holy Grail: a further step in the understanding of metal hyperaccumulation? New Phytol 155:1–4

    Article  Google Scholar 

  118. Branquinho C, Serrano HC, Pinto MJ, Martins-Loução MA (2007) Revisiting the plant hyperaccumulation criteria to rare plants and earth abundant elements. Environ Pollut 146:437–443

    Article  CAS  PubMed  Google Scholar 

  119. González RC, González-Chávez MCA (2006) Metal accumulation in wild plants surrounding mining wastes. Environ Pollut 144:84–92

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Council of Scientific and Industrial Research (CSIR), New Delhi, India for the research project titled “Metal uptake, transport and release by mangrove plants in Sundarban Wetland, India: Implications for phytoremediation and restoration” bearing Sanction number 38 (1296)/11/EMR-II. Ranju Chowdhury, the first author of the paper, expresses thanks to CSIR for extending her senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chowdhury, R., Lyubun, Y., Favas, P.J.C., Sarkar, S.K. (2016). Phytoremediation Potential of Selected Mangrove Plants for Trace Metal Contamination in Indian Sundarban Wetland. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-41811-7_15

Download citation

Publish with us

Policies and ethics