Skip to main content

Advertisement

Log in

Arsenic speciation in polychaetes (Annelida) and sediments from the intertidal mudflat of Sundarban mangrove wetland, India

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

This paper documents the concentration of total arsenic and individual arsenic species in four soft-bottom benthic polychaetes (Perenereis cultifera, Ganganereis sootai, Lumbrinereis notocirrata and Dendronereis arborifera) along with host sediments from Sundarban mangrove wetland, India. An additional six sites were considered exclusively for surface sediments for this purpose. Polychaetes were collected along with the host sediments and measured for their total arsenic content using inductively coupled plasma mass spectrometry. Arsenic concentrations in polychaete body tissues varied greatly, suggesting species-specific characteristics and inherent peculiarities in arsenic metabolism. Arsenic was generally present in polychaetes as arsenate (AsV ranges from 0.16 to 0.50 mg kg−1) or arsenite (AsIII ranges from 0.10 to 0.41 mg kg−1) (30–53 % as inorganic As) and dimethylarsinic acid (DMAV <1–25 %). Arsenobetaine (AB < 16 %), and PO4-arsenoriboside (8–48 %) were also detected as minor constituents, whilst monomethylarsonic acid (MAV) was not detected in any of the polychaetes. The highest total As (14.7 mg kg−1 dry wt) was observed in the polychaete D. arborifera collected from the vicinity of a sewage outfall in which the majority of As was present as an uncharacterised compound (10.3 mg kg−1 dry wt) eluted prior to AB. Host sediments ranged from 2.5 to 10.4 mg kg−1 of total As. This work supports the importance of speciation analysis of As, because of the ubiquitous occurrence of this metalloid in the environment, and its variable toxicity depending on chemical form. It is also the first work to report the composition of As species in polychaetes from the Indian Sundarban wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bhattacharya, A., & Sarkar, S. K. (2003). Impact of over exploitation of shellfish: Northeastern coast of India. Ambio, 32(1), 70–75.

    Google Scholar 

  • Boyle, E. A., Edmond, J. M., & Sholkovitz, E. R. (1977). Mechanism of iron removal in estuaries. Geochimica et Cosmochimica Acta, 41(9), 1313–1324.

    Article  CAS  Google Scholar 

  • Button, M., Jenkins, G. T., Harrington, C. F., & Watts, M. J. (2009). Biotransformation of As in earthworms from a contaminated mine site. Journal of Environmental Monitoring, 11, 1484–1491.

    Article  CAS  Google Scholar 

  • Canuel, E. A., & Martens, C. S. (1993). Seasonal variations in the sources and alteration of organic matter associated with recently-deposited sediments. Organic Geochemistry, 20, 563–577.

    Article  CAS  Google Scholar 

  • Casado-Martinez, M. C., Duncan, E. G., Smith, B. D., Maher, W. A., & Rainbow, P. S. (2012). Arsenic toxicity in a sediment-dwelling polychaete: Detoxification and arsenic metabolism. Toxicology, 21, 576–590.

    CAS  Google Scholar 

  • Casado-Martinez, M. C., Smith, B. D., Luoma, S. N., & Rainbow, P. S. (2010). Bioaccumulation of arsenic from water and sediment by a deposit-feeding polychaete (Arenicola marina): A biodynamic modeling approach. Aquatic Toxicology, 98, 34–43.

    Article  CAS  Google Scholar 

  • Chatterjee, M., Canario, J., Sarkar, S. K., Brancho, V., Bhattacharya, A. K., & Saha, S. (2009a). Mercury enrichments in core sediments in Sundarban mangroves, northeastern part of Bay of Bengal and their ecotoxicological significance. Environmental Geology, 57(5), 1125–1134.

    Article  CAS  Google Scholar 

  • Chatterjee, M., Massolo, S., Sarkar, S. K., Bhattacharya, A. K., Bhattacharya, B. D., Satpathy, K. K., et al. (2009b). An assessment of trace element contamination in intertidal sediment cores of Sundarban mangrove wetland, India for evaluating sediment quality guidelines. Environmental Monitoring and Assessment, 150, 307–322.

    Article  CAS  Google Scholar 

  • Chatterjee, M., Silva Filho, E. V., Sarkar, S. K., Sella, S. M., Bhattacharya, A., Satpathy, K. K., et al. (2007). Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environment International, 33, 346–356.

    Article  CAS  Google Scholar 

  • Cullen, W. R., & Reimer, K. J. (1989). Arsenic speciation in the environment. Chemistry Reviews, 89, 713–764.

    Article  CAS  Google Scholar 

  • Depledge, M. H., & Rainbow, P. S. (1990). Models of regulation and accumulation of trace metals in marine invertebrates. Comparative Biochemistry and Physiology, C: Comparative Pharmacology and Toxicology, 97, 1–7.

    Article  Google Scholar 

  • Domínguez, C., Sarkar, S. K., Bhattacharya, A., Chatterjee, M., Bhattacharya, B. D., Jover, E., et al. (2010). Quantification and source identification of polycyclic aromatic hydrocarbons in core sediments from Sundarban Mangrove Wetland, India. Archives of Environmental Contamination and Toxicology, 59, 49–61.

    Article  Google Scholar 

  • Edmonds, J. S., & Francesconi, K. A. (1987). Transformations of arsenic in the marine environment. Experientia, 43, 553–557.

    Article  CAS  Google Scholar 

  • Ellwood, M. J., & Maher, W. A. (2003). Measurement of arsenic species in marine sediments by high performance liquid chromatography inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 477, 279–291.

    Article  CAS  Google Scholar 

  • Fattorini, D., Alonso-Hernandez, C. M., Diaz-Asencio, M., Munoz-Caravaca, A., Panacciulli, F. G., Tangherlini, M., et al. (2004). Chemical speciation of arsenic in different marine organisms: Importance in monitoring study. Marine Environmental Research, 58, 845–850.

    Article  CAS  Google Scholar 

  • Fattorini, D., Notti, A., Di Mento, R., Cicero, A. M., Gabellini, M., Russo, A., et al. (2008). Seasonal, spatial and inter-annual variations of trace metals in mussels from the Adriatic Sea: A regional gradient for arsenic and implications for monitoring the impact of offshore activities. Chemosphere, 72, 1524–1533.

    Article  CAS  Google Scholar 

  • Fattorini, D., Notti, A., Halt, M. N., Gambi, M. C., & Regoli, F. (2005). Levels and chemical speciation of arsenic in polychaetes: A review. Marine Ecology, 26, 255–264.

    Article  CAS  Google Scholar 

  • Francesconi, K. A., & Edmonds, J. S. (1994). Biotransformation of arsenic in the marine environment. In J. O. Niagu (Ed.), Arsenic in the environment, part I: Cycling and characterization (p. 221). New York: Wiley.

    Google Scholar 

  • Francesconi, K. A., & Edmonds, J. S. (1997). Arsenic and marine organisms. Advances in Inorganic Chemistry, 44, 147–189.

    Article  CAS  Google Scholar 

  • Francesconi, K. A., Goessler, W., Panutrakul, S., & Irgolic, K. J. (1998). A novel arsenic containing riboside arsenosugar in three species of gastropod. The Science of Total Environment, 221, 139–148.

    Article  CAS  Google Scholar 

  • Gallardo, M. V., Bohari, Y., Astruc, A., Potin-Gautier, M., & Astruc, M. (2001). Speciation analysis of arsenic in environmental solids reference materials by high performance liquid chromatography hydride generation atomic fluorescence spectrometry following orthophosphoric acid extraction. Analytica Chimica Acta, 441, 257–268.

    Article  CAS  Google Scholar 

  • Garcia-Manyes, S., Jiminez, G., Padro, A., Rubio, R., & Rauret, G. (2002). Arsenic speciation in contaminated soils. Talanta, 58, 97–109.

    Article  CAS  Google Scholar 

  • Gebel, T. W. (2001). Genotoxicity of arsenical compounds. International Journal of Hygiene and Environmental Health, 203, 249–262.

    Article  CAS  Google Scholar 

  • Geiszinger, A. E., Goessler, W., & Francesconi, K. A. (2002a). The marine polychaete Arenicola marina: Its unusual arsenic compound pattern and its uptake of arsenate from seawater. Marine Environmental Research, 53, 37–50.

    Article  CAS  Google Scholar 

  • Geiszinger, A. E., Goessler, W., & Francesconi, K. A. (2002b). Biotransformation of arsenate to the tetramethylarsonium ion in the marine polychaetes Nereis diversicolor and Nereis virens. Environmental Science and Technology, 36, 2905–2910.

    Article  CAS  Google Scholar 

  • Geiszinger, A., Goessler, W., Kuehnelt, D., Francesconi, K., & Kosmus, W. (1998). Determination of arsenic compounds in earthworms. Environmental Science and Technology, 32, 2238–2243.

    Article  CAS  Google Scholar 

  • Gibbs, P. E., Langston, W. J., Burt, G. R., & Pascoe, P. L. (1983). Tharyx marioni (Polychaeta): A remarkable accumulator of arsenic. Journal of Marine Biological Association of UK, 63, 313–325.

    Article  CAS  Google Scholar 

  • Gomez-Ariza, J. L., Sanchez-Rodas, D., Giraldez, I., & Morales, E. (2000). Comparison of biota sample pretreatments for arsenic speciation with coupled HPLC-HG-ICP-MS. Analyst, 125, 401–407.

    Article  CAS  Google Scholar 

  • Hanaoka, K., Koga, H., Tagawa, S., & Kaise, T. (1992a). Degradation of arsenobetaine to inorganic arsenic by the microorganisms occurring in the suspended substances. Comparative Biochemistry and Physiology, 101B, 595–599.

    CAS  Google Scholar 

  • Hanaoka, K., Koga, H., Tagawa, S., & Kaise, T. (1992b). The degradation of arsenobetaine to inorganic arsenic by sedimentary microorganisms. Hydrobiologia, 235/236 (Dev. Hydrobiol. 75), 623–628.

  • Hanaoka, K., Tagawa, S., & Kaise, T. (1996). The fate of organoarsenic compounds in marine ecosystems. Applied Organometallic Chemistry, 6, 139–146.

    Article  Google Scholar 

  • Hatje, V., Macedo, S. M., de Jesus, R. M., Cotrim, G., Garcia, K. S., de Queiroz, A. F., et al. (2010). Inorganic As speciation and bioavailability in estuarine sediments of Todos os Santosh Bay, BA, Brazil. Marine Pollution Bulletin, 60, 2225–2232.

    Article  CAS  Google Scholar 

  • Hutchings, P. A. (1984). A preliminary report on the spatial and temporal patterns of polychaete recruitment on the Great Barrier Reef. In Hutchings PA (Ed.), Proceedings of 1st international polychaete conference Sydney. Limnological Society NSW (pp. 227–237).

  • Islama, S. M. N., Rahmana, S. H., Chowdhury, D. A., Rahmana, M. M., & Tareq, S. M. (2012). Seasonal variations of arsenic in the Ganges and Brahmaputra River, Bangladesh. Journal of Scientific Research, 4(1), 65–75.

    Google Scholar 

  • Jankong, P., Chalhoub, C., Kienzl, N., Goessler, W., Fransesconi, K., & Visoottiviseth, P. (2007). Arsenic accumulation and speciation in freshwater fish living in arsenic contaminated waters. Environmental Chemistry, 4, 11–17.

    Article  CAS  Google Scholar 

  • Kuehl, S. A., Hariu, T. M., & Moore, W. S. (1989). Shelf sedimentation off the Ganges–Brahmaputra river system: Evidence for sediment bypassing to the Bengal fan. Journal of Geology, 17, 1132–1135.

    Article  CAS  Google Scholar 

  • Kuehnelt, D., Goessler, W., & Irgolic, K. J. (1997). Arsenic compounds in terrestrial organisms III: Arsenic compounds in Formica sp. from an old arsenic smelter site. Applied Organometallic Chemistry, 11, 289–296.

    Article  CAS  Google Scholar 

  • Lee, J. S., & Lee, B. G. (2005). Effects of salinity, temperature and food type on the uptake and elimination rates of Cd, Cr and Xn in the Asiatic Clam Corbicula fluminea. Ocean Science Journal, 40, 79–89.

    Article  CAS  Google Scholar 

  • Luoma, S. N., & Cloern, J. E. (1982). The impacts of waste-water discharge on biological communities in San Francisco Bay. In H. J. Kockelman, T. J. Conomos, & A. E. Leviton (Eds.), San Francisco Bay, use and protection (pp. 137–160). San Francisco: Pacific Division, AAAS.

    Google Scholar 

  • Madsen, A. D., Goessler, W., Pedersen, S. N., & Francesconi, K. A. (2000). Characterisation of an algal extract by HPLC-ICP-MS and LC-electrospray MS for use in arsenosugar speciation studies. Journal of Analytical Atomic Spectrometry, 15, 657–662.

    Article  CAS  Google Scholar 

  • Maher, W. A., Foster, S. D., Taylor, A. M., Krikowa, F., Duncan, E. G., & Chariton, A. A. (2011). Arsenic distribution and species in two Zostera capricorni seagrass ecosystems, New South Wales. Environmental Chemistry, 8, 9–18.

    Article  CAS  Google Scholar 

  • Meador, J. P., Ernest, D. W., & Kagley, A. (2004). Bioaccumulation of arsenic in marine fish and invertebrates from Alaska and California. Archives of Environmental Contamination and Toxicology, 47, 223–233.

    Article  CAS  Google Scholar 

  • Moore, J. W., & Ramamoorthy, S. (1984). Heavy metals in natural waters. Applied monitoring and impact assessment. New York: Springer.

    Book  Google Scholar 

  • Nam, S.-H., Oh, H.-J., Min, H.-S., & Lee, J.-H. (2010). A study on the extraction and quantization of total arsenic and arsenic species in seafood by HPLC-ICP-MS. Microchemical Journal, 95, 20–24.

    Article  CAS  Google Scholar 

  • Neff, J. M. (1997). Ecotoxicology of arsenic in the marine environment: A review. Environmental Toxicology and Chemistry, 16, 917–927.

    CAS  Google Scholar 

  • Nischwitz, V., & Pergantis, S. A. (2006). Optimization of an HPLC selected reaction monitoring electrospray tandem mass spectrometry method for the detection of 50 arsenic species. Journal of Analytical Atomic Spectrometry, 21, 1277–1286.

    Article  CAS  Google Scholar 

  • Notti, A., Fattorini, D., Razzetti, E. M., & Regoli, F. (2007). Bioaccumulation and biotransformation of arsenic in the Mediterranean polychaete Sabella spallanzanii: Experimental observations. Environmental Toxicology and Chemistry, 26, 1186–1191.

    Article  CAS  Google Scholar 

  • O’Reilly, J., Watts, M. J., Shaw, R. A., Marcilla, A. L., & Ward, N. I. (2010). Arsenic contamination of natural waters in San Juan and La Pampa, Argentina. Environmental Geochemistry and Health, 32, 491–515.

    Article  Google Scholar 

  • Pérez-López, R., Nieto, J. M., López-Cascajosa, M. J., Díaz-Blanco, M. J., Sarmiento, A. M., Oliveira, V., et al. (2011). Evaluation of heavy metals and arsenic speciation discharged by the industrial activity on the Tinto-Odiel estuary, SW Spain. Marine Pollution Bulletin, 62, 405–411.

    Article  Google Scholar 

  • Phillips, D. J. H. (1990). Arsenic in aquatic organisms: A review, emphasizing chemical speciation. Aquatic Toxicology, 16, 151–186.

    Article  CAS  Google Scholar 

  • Pierce, M. L., & Moore, C. B. (1982). Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Research, 16, 1247–1253.

    Article  CAS  Google Scholar 

  • Rattanachongkiat, S., Millward, G. E., & Foulkes, M. E. (2004). Determination of arsenic species in fish, crustacean and sediment samples from Thailand using high performance liquid chromatography (HPLC) coupled with inductively coupled plasma mass spectrometry (ICP-MS). Journal of Environmental Monitoring, 6, 254–261.

    Article  CAS  Google Scholar 

  • Reimer, K. J., & Thompson, A. J. (1988). Arsenic speciation in marine interstitial water. The occurrence of organoarsenicals. Biogeochemistry, 6, 211–237.

    Article  CAS  Google Scholar 

  • Sarkar, S. K., & Bhattacharya, A. K. (2003). Conservation of biodiversity of the coastal resources of Sundarbans, northeast India: An integrated approach through environmental education. Marine Pollution Bulletin, 47, 260–264.

    Article  CAS  Google Scholar 

  • Sarkar, S. K., Bhattacharya, B. D., & Saha, S. (2007a). Spatial variations of zooplankton in Sundarban mangrove wetland, northeastern part of the Bay of Bengal. The ICFAI Journal of life Sciences, 1, 7–21.

    Google Scholar 

  • Sarkar, S. K., Franciscovic-Bilinski, S., Bhattacharya, A., Saha, M., & Bilinski, H. (2004). Levels of elements in the surficial estuarine sediments of the Hugli River, northeast India and their environmental implications. Environment International, 30, 1089–1098.

    Article  Google Scholar 

  • Sarkar, S. K., Saha, M., Takada, H., Bhattacharya, A., Mishra, P., & Bhattacharya, B. (2007b). Water quality management in the lower stretch of the river Ganges, east coast of India: An approach through environmental education. Journal of Cleaner Production, 15(16), 1459–1467.

    Article  Google Scholar 

  • Shiomi, K., Shiagawa, A., Azuma, A., Yamanaka, H., & Kikuchi, T. (1983). Purification of water-soluble arsenic compounds in a flatfish Limanda herzensteini, sea squirt Halocynthia roretzi, and sea cucumber Stichopus japanicus. Comparative Biochemistry and Physiology, 74, 393–396.

    Google Scholar 

  • Shumilin, E., Meyer-Willerer, A., Marmolejo-Rodriguez, A. J., Morton-Bermea, O., Galicia-Perez, M. A., Hernandez, E., et al. (2005). Iron, cadmium, chromium, copper, cobalt, lead, and zinc distribution in the suspended particulate matter of the tropical Marabasco River and its estuary, Colima, Mexico. Bulletin of Environmental Contamination and Toxicology, 74, 518–525.

    Article  CAS  Google Scholar 

  • Swaine, D. J. (2000). Why trace elements are important. Fuel Processing Technology, 65–66, 21–33.

    Article  Google Scholar 

  • Waldichuk, M. (1985). Biological availability of metals to marine organisms. Marine Pollution Bulletin, 16, 7–11.

    Article  Google Scholar 

  • Wang, Y.-C., Chaung, R.-H., & Tung, L.-C. (2004). Comparison of the cytotoxicity induced by different exposure to sodium arsenite in two fish cell lines. Aquatic Toxicology, 69, 67–79.

    Article  CAS  Google Scholar 

  • Wang, W. X., & Fisher, N. S. (1999). Assimilation efficiencies of chemical contaminants in aquatic invertebrates: A synthesis. Environmental Toxicology and Chemistry, 18, 2023–2045.

    Article  Google Scholar 

  • Wang, W.-X., Qiu, J.-W., & Qian, P.-Y. (1999). Significance of trophic transfer in predicting the high concentration of zinc in barnacles. Environmental Science and Technology, 33, 2906–2909.

    Google Scholar 

  • Waring, J. S., & Maher, W. (2005). Arsenic bioaccumulation and species in marine Polychaeta. Applied Organometallic Chemistry, 19, 917–929.

    Article  CAS  Google Scholar 

  • Waring, J., Maher, W., Foster, S., & Krilkowa, F. (2005). Occurrence and speciation of arsenic in common Australian coastal polychaetes species. Environmental Chemistry, 2, 108–118.

    Article  CAS  Google Scholar 

  • Waring, J., Maher, W. A., Foster, S., & Krilkowa, F. (2006). Trace metal bioaccumulation in eight common coastal Australian polychaeta. Journal of Environmental Monitoring, 8, 1149–1157.

    Article  CAS  Google Scholar 

  • Watts, M. J., Button, M., Brewer, T., & Harrington, C. F. (2008). Quantitative arsenic speciation in two species of earthworms from a former mine site. Journal of Environmental Monitoring, 10, 753–759.

    Article  CAS  Google Scholar 

  • Whalley, C., Rowlatt, S., Bennett, M., & Lovell, D. (1999). Total arsenic in sediments from the Western North Sea and the Humber Estuary. Marine Pollution Bulletin, 38, 394–400.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research work was financially supported by the University Grants Commission (UGC), New Delhi, India (Sanction No UGC/199/UPE/07) under the scheme ‘University with Potential for Excellence’ (Modern Biology Group). One of the authors (Md. A. Alam) is greatly indebted to UGC for awarding him project fellowship. The collaboration was facilitated through funding from the Royal Society. This work is published with the permission of the Executive Director of the British Geological Survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Watts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watts, M.J., Barlow, T.S., Button, M. et al. Arsenic speciation in polychaetes (Annelida) and sediments from the intertidal mudflat of Sundarban mangrove wetland, India. Environ Geochem Health 35, 13–25 (2013). https://doi.org/10.1007/s10653-012-9471-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-012-9471-1

Keywords

Navigation