Skip to main content

Apelin and Cancer

  • Chapter
  • First Online:
Adipocytokines, Energy Balance, and Cancer

Part of the book series: Energy Balance and Cancer ((EBAC,volume 12))

Abstract

Over the past decades, obesity became a tremendous socioecological problem, reaching epidemic dimensions and the number of accompanying comorbidities including type 2 diabetes and cardiovascular diseases can be extended by different types of cancer. The small peptide apelin is involved in key physiological processes such as angiogenesis, fluid homeostasis, and cardiovascular function. As a relatively new adipokine, apelin also exhibits metabolic functions in regulating insulin sensitivity and glucose metabolism. In rodents and humans, apelin serum levels seem to correlate with the nutritional status and even more interesting, apelin expression levels are increased in many different cancers due to its proangiogenic capacities, supporting a role of apelin as diagnostic biomarker in cancer and its potential use in anticancer therapies by blocking tumor neovascularization. This chapter highlights the role of apelin in both physiological and pathological conditions like tumorigenesis, especially in brain tumor development and reviews apelin signaling in metabolic disorders like obesity-related malignancies, to identify possible associations between the adipokine apelin and tumor progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Dowd BF et al (1993) A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene 136(1–2):355–360

    Article  PubMed  Google Scholar 

  2. Devic E et al (1996) Expression of a new G protein-coupled receptor X-msr is associated with an endothelial lineage in Xenopus laevis. Mech Dev 59(2):129–140

    Article  CAS  PubMed  Google Scholar 

  3. Cleaver O et al (1997) Neovascularization of the Xenopus embryo. Dev Dyn 210(1):66–77

    Article  CAS  PubMed  Google Scholar 

  4. Kälin RE et al (2007) Paracrine and autocrine mechanisms of apelin signaling govern embryonic and tumor angiogenesis. Dev Biol 305(2):599–614

    Article  PubMed  CAS  Google Scholar 

  5. Kälin RE et al (2009) An in vivo chemical library screen in Xenopus tadpoles reveals novel pathways involved in angiogenesis and lymphangiogenesis. Blood 114(5):1110–1122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Devic E et al (1999) Amino acid sequence and embryonic expression of msr/apj, the mouse homolog of Xenopus X-msr and human APJ. Mech Dev 84(1–2):199–203

    Article  CAS  PubMed  Google Scholar 

  7. De Mota N, Lenkei Z, Llorens-Cortes C (2000) Cloning, pharmacological characterization and brain distribution of the rat apelin receptor. Neuroendocrinology 72(6):400–407

    Article  PubMed  Google Scholar 

  8. Hosoya M et al (2000) Molecular and functional characteristics of APJ. Tissue distribution of mRNA and interaction with the endogenous ligand apelin. J Biol Chem 275(28):21061–21067

    Article  CAS  PubMed  Google Scholar 

  9. O’Carroll AM et al (2000) Distribution of mRNA encoding B78/apj, the rat homologue of the human APJ receptor, and its endogenous ligand apelin in brain and peripheral tissues. Biochim Biophys Acta 1492(1):72–80

    Article  PubMed  Google Scholar 

  10. Tatemoto K et al (1998) Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun 251(2):471–476

    Article  CAS  PubMed  Google Scholar 

  11. Reaux A et al (2001) Physiological role of a novel neuropeptide, apelin, and its receptor in the rat brain. J Neurochem 77(4):1085–1096

    Article  CAS  PubMed  Google Scholar 

  12. Kawamata Y et al (2001) Molecular properties of apelin: tissue distribution and receptor binding. Biochim Biophys Acta 1538(2–3):162–171

    Article  CAS  PubMed  Google Scholar 

  13. Vickers C et al (2002) Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 277(17):14838–14843

    Article  CAS  PubMed  Google Scholar 

  14. Lee DK et al (2000) Characterization of apelin, the ligand for the APJ receptor. J Neurochem 74(1):34–41

    Article  CAS  PubMed  Google Scholar 

  15. Kleinz MJ, Davenport AP (2004) Immunocytochemical localization of the endogenous vasoactive peptide apelin to human vascular and endocardial endothelial cells. Regul Pept 118(3):119–125

    Article  CAS  PubMed  Google Scholar 

  16. Habata Y et al (1999) Apelin, the natural ligand of the orphan receptor APJ, is abundantly secreted in the colostrum. Biochim Biophys Acta 1452(1):25–35

    Article  CAS  PubMed  Google Scholar 

  17. Tatemoto K et al (2001) The novel peptide apelin lowers blood pressure via a nitric oxide-dependent mechanism. Regul Pept 99(2–3):87–92

    Article  CAS  PubMed  Google Scholar 

  18. Medhurst AD et al (2003) Pharmacological and immunohistochemical characterization of the APJ receptor and its endogenous ligand apelin. J Neurochem 84(5):1162–1172

    Article  CAS  PubMed  Google Scholar 

  19. Saint-Geniez M et al (2002) Expression of the murine msr/apj receptor and its ligand apelin is upregulated during formation of the retinal vessels. Mech Dev 110(1–2):183–186

    Article  CAS  PubMed  Google Scholar 

  20. De Mota N et al (2004) Apelin, a potent diuretic neuropeptide counteracting vasopressin actions through inhibition of vasopressin neuron activity and vasopressin release. Proc Natl Acad Sci U S A 101(28):10464–10469

    Article  PubMed  PubMed Central  Google Scholar 

  21. Reaux A et al (2002) Distribution of apelin-synthesizing neurons in the adult rat brain. Neuroscience 113(3):653–662

    Article  CAS  PubMed  Google Scholar 

  22. Katugampola SD et al (2001) [(125)I]-(Pyr(1))Apelin-13 is a novel radioligand for localizing the APJ orphan receptor in human and rat tissues with evidence for a vasoconstrictor role in man. Br J Pharmacol 132(6):1255–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Edinger AL et al (1998) An orphan seven-transmembrane domain receptor expressed widely in the brain functions as a coreceptor for human immunodeficiency virus type 1 and simian immunodeficiency virus. J Virol 72(10):7934–7940

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Choe W et al (2000) Functional expression of the seven-transmembrane HIV-1 co-receptor APJ in neural cells. J Neurovirol 6(Suppl 1):S61–S69

    CAS  PubMed  Google Scholar 

  25. Marinissen MJ, Gutkind JS (2001) G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol Sci 22(7):368–376

    Article  CAS  PubMed  Google Scholar 

  26. Levoye A, Jockers R (2007) GPCRs heterodimerization: a new way towards the discovery of function for the orphan receptors? Med Sci (Paris) 23(8-9):746–750

    Article  Google Scholar 

  27. Masri B et al (2002) Apelin (65-77) activates extracellular signal-regulated kinases via a PTX-sensitive G protein. Biochem Biophys Res Commun 290(1):539–545

    Article  CAS  PubMed  Google Scholar 

  28. Masri B et al (2006) The apelin receptor is coupled to Gi1 or Gi2 protein and is differentially desensitized by apelin fragments. J Biol Chem 281(27):18317–18326

    Article  CAS  PubMed  Google Scholar 

  29. Lo HW (2010) EGFR-targeted therapy in malignant glioma: novel aspects and mechanisms of drug resistance. Curr Mol Pharmacol 3(1):37–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou N et al (2003) Cell-cell fusion and internalization of the CNS-based, HIV-1 co-receptor, APJ. Virology 307(1):22–36

    Article  CAS  PubMed  Google Scholar 

  31. Szokodi I et al (2002) Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ Res 91(5):434–440

    Article  CAS  PubMed  Google Scholar 

  32. Masri B et al (2004) Apelin (65-77) activates p70 S6 kinase and is mitogenic for umbilical endothelial cells. FASEB J 18:1909–1911

    CAS  PubMed  Google Scholar 

  33. Evans NA et al (2001) Visualizing differences in ligand-induced beta-arrestin-GFP interactions and trafficking between three recently characterized G protein-coupled receptors. J Neurochem 77(2):476–485

    Article  CAS  PubMed  Google Scholar 

  34. Lee DK et al (2010) The fate of the internalized apelin receptor is determined by different isoforms of apelin mediating differential interaction with beta-arrestin. Biochem Biophys Res Commun 395(2):185–189

    Article  CAS  PubMed  Google Scholar 

  35. El Messari S et al (2004) Functional dissociation of apelin receptor signaling and endocytosis: implications for the effects of apelin on arterial blood pressure. J Neurochem 90(6):1290–1301

    Article  PubMed  CAS  Google Scholar 

  36. Scimia MC et al (2012) APJ acts as a dual receptor in cardiac hypertrophy. Nature 488(7411):394–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chun HJ et al (2008) Apelin signaling antagonizes Ang II effects in mouse models of atherosclerosis. J Clin Invest 118(10):3343–3354

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Li Y et al (2012) Heterodimerization of human apelin and kappa opioid receptors: roles in signal transduction. Cell Signal 24(5):991–1001

    Article  CAS  PubMed  Google Scholar 

  39. Bai B et al (2014) Heterodimerization of apelin receptor and neurotensin receptor 1 induces phosphorylation of ERK(1/2) and cell proliferation via Galphaq-mediated mechanism. J Cell Mol Med 18(10):2071–2081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bai B et al (2014) Heterodimerization of human apelin and bradykinin 1 receptors: novel signal transduction characteristics. Cell Signal 26(7):1549–1559

    Article  CAS  PubMed  Google Scholar 

  41. Chapman NA, Dupre DJ, Rainey JK (2014) The apelin receptor: physiology, pathology, cell signalling, and ligand modulation of a peptide-activated class A GPCR. Biochem Cell Biol 92(6):431–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Foldes G et al (2003) Circulating and cardiac levels of apelin, the novel ligand of the orphan receptor APJ, in patients with heart failure. Biochem Biophys Res Commun 308(3):480–485

    Article  CAS  PubMed  Google Scholar 

  43. Chen MM et al (2003) Novel role for the potent endogenous inotrope apelin in human cardiac dysfunction. Circulation 108(12):1432–1439

    Article  CAS  PubMed  Google Scholar 

  44. Ishida J et al (2004) Regulatory roles for APJ, a seven-transmembrane receptor related to angiotensin-type 1 receptor in blood pressure in vivo. J Biol Chem 279(25):26274–26279

    Article  CAS  PubMed  Google Scholar 

  45. Leeper NJ et al (2009) Apelin prevents aortic aneurysm formation by inhibiting macrophage inflammation. Am J Physiol Heart Circ Physiol 296(5):H1329–H1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kojima Y et al (2010) Upregulation of the apelin-APJ pathway promotes neointima formation in the carotid ligation model in mouse. Cardiovasc Res 87(1):156–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sonmez A et al (2010) Plasma apelin and ADMA Levels in patients with essential hypertension. Clin Exp Hypertens 32(3):179–183

    Article  CAS  PubMed  Google Scholar 

  48. Maguire JJ et al (2009) [Pyr1]apelin-13 identified as the predominant apelin isoform in the human heart: vasoactive mechanisms and inotropic action in disease. Hypertension 54(3):598–604

    Article  CAS  PubMed  Google Scholar 

  49. Kagiyama S et al (2005) Central and peripheral cardiovascular actions of apelin in conscious rats. Regul Pept 125(1–3):55–59

    Article  CAS  PubMed  Google Scholar 

  50. Taheri S et al (2002) The effects of centrally administered apelin-13 on food intake, water intake and pituitary hormone release in rats. Biochem Biophys Res Commun 291(5):1208–1212

    Article  CAS  PubMed  Google Scholar 

  51. Clarke KJ, Whitaker KW, Reyes TM (2009) Diminished metabolic responses to centrally-administered apelin-13 in diet-induced obese rats fed a high-fat diet. J Neuroendocrinol 21(2):83–89

    Article  CAS  PubMed  Google Scholar 

  52. Mitra A et al (2006) Effects of central and peripheral injections of apelin on fluid intake and cardiovascular parameters in rats. Physiol Behav 89(2):221–225

    Article  CAS  PubMed  Google Scholar 

  53. O’Shea M et al (2003) Inhibitory effect of apelin-12 on nocturnal food intake in the rat. Nutr Neurosci 6(3):163–167

    Article  PubMed  CAS  Google Scholar 

  54. Sunter D, Hewson AK, Dickson SL (2003) Intracerebroventricular injection of apelin-13 reduces food intake in the rat. Neurosci Lett 353(1):1–4

    Article  CAS  PubMed  Google Scholar 

  55. Roberts EM et al (2009) Abnormal fluid homeostasis in apelin receptor knockout mice. J Endocrinol 202(3):453–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hus-Citharel A et al (2008) Effect of apelin on glomerular hemodynamic function in the rat kidney. Kidney Int 74(4):486–494

    Article  CAS  PubMed  Google Scholar 

  57. Azizi M et al (2008) Reciprocal regulation of plasma apelin and vasopressin by osmotic stimuli. J Am Soc Nephrol 19(5):1015–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. O’Donnell LA et al (2007) Apelin, an endogenous neuronal peptide, protects hippocampal neurons against excitotoxic injury. J Neurochem 102(6):1905–1917

    Article  PubMed  CAS  Google Scholar 

  59. Zeng XJ et al (2010) Neuroprotective effect of the endogenous neural peptide apelin in cultured mouse cortical neurons. Exp Cell Res 316(11):1773–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cheng B et al (2012) Neuroprotection of apelin and its signaling pathway. Peptides 37(1):171–173

    Article  CAS  PubMed  Google Scholar 

  61. Horiuchi Y et al (2003) The endogenous, immunologically active peptide apelin inhibits lymphocytic cholinergic activity during immunological responses. J Neuroimmunol 144(1–2):46–52

    Article  CAS  PubMed  Google Scholar 

  62. Kasai A et al (2004) Apelin is a novel angiogenic factor in retinal endothelial cells. Biochem Biophys Res Commun 325(2):395–400

    Article  CAS  PubMed  Google Scholar 

  63. Cox CM et al (2006) Apelin, the ligand for the endothelial G-protein-coupled receptor, APJ, is a potent angiogenic factor required for normal vascular development of the frog embryo. Dev Biol 296(1):177–189

    Article  CAS  PubMed  Google Scholar 

  64. del Toro R et al (2010) Identification and functional analysis of endothelial tip cell-enriched genes. Blood 116(19):4025–4033

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kasai A et al (2008) Retardation of retinal vascular development in apelin-deficient mice. Arterioscler Thromb Vasc Biol 28(10):1717–1722

    Article  CAS  PubMed  Google Scholar 

  66. Kidoya H et al (2008) Spatial and temporal role of the apelin/APJ system in the caliber size regulation of blood vessels during angiogenesis. EMBO J 27(3):522–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Strasser GA, Kaminker JS, Tessier-Lavigne M (2010) Microarray analysis of retinal endothelial tip cells identifies CXCR4 as a mediator of tip cell morphology and branching. Blood 115(24):5102–5110

    Article  CAS  PubMed  Google Scholar 

  68. Kidoya H, Naito H, Takakura N (2010) Apelin induces enlarged and nonleaky blood vessels for functional recovery from ischemia. Blood 115(15):3166–3174

    Article  CAS  PubMed  Google Scholar 

  69. Kasai A et al (2010) Apelin is a crucial factor for hypoxia-induced retinal angiogenesis. Arterioscler Thromb Vasc Biol 30(11):2182–2187

    Article  CAS  PubMed  Google Scholar 

  70. Liu Q et al (2015) Genetic targeting of sprouting angiogenesis using Apln-CreER. Nat Commun 6:6020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. McKenzie JA et al (2012) Apelin is required for non-neovascular remodeling in the retina. Am J Pathol 180(1):399–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Eyries M et al (2008) Hypoxia-induced apelin expression regulates endothelial cell proliferation and regenerative angiogenesis. Circ Res 103(4):432–440

    Article  CAS  PubMed  Google Scholar 

  73. Tempel D et al (2012) Apelin enhances cardiac neovascularization after myocardial infarction by recruiting aplnr + circulating cells. Circ Res 111(5):585–598

    Article  CAS  PubMed  Google Scholar 

  74. Kuba K et al (2007) Impaired heart contractility in Apelin gene-deficient mice associated with aging and pressure overload. Circ Res 101(4):e32–e42

    Article  CAS  PubMed  Google Scholar 

  75. Zeng XX et al (2007) Apelin and its receptor control heart field formation during zebrafish gastrulation. Dev Cell 12(3):391–402

    Article  CAS  PubMed  Google Scholar 

  76. Scott IC et al (2007) The g protein-coupled receptor agtrl1b regulates early development of myocardial progenitors. Dev Cell 12(3):403–413

    Article  CAS  PubMed  Google Scholar 

  77. Inui M et al (2006) Xapelin and Xmsr are required for cardiovascular development in Xenopus laevis. Dev Biol 298(1):188–200

    Article  CAS  PubMed  Google Scholar 

  78. Sato T et al (2013) Apelin is a positive regulator of ACE2 in failing hearts. J Clin Invest 123(12):5203–5211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sheikh AY et al (2008) In vivo genetic profiling and cellular localization of apelin reveals a hypoxia-sensitive, endothelial-centered pathway activated in ischemic heart failure. Am J Physiol Heart Circ Physiol 294(1):H88–H98

    Article  CAS  PubMed  Google Scholar 

  80. Charo DN et al (2009) Endogenous regulation of cardiovascular function by apelin-APJ. Am J Physiol Heart Circ Physiol 297(5):H1904–H1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kang Y et al (2013) Apelin-APJ signaling is a critical regulator of endothelial MEF2 activation in cardiovascular development. Circ Res 113(1):22–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chng SC et al (2013) ELABELA: a hormone essential for heart development signals via the apelin receptor. Dev Cell 27(6):672–680

    Article  CAS  PubMed  Google Scholar 

  83. Pauli A et al (2014) Toddler: an embryonic signal that promotes cell movement via Apelin receptors. Science 343(6172):1248636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Kidoya H et al (2015) APJ regulates parallel alignment of arteries and veins in the skin. Dev Cell 33(3):247–259

    Article  CAS  PubMed  Google Scholar 

  85. Boucher J et al (2005) Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology 146(4):1764–1771

    Article  CAS  PubMed  Google Scholar 

  86. Telejko B et al (2010) Plasma apelin levels and apelin/APJ mRNA expression in patients with gestational diabetes mellitus. Diabetes Res Clin Pract 87(2):176–183

    Article  CAS  PubMed  Google Scholar 

  87. Heinonen MV et al (2005) Apelin, orexin-A and leptin plasma levels in morbid obesity and effect of gastric banding. Regul Pept 130(1–2):7–13

    Article  CAS  PubMed  Google Scholar 

  88. Ba HJ et al (2014) Associations between serum apelin-12 levels and obesity-related markers in Chinese children. PLoS One 9(1), e86577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Ziora K et al (2010) Assessment of serum apelin levels in girls with anorexia nervosa. J Clin Endocrinol Metab 95(6):2935–2941

    Article  CAS  PubMed  Google Scholar 

  90. Li L et al (2006) Changes and relations of circulating visfatin, apelin, and resistin levels in normal, impaired glucose tolerance, and type 2 diabetic subjects. Exp Clin Endocrinol Diabetes 114(10):544–548

    Article  CAS  PubMed  Google Scholar 

  91. Soriguer F et al (2009) Apelin levels are increased in morbidly obese subjects with type 2 diabetes mellitus. Obes Surg 19(11):1574–1580

    Article  PubMed  Google Scholar 

  92. Castan-Laurell I et al (2008) Effect of hypocaloric diet-induced weight loss in obese women on plasma apelin and adipose tissue expression of apelin and APJ. Eur J Endocrinol 158(6):905–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Krist J et al (2013) Effects of weight loss and exercise on apelin serum concentrations and adipose tissue expression in human obesity. Obes Facts 6(1):57–69

    Article  CAS  PubMed  Google Scholar 

  94. Yue P et al (2010) Apelin is necessary for the maintenance of insulin sensitivity. Am J Physiol Endocrinol Metab 298(1):E59–E67

    Article  CAS  PubMed  Google Scholar 

  95. Dray C et al (2008) Apelin stimulates glucose utilization in normal and obese insulin-resistant mice. Cell Metab 8(5):437–445

    Article  CAS  PubMed  Google Scholar 

  96. Han S et al (2015) Pancreatic islet APJ deletion reduces islet density and glucose tolerance in mice. Endocrinology 156(7):2451–2460

    Article  CAS  PubMed  Google Scholar 

  97. Hadji L et al (2014) White adipose tissue resilience to insulin deprivation and replacement. PLoS One 9(8), e106214

    Article  PubMed  PubMed Central  Google Scholar 

  98. Than A et al (2015) Apelin enhances brown adipogenesis and browning of white adipocytes. J Biol Chem 290(23):14679–14691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Principe A et al (2008) The hepatic apelin system: a new therapeutic target for liver disease. Hepatology 48(4):1193–1201

    Article  CAS  PubMed  Google Scholar 

  100. Farid RM, Abu-Zeid RM, El-Tawil A (2014) Emerging role of adipokine apelin in hepatic remodelling and initiation of carcinogensis in chronic hepatitis C patients. Int J Clin Exp Pathol 7(5):2707–2717

    PubMed  PubMed Central  Google Scholar 

  101. Jain RK et al (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8(8):610–622

    Article  CAS  PubMed  Google Scholar 

  102. Carmeliet P, Tessier-Lavigne M (2005) Common mechanisms of nerve and blood vessel wiring. Nature 436(7048):193–200

    Article  CAS  PubMed  Google Scholar 

  103. Kleihues P et al (2002) The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol 61(3):215–225, discussion 226-9

    Article  PubMed  Google Scholar 

  104. Van Meir EG et al (2010) Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin 60(3):166–193

    Article  PubMed  PubMed Central  Google Scholar 

  105. Plate KH et al (1992) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359(6398):845–848

    Article  CAS  PubMed  Google Scholar 

  106. Heo K et al (2012) Hypoxia-induced up-regulation of apelin is associated with a poor prognosis in oral squamous cell carcinoma patients. Oral Oncol 48(6):500–506

    Article  CAS  PubMed  Google Scholar 

  107. Glassford AJ et al (2007) HIF-1 regulates hypoxia- and insulin-induced expression of apelin in adipocytes. Am J Physiol Endocrinol Metab 293(6):E1590–E1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Junes-Gill KS et al (2011) hHSS1: a novel secreted factor and suppressor of glioma growth located at chromosome 19q13.33. J Neurooncol 102(2):197–211

    Article  CAS  PubMed  Google Scholar 

  109. Seaman S et al (2007) Genes that distinguish physiological and pathological angiogenesis. Cancer Cell 11(6):539–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang Z, Greeley GH Jr, Qiu S (2008) Immunohistochemical localization of apelin in human normal breast and breast carcinoma. J Mol Histol 39(1):121–124

    Article  CAS  PubMed  Google Scholar 

  111. Masiero M et al (2013) A core human primary tumor angiogenesis signature identifies the endothelial orphan receptor ELTD1 as a key regulator of angiogenesis. Cancer Cell 24(2):229–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Berta J et al (2010) Apelin expression in human non-small cell lung cancer: role in angiogenesis and prognosis. J Thorac Oncol 5(8):1120–1129

    Article  PubMed  Google Scholar 

  113. Sorli SC et al (2007) Apelin is a potent activator of tumour neoangiogenesis. Oncogene 26(55):7692–7699

    Article  CAS  PubMed  Google Scholar 

  114. Kidoya H et al (2011) The apelin/APJ system induces maturation of the tumor vasculature and improves the efficiency of immune therapy. Oncogene 31(27):3254–3264

    Article  PubMed  CAS  Google Scholar 

  115. Kawahara H et al (2013) Tumor endothelial cell-specific drug delivery system using apelin-conjugated liposomes. PLoS One 8(6), e65499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  117. Okines A, Cunningham D (2009) Current perspective: bevacizumab in colorectal cancer—a time for reappraisal? Eur J Cancer 45(14):2452–2461

    Article  CAS  PubMed  Google Scholar 

  118. Chinot OL et al (2014) Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 370(8):709–722

    Article  CAS  PubMed  Google Scholar 

  119. Gilbert MR et al (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370(8):699–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Fine HA (2014) Bevacizumab in glioblastoma—still much to learn. N Engl J Med 370(8):764–765

    Article  CAS  PubMed  Google Scholar 

  121. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Plate KH, Scholz A, Dumont DJ (2012) Tumor angiogenesis and anti-angiogenic therapy in malignant gliomas revisited. Acta Neuropathol 124(6):763–775

    Article  PubMed  PubMed Central  Google Scholar 

  123. Lamszus K, Kunkel P, Westphal M (2003) Invasion as limitation to anti-angiogenic glioma therapy. Acta Neurochir Suppl 88:169–177

    CAS  PubMed  Google Scholar 

  124. Lu KV, Bergers G (2013) Mechanisms of evasive resistance to anti-VEGF therapy in glioblastoma. CNS Oncol 2(1):49–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Charles NA et al (2011) The brain tumor microenvironment. Glia 59(8):1169–1180

    Article  PubMed  Google Scholar 

  126. Markovic DS et al (2009) Gliomas induce and exploit microglial MT1-MMP expression for tumor expansion. Proc Natl Acad Sci U S A 106(30):12530–12535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Stock K et al (2012) Neural precursor cells induce cell death of high-grade astrocytomas through stimulation of TRPV1. Nat Med 18(8):1232–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yan H et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(8):765–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. SongTao Q et al (2012) IDH mutations predict longer survival and response to temozolomide in secondary glioblastoma. Cancer Sci 103(2):269–273

    Article  PubMed  CAS  Google Scholar 

  130. Geisbrecht BV, Gould SJ (1999) The human PICD gene encodes a cytoplasmic and peroxisomal NADP(+)-dependent isocitrate dehydrogenase. J Biol Chem 274(43):30527–30533

    Article  CAS  PubMed  Google Scholar 

  131. Majmundar AJ, Wong WJ, Simon MC (2010) Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 40(2):294–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lu C et al (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483(7390):474–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhao S et al (2009) Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 324(5924):261–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Koivunen P et al (2012) Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 483(7390):484–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Warburg O (1956) Origin of cancer cells. Oncologia 9(2):75–83

    Article  CAS  PubMed  Google Scholar 

  136. Locasale JW, Cantley LC (2011) Metabolic flux and the regulation of mammalian cell growth. Cell Metab 14(4):443–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Oudard S et al (1996) High glycolysis in gliomas despite low hexokinase transcription and activity correlated to chromosome 10 loss. Br J Cancer 74(6):839–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Tabatabaei P et al (2008) Glucose metabolites, glutamate and glycerol in malignant glioma tumours during radiotherapy. J Neurooncol 90(1):35–39

    Article  CAS  PubMed  Google Scholar 

  139. Keunen O et al (2014) Multimodal imaging of gliomas in the context of evolving cellular and molecular therapies. Adv Drug Deliv Rev 76:98–115

    Article  CAS  PubMed  Google Scholar 

  140. Park I et al (2011) Detection of early response to temozolomide treatment in brain tumors using hyperpolarized 13C MR metabolic imaging. J Magn Reson Imaging 33(6):1284–1290

    Article  PubMed  PubMed Central  Google Scholar 

  141. Chaumeil MM et al (2012) Hyperpolarized 13C MR spectroscopic imaging can be used to monitor Everolimus treatment in vivo in an orthotopic rodent model of glioblastoma. Neuroimage 59(1):193–201

    Article  CAS  PubMed  Google Scholar 

  142. De Bock K et al (2013) Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154(3):651–663

    Article  PubMed  CAS  Google Scholar 

  143. Polet F, Feron O (2013) Endothelial cell metabolism and tumour angiogenesis: glucose and glutamine as essential fuels and lactate as the driving force. J Intern Med 273(2):156–165

    Article  CAS  PubMed  Google Scholar 

  144. Yeh WL, Lin CJ, Fu WM (2008) Enhancement of glucose transporter expression of brain endothelial cells by vascular endothelial growth factor derived from glioma exposed to hypoxia. Mol Pharmacol 73(1):170–177

    Article  CAS  PubMed  Google Scholar 

  145. Eelen G et al (2013) Control of vessel sprouting by genetic and metabolic determinants. Trends Endocrinol Metab 24(12):589–596

    Article  CAS  PubMed  Google Scholar 

  146. Khandekar MJ, Cohen P, Spiegelman BM (2011) Molecular mechanisms of cancer development in obesity. Nat Rev Cancer 11(12):886–895

    Article  CAS  PubMed  Google Scholar 

  147. Kälin S et al (2015) Hypothalamic innate immune reaction in obesity. Nat Rev Endocrinol 11(6):339–351

    Article  PubMed  CAS  Google Scholar 

  148. Caldefie-Chezet F et al (2005) Leptin: a proliferative factor for breast cancer? Study on human ductal carcinoma. Biochem Biophys Res Commun 334(3):737–741

    Article  CAS  PubMed  Google Scholar 

  149. Jarde T et al (2008) Leptin and leptin receptor involvement in cancer development: a study on human primary breast carcinoma. Oncol Rep 19(4):905–911

    PubMed  Google Scholar 

  150. Muto J et al (2014) The apelin-APJ system induces tumor arteriogenesis in hepatocellular carcinoma. Anticancer Res 34(10):5313–5320

    PubMed  Google Scholar 

  151. Picault FX et al (2014) Tumour co-expression of apelin and its receptor is the basis of an autocrine loop involved in the growth of colon adenocarcinomas. Eur J Cancer 50(3):663–674

    Article  CAS  PubMed  Google Scholar 

  152. Yang L et al (2014) ERK1/2 mediates lung adenocarcinoma cell proliferation and autophagy induced by apelin-13. Acta Biochim Biophys Sin (Shanghai) 46(2):100–111

    Article  CAS  Google Scholar 

  153. Lacquaniti A et al (2015) Apelin beyond kidney failure and hyponatremia: a useful biomarker for cancer disease progression evaluation. Clin Exp Med 15(1):97–105

    Article  CAS  PubMed  Google Scholar 

  154. Diakowska D et al (2014) Serum levels of resistin, adiponectin, and apelin in gastroesophageal cancer patients. Dis Markers 2014:619649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Altinkaya SO et al (2015) Apelin levels are higher in obese patients with endometrial cancer. J Obstet Gynaecol Res 41(2):294–300

    Article  CAS  PubMed  Google Scholar 

  156. Kidoya H, Takakura N (2012) Biology of the apelin-APJ axis in vascular formation. J Biochem 152(2):125–131

    Article  CAS  PubMed  Google Scholar 

  157. Xu S, Tsao PS, Yue P (2011) Apelin and insulin resistance: another arrow for the quiver? J Diabetes 3(3):225–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Sorhede Winzell M, Magnusson C, Ahren B (2005) The apj receptor is expressed in pancreatic islets and its ligand, apelin, inhibits insulin secretion in mice. Regul Pept 131(1–3):12–17

    Article  PubMed  CAS  Google Scholar 

  159. Zhu S et al (2011) Apelin stimulates glucose uptake through the PI3K/Akt pathway and improves insulin resistance in 3T3-L1 adipocytes. Mol Cell Biochem 353(1–2):305–313

    Article  CAS  PubMed  Google Scholar 

  160. Xu S et al (2012) In vivo, ex vivo, and in vitro studies on apelin’s effect on myocardial glucose uptake. Peptides 37(2):320–326

    Article  CAS  PubMed  Google Scholar 

  161. Dray C et al (2013) The intestinal glucose-apelin cycle controls carbohydrate absorption in mice. Gastroenterology 144(4):771–780

    Article  CAS  PubMed  Google Scholar 

  162. Higuchi K et al (2007) Apelin, an APJ receptor ligand, regulates body adiposity and favors the messenger ribonucleic acid expression of uncoupling proteins in mice. Endocrinology 148(6):2690–2697

    Article  CAS  PubMed  Google Scholar 

  163. Yamamoto T et al (2011) Apelin-transgenic mice exhibit a resistance against diet-induced obesity by increasing vascular mass and mitochondrial biogenesis in skeletal muscle. Biochim Biophys Acta 1810(9):853–862

    Article  CAS  PubMed  Google Scholar 

  164. Attane C et al (2012) Apelin treatment increases complete Fatty Acid oxidation, mitochondrial oxidative capacity, and biogenesis in muscle of insulin-resistant mice. Diabetes 61(2):310–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland E. Kälin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kälin, S., Kälin, R.E. (2017). Apelin and Cancer. In: Reizes, O., Berger, N. (eds) Adipocytokines, Energy Balance, and Cancer. Energy Balance and Cancer, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-41677-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41677-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41675-5

  • Online ISBN: 978-3-319-41677-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics