Skip to main content

Time-Dependent Outflow Boundary Conditions for Blood Flow in the Arterial System

  • Chapter
  • First Online:
Advances in Computational Fluid-Structure Interaction and Flow Simulation

Abstract

We present time-dependent outflow boundary conditions for blood flow simulations in the arterial system. The new method allows for embedding clinically obtained patient-specific data into the patient-specific geometric models of the circulation system. Blood rheology is accounted for by shear-rate dependent models for blood. Our recently developed stabilized finite element method for non-Newtonian fluid models is extended to include downstream effects by incorporating clinically measured downstream resistance via a novel functional form for the outflow boundary conditions. Patient-specific flow-rate and pressure profiles measured clinically (e.g., ultrasound device, CT, or MRI) are used to determine time-dependent resistance functions. For verification of the new method, we compare the clinically measured time-dependent resistance outflow boundary conditions to the constant pressure, constant resistance, and the impedance outflow boundary conditions. Numerical tests verify that the time-dependent outflow boundary conditions proposed in this work impose the most accurate downstream effects that are caused by the non-Newtonian behavior of blood as well as the geometrical complexity of the branching arteries. Our numerical tests show that the reduced geometry with the proposed outflow boundary conditions results in an order of magnitude reduction in computational cost as compared to that of the full arterial geometry model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Charm, S., Kurland, G.: Viscometry of human blood for shear rates of 0-100,000 sec−1. Nature 206(4984), 617–618 (1965)

    Article  Google Scholar 

  2. Chien, S., Usami, S., Taylor, H.M., Lundberg, J.L., Gregersen, M.I.: Effect of hematocrit and plasma proteins on human blood rheology at low shear rates. J. Appl. Physiol. 21(1), 81–87 (1966)

    Google Scholar 

  3. Chien, S., Usami, S., Dellenback, R.J., Gregersen, M.I.: Blood viscosity: influence of erythrocyte aggregation. Science 157(3790), 829–831 (1967)

    Article  Google Scholar 

  4. Cross, M.M.: Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems. J. Colloid Sci. 20, 417–437 (1965)

    Article  Google Scholar 

  5. Walburn, F.J., Schneck, D.J.: A constitutive equation for whole human blood. Biorheology 13, 201–210 (1976)

    Google Scholar 

  6. Yasuda, K., Armstrong, R.C., Cohen, R.E.: Shear flow properties of concentrated solutions of linear and star branched polystyrenes. Rheol. Acta 20, 163–178 (1981)

    Article  Google Scholar 

  7. Anand, M., Rajagopal, K.R.: A shear-thinning viscoelastic fluid model for describing the flow of blood. Int J Cardiovasc Med Sci 4, 59–68 (2004)

    Google Scholar 

  8. Rajagopal, K.R.: Mechanics of non-Newtonian fluids. In: Galdi, G.P., Necas, J. (eds.) Recent Developments in Theoretical Fluids Mechanics. Pitman Research Notes in Mathematics, vol. 291, pp. 129–162. Longman, New York (1993)

    Google Scholar 

  9. Anand, M., Rajagopal, K., Rajagopal, K.R.: A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood. Comput. Math. Methods Med. 5, 183–218 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Rajagopal, K.R., Srinivasa, A.R.: A thermodynamic frame work for rate type fluid models. J. Non-Newtonian Fluid Mech. 88, 207–227 (2000)

    Article  MATH  Google Scholar 

  11. Yeleswarapu, K.K., Kameneva, M.V., Rajagopal, K.R., Antaki, J.F.: The flow of blood in tubes: theory and experiment. Mech. Res. Commun. 25, 257–262 (1998)

    Article  MATH  Google Scholar 

  12. Kwack, J., Masud, A.: A three-field formulation for incompressible viscoelastic fluids. Int. J. Eng. Sci. 48(11), 1413–1432 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Anand, M., Kwack, J., Masud, A.: A new generalized Oldroyd-B model for blood flow in complex geometries. Int. J. Eng. Sci. 72, 78–88 (2013)

    Article  Google Scholar 

  14. Masud, A., Kwack, J.: A stabilized mixed finite element method for the incompressible shear-rate dependent non-Newtonian fluids: Variational Multiscale framework and consistent linearization. Comput. Methods Appl. Mech. Eng. 200(5-8), 577–596 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kwack, J., Masud, A.: A stabilized mixed finite element method for shear-rate dependent non-Newtonian fluids: 3D benchmark problems and application to blood flow in bifurcating arteries. Comput. Mech. 53(4), 751–776 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Weddell, J., Kwack, J., Imoukhuede, P.I., Masud, A.: Hemodynamic analysis in an idealized artery tree: differences in wall shear stress between Newtonian and non-Newtonian blood models. PLoS ONE 10(4), e0124575 (2015). doi:10.1371/journal.pone.0124575

    Article  Google Scholar 

  17. Taylor, C.A., Hughes, T.J.R., Zarins, C.K.: Finite element modeling of blood flow in arteries. Comput. Methods Appl. Mech. Eng. 158, 155–196 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Taylor, C.A., Cheng, C.P., Espinosa, L.A., Tang, B.T., Parker, D., Herfkens, R.J.: In vivo quantification of blood flow and wall shear stress in the human abdominal aorta during lower limb exercise. Ann. Biomed. Eng. 30, 402–408 (2002)

    Article  Google Scholar 

  19. Bazilevs, Y., Calo, V.M., Zhang, Y., Hughes, T.J.R.: Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput. Mech. 38, 310–322 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, Y., Bazilevs, Y., Goswami, S., Bajaj, C.L., Hughes, T.J.R.: Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow. Comput. Methods Appl. Mech. Eng. 196, 2943–2959 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tezduyar, T.E., Sathe, S., Schwaab, M., Conklin, B.S.: Arterial fluid mechanics modeling with the stabilized space-time fluid-structure interaction technique. Int. J. Numer. Methods Fluids 57, 601–629 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bazilevs, Y., Hsu, M.C., Zhang, Y., Wang, W., Liang, X., Kvamsdal, T., Brekken, R., Isaksen, J.G.: A fully-coupled fluid-structure inter- action simulation of cerebral aneurysms. Comput. Mech. 46, 3–16 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Takizawa, K., Schjodt, K., Puntel, A., Kostov, N., Tezduyar, T.E.: Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms. Comput. Mech. 51, 1061–1073 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Olufsen, M.S.: Structured tree outflow condition for blood flow in larger systemic arteries. Am. Physiol. Soc. 276(1), H257–H268 (1999)

    Google Scholar 

  25. Esmaily-Moghadam, M., Bazilevs, Y., Hsia, T.Y., Vignon-Clementel, I.E., Marsden, A.L.: A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to bloodflow simulations. Comput. Mech. 48, 277–291 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Vignon-Clementel, I.E., Alberto Figueroa, C., Jansen, K.E., Taylor, C.A.: Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Eng. 195, 3776–3796 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov- Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hughes, T.J.R., Franca, L.P., Hulbert, G.M.: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin-least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Eng. 73, 173–189 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. Masud, A., Khurram, R.: A multiscale finite element method for the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 195, 1750–1777 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arif Masud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kwack, J., Kang, S., Bhat, G., Masud, A. (2016). Time-Dependent Outflow Boundary Conditions for Blood Flow in the Arterial System. In: Bazilevs, Y., Takizawa, K. (eds) Advances in Computational Fluid-Structure Interaction and Flow Simulation. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-40827-9_28

Download citation

Publish with us

Policies and ethics