Skip to main content

Pharmacological Tools to Study the Role of Astrocytes in Neural Network Functions

  • Chapter
  • First Online:
Glial Cells in Health and Disease of the CNS

Abstract

Despite that astrocytes and microglia do not communicate by electrical impulses, they can efficiently communicate among them, with each other and with neurons, to participate in complex neural functions requiring broad cell-communication and long-lasting regulation of brain function. Glial cells express many receptors in common with neurons; secrete gliotransmitters as well as neurotrophic and neuroinflammatory factors, which allow them to modulate synaptic transmission and neural excitability. All these properties allow glial cells to influence the activity of neuronal networks. Thus, the incorporation of glial cell function into the understanding of nervous system dynamics will provide a more accurate view of brain function. Our current knowledge of glial cell biology is providing us with experimental tools to explore their participation in neural network modulation. In this chapter, we review some of the classical, as well as some recent, pharmacological tools developed for the study of astrocyte’s influence in neural function. We also provide some examples of the use of these pharmacological agents to understand the role of astrocytes in neural network function and dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADP:

Adenosine-diphosphate

ATP:

Adenosine-triphosphate

BAPTA-AM:

1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetrakis(acetoxymethyl ester)

BBB:

Blood–Brain Barrier

cAMP:

Cyclic adenosine monophosphate

CGa:

Cystine–glutamate antiporter

CNS:

Central Nervous System

Cox-2:

Cyclooxygenese-2

Cx30:

Connexin 30

Cx43:

Connexin 43

FA:

Fluoroacetate

FC:

Fluorocitrate

GABA:

Gamma-aminobutyric acid

GFAP:

Glial Fibrillary Acidic Protein

GLAST:

Glutamate Aspartate Transporter

GLT-1:

Glial Glutamate Transporter 1

GS:

Glutamine Synthetase

iNOS:

Inducible Nitric Oxide Synthase

L5:

Lumbar segment 5

L-AAA:

L-alpha-aminoadipic acid

LTP:

Long-Term Potentiation

MCT1:

Monocarboxylate Transporter 1

MCT4:

Monocarboxylate Transporter 4

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MSO:

L-methionine-S-sulfoximine

NMDA:

N-methyl-D-aspartate

ONO-2506:

(2R)-2-Propyloctanoic acid

PAR1:

Protease-activated receptor 1

pH:

-log [H+]

S100B:

S100 Ca2+-binding protein B

TCAC:

Tricaboxylic acid cycle

TeNT:

Tetanus Neurotoxin

TgAPP(sw):

Transgenic mice carrying the amyloid precursor protein with the Swedish mutation

TFLLR:

L-threonyl-L-phenylalanyl-L-leucyl-L-leucyl-L-argininamide

References

  • Agulhon C, Petravicz J, McMullen AB, Sweger EJ, Minton SK, Taves SR, Casper KB, Fiacco TA, McCarthy KD (2008) What is the role of astrocyte calcium in neurophysiology? Neuron 59(6):932–946

    Google Scholar 

  • Albrecht J, Jones EA (1999) Hepatic encephalopathy: molecular mechanisms underlying the clinical syndrome. J Neurol Sci 170(2):138–146

    Article  CAS  PubMed  Google Scholar 

  • Allaman I, Bélanger M, Magistretti PJ (2011) Astrocyte-neuron metabolic relationships: for better and for worse. Trends Neurosci 34(2):76–87

    Article  CAS  PubMed  Google Scholar 

  • Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22(5):208–215

    Article  CAS  PubMed  Google Scholar 

  • Araque A, Martín ED, Perea G, Arellano JI, Buño W (2002) Synaptically released acetylcholine evokes Ca2+ elevations in astrocytes in hippocampal slices. J Neurosci 22(7):2443–2450

    CAS  PubMed  Google Scholar 

  • Asano T, Mori T, Shimoda T, Shinagawa R, Satoh S, Yada N, Katsumata S, Matsuda S, Kagamiishi Y, Tateishi N (2005) Arundic acid (ONO-2506) ameliorates delayed ischemic brain damage by preventing astrocytic overproduction of S100B. Curr Drug Targets CNS Neurol Disord 4(2):127–142

    Article  CAS  PubMed  Google Scholar 

  • Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Jacob Filho W, Lent R, Herculano-Houzel S (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513(5):532–541

    Article  PubMed  Google Scholar 

  • Bacci A, Sancini G, Verderio C, Armano S, Pravettoni E, Fesce R, Franceschetti S, Matteoli M (2002) Block of glutamate-glutamine cycle between astrocytes and neurons inhibits epileptiform activity in hippocampus. J Neurophysiol 88(5):2302–2310

    Article  CAS  PubMed  Google Scholar 

  • Balcaitis S, Xie Y, Weinstein JR, Andersen H, Hanisch UK, Ransom BR, Möller T (2003) Expression of proteinase-activated receptors in mouse microglial cells. NeuroReport 14(18):2373–2377

    Article  CAS  PubMed  Google Scholar 

  • Banasr M, Duman RS (2008) Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol Psychiatry 64(10):863–870

    Article  PubMed  PubMed Central  Google Scholar 

  • Bandeira F, Lent R, Herculano-Houzel S (2009) Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat. Proc Natl Acad Sci USA 106(33):14108–14113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barres BA, Koroshetz WJ, Chun LL, Corey DP (1990) Ion channel expression by white matter glia: the type-1 astrocyte. Neuron 5(4):527–544

    Article  CAS  PubMed  Google Scholar 

  • Bass NH, Hess HH, Pope A, Thalheimer C (1971) Quantitative cytoarchitectonic distribution of neurons, glia, and DNa in rat cerebral cortex. J Comp Neurol 143(4):481–490

    Article  CAS  PubMed  Google Scholar 

  • Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14(6):724–738

    Article  PubMed  CAS  Google Scholar 

  • Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini BL, Pozzan T, Volterra A (1998) Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391(6664):281–285

    Article  CAS  PubMed  Google Scholar 

  • Blin M, Crusio WE, Hévor T, Cloix JF (2002) Chronic inhibition of glutamine synthetase is not associated with impairment of learning and memory in mice. Brain Res Bull 57(1):11–15

    Article  CAS  PubMed  Google Scholar 

  • Bonansco C, Couve A, Perea G, Ferradas CÁ, Roncagliolo M, Fuenzalida M (2011) Glutamate released spontaneously from astrocytes sets the threshold for synaptic plasticity. Eur J Neurosci 33(8):1483–1492

    Article  PubMed  Google Scholar 

  • Boven LA, Vergnolle N, Henry SD, Silva C, Imai Y, Holden J, Warren K, Hollenberg MD, Power C (2003) Up-regulation of proteinase-activated receptor 1 expression in astrocytes during HIV encephalitis. J Immunol 170(5):2638–2646

    Article  CAS  PubMed  Google Scholar 

  • Bowser DN, Khakh BS (2007) Two forms of single-vesicle astrocyte exocytosis imaged with total internal reflection fluorescence microscopy. Proc Natl Acad Sci USA 104(10):4212–4217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown DR, Kretzschmar HA (1998) The glio-toxic mechanism of alpha-aminoadipic acid on cultured astrocytes. J Neurocytol 27(2):109–118

    Article  CAS  PubMed  Google Scholar 

  • Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22(1):183–192

    CAS  PubMed  Google Scholar 

  • Canals S, Larrosa B, Pintor J, Mena MA, Herreras O (2008) Metabolic challenge to glia activates an adenosine-mediated safety mechanism that promotes neuronal survival by delaying the onset of spreading depression waves. J Cereb Blood Flow Metab 28(11):1835–1844

    Article  CAS  PubMed  Google Scholar 

  • Carlsen EM, Perrier JF (2014) Purines released from astrocytes inhibit excitatory synaptic transmission in the ventral horn of the spinal cord. Front Neural Circuits 8:60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chenoweth MB, St. John EF (1947) Studies on the pharmacology of fluoroacetate; effects on the central nervous systems of dogs and rabbits. J Pharmacol Exp Ther 90(1):76–82

    CAS  PubMed  Google Scholar 

  • Christian CA, Huguenard JR (2013) Astrocytes potentiate GABAergic transmission in the thalamic reticular nucleus via endozepine signaling. Proc Natl Acad Sci USA 110(50):20278–20283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke DD (1991) Fluoroacetate and fluorocitrate: mechanism of action. Neurochem Res 16(9):1055–1058

    Article  CAS  PubMed  Google Scholar 

  • Clarke DD, Nicklas WJ, Berl S (1970) Tricarboxylic acid-cycle metabolism in brain. Effect of fluoroacetate and fluorocitrate on the labelling of glutamate, aspartate, glutamine and gamma-aminobutyrate. Biochem J 120(2):345–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Amelio FE, Mehler WR, Gibbs MA, Eng LF, Wu JY (1987) Immunocytochemical localization of glutamic acid decarboxylase (GAD) and glutamine synthetase (GS) in the area postrema of the cat. Light and electron microscopy. Brain Res 410(2):232–244

    PubMed  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105

    Article  CAS  PubMed  Google Scholar 

  • Dhaher R, Damisah EC, Wang H, Gruenbaum SE, Ong C, Zaveri HP, Gruenbaum BF, Eid T (2014) 5-aminovaleric acid suppresses the development of severe seizures in the methionine sulfoximine model of mesial temporal lobe epilepsy. Neurobiol Dis 67:18–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Cesare Mannelli L, Pacini A, Micheli L, Tani A, Zanardelli M, Ghelardini C (2014) Glial role in oxaliplatin-induced neuropathic pain. Exp Neurol 261:22–33

    Article  CAS  Google Scholar 

  • Dombrowski SM, Hilgetag CC, Barbas H (2001) Quantitative architecture distinguishes prefrontal cortical systems in the rhesus monkey. Cereb Cortex 11(10):975–988

    Article  CAS  PubMed  Google Scholar 

  • Domin H, Szewczyk B, Woźniak M, Wawrzak-Wleciał A, Śmiałowska M (2014) Antidepressant-like effect of the mGluR5 antagonist MTEP in an astroglial degeneration model of depression. Behav Brain Res 273:23–33

    Article  CAS  PubMed  Google Scholar 

  • Duffy S, MacVicar BA (1995) Adrenergic calcium signaling in astrocyte networks within the hippocampal slice. J Neurosci 15(8):5535–5550

    CAS  PubMed  Google Scholar 

  • Erlichman JS, Li A, Nattie EE (1998) Ventilatory effects of glial dysfunction in a rat brain stem chemoreceptor region. J Appl Physiol (1985) 85(5):1599-1604

    Google Scholar 

  • Fabrizi C, Pompili E, Panetta B, Nori SL, Fumagalli L (2009) Protease-activated receptor-1 regulates cytokine production and induces the suppressor of cytokine signaling-3 in microglia. Int J Mol Med 24(3):367–371

    Article  CAS  PubMed  Google Scholar 

  • Fields RD, Araque A, Johansen-Berg H, Lim SS, Lynch G, Nave KA, Nedergaard M, Perez R, Sejnowski T, Wake H (2014) Glial biology in learning and cognition. Neuroscientist 20(5):426–431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fonnum F, Johnsen A, Hassel B (1997) Use of fluorocitrate and fluoroacetate in the study of brain metabolism. Glia 21(1):106–113

    Article  CAS  PubMed  Google Scholar 

  • Friend WC, Clapoff S, Landry C, Becker LE, O’Hanlon D, Allore RJ, Brown IR, Marks A, Roder J, Dunn RJ (1992) Cell-specific expression of high levels of human S100 beta in transgenic mouse brain is dependent on gene dosage. J Neurosci 12(11):4337–4346

    CAS  PubMed  Google Scholar 

  • Gesuete R, Orsini F, Zanier ER, Albani D, Deli MA, Bazzoni G, De Simoni MG (2011) Glial cells drive preconditioning-induced blood-brain barrier protection. Stroke 42(5):1445–1453

    Article  PubMed  Google Scholar 

  • Gibbs ME, Bowser DN (2009) Astrocytes and interneurons in memory processing in the chick hippocampus: roles for G-coupled protein receptors, GABA(B) and mGluR1. Neurochem Res 34(10):1712–1720

    Article  CAS  PubMed  Google Scholar 

  • Gibbs ME, Hertz L (2005) Importance of glutamate-generating metabolic pathways for memory consolidation in chicks. J Neurosci Res 81(2):293–300

    Article  CAS  PubMed  Google Scholar 

  • Gibbs ME, Shleper M, Mustafa T, Burnstock G, Bowser DN (2011) ATP derived from astrocytes modulates memory in the chick. Neuron Glia Biol 7(2–4):177–186

    Article  PubMed  Google Scholar 

  • Ginefri-Gayet M, Gayet J (1988) Study of the hypothermia induced by methionine sulfoximine in the rat. Pharmacol Biochem Behav 31(4):797–802

    Article  CAS  PubMed  Google Scholar 

  • Gingrich MB, Junge CE, Lyuboslavsky P, Traynelis SF (2000) Potentiation of NMDA receptor function by the serine protease thrombin. J Neurosci 20(12):4582–4595

    CAS  PubMed  Google Scholar 

  • Goldberg ND, Passonneau JV, Lowry OH (1966) Effects of changes in brain metabolism on the levels of citric acid cycle intermediates. J Biol Chem 241(17):3997–4003

    CAS  PubMed  Google Scholar 

  • Gonçalves CA, Leite MC, Nardin P (2008) Biological and methodological features of the measurement of S100B, a putative marker of brain injury. Clin Biochem 41(10–11):755–763

    Article  PubMed  CAS  Google Scholar 

  • Grabham P, Cunningham DD (1995) Thrombin receptor activation stimulates astrocyte proliferation and reversal of stellation by distinct pathways: involvement of tyrosine phosphorylation. J Neurochem 64(2):583–591

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez JA, Norenberg MD (1977) Ultrastructural study of methionine sulfoximine-induced Alzheimer type II astrocytosis. Am J Pathol 86(2):285–300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton NB, Attwell D (2010) Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 11(4):227–238

    Google Scholar 

  • Han KS, Mannaioni G, Hamill CE, Lee J, Junge CE, Lee CJ, Traynelis SF (2011) Activation of protease activated receptor 1 increases the excitability of the dentate granule neurons of hippocampus. Mol Brain 4:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han KS, Woo J, Park H, Yoon BJ, Choi S, Lee CJ (2013) Channel-mediated astrocytic glutamate release via Bestrophin-1 targets synaptic NMDARs. Mol Brain 6:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanada M, Shinjo R, Miyagi M, Yasuda T, Tsutsumi K, Sugiura Y, Imagama S, Ishiguro N, Matsuyama Y (2014) Arundic acid (ONO-2506) inhibits secondary injury and improves motor function in rats with spinal cord injury. J Neurol Sci 337(1–2):186–192

    Article  CAS  PubMed  Google Scholar 

  • Hassel B, Westergaard N, Schousboe A, Fonnum F (1995) Metabolic differences between primary cultures of astrocytes and neurons from cerebellum and cerebral cortex. Effects of fluorocitrate. Neurochem Res 20(4):413–420

    Article  CAS  PubMed  Google Scholar 

  • Henneberger C, Papouin T, Oliet SH, Rusakov DA (2010) Long-term potentiation depends on release of D-serine from astrocytes. Nature 463(7278):232–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henrich-Noack P, Riek-Burchardt M, Baldauf K, Reiser G, Reymann KG (2006) Focal ischemia induces expression of protease-activated receptor1 (PAR1) and AR3 on microglia and enhances PAR4 labeling in the penumbra. Brain Res 1070(1):232–241

    Google Scholar 

  • Hermann GE, Van Meter MJ, Rood JC, Rogers RC (2009) Proteinase-activated receptors in the nucleus of the solitary tract: evidence for glial-neural interactions in autonomic control of the stomach. J Neurosci 29(29):9292–9300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hevor TK, Delorme P, Gayet J (1985) Glycogen content and fructose-1,6-biphosphatase activity in methionine sulfoximine epileptogenic mouse brain and liver after protein synthesis inhibition. Neuropathol Appl Neurobiol 11(2):129–139

    Article  CAS  PubMed  Google Scholar 

  • Higashino H, Niwa A, Satou T, Ohta Y, Hashimoto S, Tabuchi M, Ooshima K (2009) Immunohistochemical analysis of brain lesions using S100B and glial fibrillary acidic protein antibodies in arundic acid- (ONO-2506) treated stroke-prone spontaneously hypertensive rats. J Neural Transm 116(10):1209–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holleran J, Babbie M, Erlichman JS (2001) Ventilatory effects of impaired glial function in a brain stem chemoreceptor region in the conscious rat. J Appl Physiol (1985) 90(4):1539–1547

    Google Scholar 

  • Hornfeldt CS, Larson AA (1990) Seizures induced by fluoroacetic acid and fluorocitric acid may involve chelation of divalent cations in the spinal cord. Eur J Pharmacol 179(3):307–313

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Van Eldik LJ (1996) S100 beta induces apoptotic cell death in cultured astrocytes via a nitric oxide-dependent pathway. Biochim Biophys Acta 1313(3):239–245

    Article  PubMed  Google Scholar 

  • Huck S, Grass F, Hörtnagl H (1984) The glutamate analogue alpha-aminoadipic acid is taken up by astrocytes before exerting its gliotoxic effect in vitro. J Neurosci 4(10):2650–2657

    CAS  PubMed  Google Scholar 

  • Hülsmann S, Oku Y, Zhang W, Richter DW (2000) Metabolic coupling between glia and neurons is necessary for maintaining respiratory activity in transverse medullary slices of neonatal mouse. Eur J Neurosci 12(3):856–862

    Article  PubMed  Google Scholar 

  • Huxtable AG, Zwicker JD, Alvares TS, Ruangkittisakul A, Fang X, Hahn LB, Posse de Chaves E, Baker GB, Ballanyi K, Funk GD (2010) Glia contribute to the purinergic modulation of inspiratory rhythm-generating networks. J Neurosci 30(11):3947–3958

    Article  CAS  PubMed  Google Scholar 

  • Ishida Y, Nagai A, Kobayashi S, Kim SU (2006) Upregulation of protease-activated receptor-1 in astrocytes in Parkinson disease: astrocyte-mediated neuroprotection through increased levels of glutathione peroxidase. J Neuropathol Exp Neurol 65(1):66–77

    Article  CAS  PubMed  Google Scholar 

  • Janzer RC, Raff MC (1987) Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325(6101):253–257

    Article  CAS  PubMed  Google Scholar 

  • Ji K, Miyauchi J, Tsirka SE (2013) Microglia: an active player in the regulation of synaptic activity. Neural Plast 2013:627325

    PubMed  PubMed Central  Google Scholar 

  • Junge CE, Lee CJ, Hubbard KB, Zhang Z, Olson JJ, Hepler JR, Brat DJ, Traynelis SF (2004) Protease-activated receptor-1 in human brain: localization and functional expression in astrocytes. Exp Neurol 188(1):94–103

    Article  CAS  PubMed  Google Scholar 

  • Kato H, Kurosaki R, Oki C, Araki T (2004) Arundic acid, an astrocyte-modulating agent, protects dopaminergic neurons against MPTP neurotoxicity in mice. Brain Res 1030(1):66–73

    Google Scholar 

  • Kato H, Araki T, Imai Y, Takahashi A, Itoyama Y (2003) Protection of dopaminergic neurons with a novel astrocyte modulating agent (R)-(-)-2-propyloctanoic acid (ONO-2506) in an MPTP-mouse model of Parkinson’s disease. J Neurol Sci 208(1–2):9–15

    Article  CAS  PubMed  Google Scholar 

  • Katsumata S, Tateishi N, Kagamiishi Y, Shintaku K, Hayakawa T, Shimoda T, Shinagawa R, Akiyama T, Katsube N (1999) Inhibitory effect of ONO-2506 on GABAA receptor disappearance in cultured astrocytes and ischemic brain. Soc Neurosci Abs 25(843):11

    Google Scholar 

  • Keyser DO, Pellmar TC (1994) Synaptic transmission in the hippocampus: critical role for glial cells. Glia 10(4):237–243

    Article  CAS  PubMed  Google Scholar 

  • Kortvely E, Varszegi S, Palfi A, Gulya K (2003) Intracellular targeting of calmodulin mRNAs in primary hippocampal cells. J Histochem Cytochem 51(4):541–544

    Article  CAS  PubMed  Google Scholar 

  • Lalo U, Rasooli-Nejad S, Pankratov Y (2014a) Exocytosis of gliotransmitters from cortical astrocytes: implications for synaptic plasticity and aging. Biochem Soc Trans 42(5):1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Lalo U, Palygin O, Rasooli-Nejad S, Andrew J, Haydon PG, Pankratov Y (2014b) Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition in the neocortex. PLoS Biol 12(1):e1001747

    Article  PubMed  PubMed Central  Google Scholar 

  • Lam AG, Koppal T, Akama KT, Guo L, Craft JM, Samy B, Schavocky JP, Watterson DM, Van Eldik LJ (2001) Mechanism of glial activation by S100B: involvement of the transcription factor NFkappaB. Neurobiol Aging 22(5):765–772

    Article  CAS  PubMed  Google Scholar 

  • Largo C, Cuevas P, Somjen GG, Martín del Río R, Herreras O (1996) The effect of depressing glial function in rat brain in situ on ion homeostasis, synaptic transmission, and neuron survival. J Neurosci 16(3):1219–1229

    CAS  PubMed  Google Scholar 

  • Laskowski A, Reiser G, Reymann KG (2007) Protease-activated receptor-1 induces generation of new microglia in the dentate gyrus of traumatised hippocampal slice cultures. Neurosci Lett 415(1):17–21

    Article  CAS  PubMed  Google Scholar 

  • Lee CJ, Mannaioni G, Yuan H, Woo DH, Gingrich MB, Traynelis SF (2007) Astrocytic control of synaptic NMDA receptors. J Physiol 581(Pt 3):1057–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Son H, Kim G, Kim S, Lee DH, Roh GS, Kang SS, Cho GJ, Choi WS, Kim HJ (2013) Glutamine deficiency in the prefrontal cortex increases depressive-like behaviours in male mice. J Psychiatry Neurosci 38(3):183–191

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee HS, Ghetti A, Pinto-Duarte A, Wang X, Dziewczapolski G, Galimi F, Huitron-Resendiz S, Piña-Crespo JC, Roberts AJ, Verma IM, Sejnowski TJ, Heinemann SF (2014) Astrocytes contribute to gamma oscillations and recognition memory. Proc Natl Acad Sci USA 111(32):E3343–E3352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leffler CW, Parfenova H, Fedinec AL, Basuroy S, Tcheranova D (2006) Contributions of astrocytes and CO to pial arteriolar dilation to glutamate in newborn pigs. Am J Physiol Heart Circ Physiol 291(6):H2897–H2904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang SL, Carlson GC, Coulter DA (2006) Dynamic regulation of synaptic GABA release by the glutamate-glutamine cycle in hippocampal area CA1. J Neurosci 26(33):8537–8548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lillo C, Velasco A, Jimeno D, Cid E, Lara JM, Aijón J (2002) The glial design of a teleost optic nerve head supporting continuous growth. J Histochem Cytochem 50(10):1289–1302

    Article  CAS  PubMed  Google Scholar 

  • Lima A, Sardinha VM, Oliveira AF, Reis M, Mota C, Silva MA, Marques F, Cerqueira JJ, Pinto L, Sousa N, Oliveira JF (2014) Astrocyte pathology in the prefrontal cortex impairs the cognitive function of rats. Mol Psychiatry 19(7):834–841

    Article  CAS  PubMed  Google Scholar 

  • Liu QS, Xu Q, Arcuino G, Kang J, Nedergaard M (2004) Astrocyte-mediated activation of neuronal kainate receptors. Proc Natl Acad Sci USA 101(9):3172–3177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T, Sun L, Xiong Y, Shang S, Guo N, Teng S, Wang Y, Liu B, Wang C, Wang L, Zheng L, Zhang CX, Han W, Zhou Z (2011) Calcium triggers exocytosis from two types of organelles in a single astrocyte. J Neurosci 31(29):10593–10601

    Article  CAS  PubMed  Google Scholar 

  • Liu FY, Sun YN, Wang FT, Li Q, Su L, Zhao ZF, Meng XL, Zhao H, Wu X, Sun Q, Xing GG, Wan Y (2012) Activation of satellite glial cells in lumbar dorsal root ganglia contributes to neuropathic pain after spinal nerve ligation. Brain Res 1427:65–77

    Article  CAS  PubMed  Google Scholar 

  • Lorea-Hernández JJ, Morales T, Rivera-Angulo AJ, Alcantara-Gonzalez D, Peña-Ortega F (2016) Microglia modulate respiratory rhythm generation and autoresuscitation. Glia 64(4):603-619

    Google Scholar 

  • Ludwin SK, Kosek JC, Eng LF (1976) The topographical distribution of S-100 and GFA proteins in the adult rat brain: an immunohistochemical study using horseradish peroxidase-labelled antibodies. J Comp Neurol 165(2):197–207

    Article  CAS  PubMed  Google Scholar 

  • Martín ED, Fernández M, Perea G, Pascual O, Haydon PG, Araque A, Ceña V (2007) Adenosine released by astrocytes contributes to hypoxia-induced modulation of synaptic transmission. Glia 55(1):36–45

    Article  PubMed  Google Scholar 

  • Martinez-Hernandez A, Bell KP, Norenberg MD (1977) Glutamine synthetase: glial localization in brain. Science 195(4284):1356–1358

    Article  CAS  PubMed  Google Scholar 

  • McCarthy KD, Salm AK (1991) Pharmacologically-distinct subsets of astroglia can be identified by their calcium response to neuroligands. Neuroscience 41(2–3):325–333

    Article  CAS  PubMed  Google Scholar 

  • Möller T, Hanisch UK, Ransom BR (2000) Thrombin-induced activation of cultured rodent microglia. J Neurochem 75(4):1539–1547

    Article  PubMed  Google Scholar 

  • Moraga-Amaro R, Jerez-Baraona JM, Simon F, Stehberg J (2014) Role of astrocytes in memory and psychiatric disorders. J Physiol Paris 108(4–6):240–251

    Article  CAS  PubMed  Google Scholar 

  • Mori T, Town T, Tan J, Tateishi N, Asano T (2005) Modulation of astrocytic activation by arundic acid (ONO-2506) mitigates detrimental effects of the apolipoprotein E4 isoform after permanent focal ischemia in apolipoprotein E knock-in mice. J Cereb Blood Flow Metab 25(6):748–762

    Article  CAS  PubMed  Google Scholar 

  • Muramatsu Y, Kurosaki R, Watanabe H, Michimata M, Matsubara M, Imai Y, Araki T (2003) Expression of S-100 protein is related to neuronal damage in MPTP-treated mice. Glia 42(3):307–313

    Article  PubMed  Google Scholar 

  • Nagelhus EA, Ottersen OP (2013) Physiological roles of aquaporin-4 in brain. Physiol Rev 93(4):1543–1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26(10):523–530

    Article  CAS  PubMed  Google Scholar 

  • Newman LA, Korol DL, Gold PE (2011) Lactate produced by glycogenolysis in astrocytes regulates memory processing. PLoS ONE 6(12):e28427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiyama H, Knopfel T, Endo S, Itohara S (2002) Glial protein S100B modulates long-term neuronal synaptic plasticity. Proc Natl Acad Sci USA 99(6):4037–4042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161(2):303–310

    Article  CAS  PubMed  Google Scholar 

  • Oberheim NA, Takano T, Han X, He W, Lin JH, Wang F, Xu Q, Wyatt JD, Pilcher W, Ojemann JG, Ransom BR, Goldman SA, Nedergaard M (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29(10):3276–3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh SJ, Han KS, Park H, Woo DH, Kim HY, Traynelis SF, Lee CJ (2012) Protease activated receptor 1-induced glutamate release in cultured astrocytes is mediated by Bestrophin-1 channel but not by vesicular exocytosis. Mol Brain 5:38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada-Ogawa A, Suzuki I, Sessle BJ, Chiang CY, Salter MW, Dostrovsky JO, Tsuboi Y, Kondo M, Kitagawa J, Kobayashi A, Noma N, Imamura Y, Iwata K (2009) Astroglia in medullary dorsal horn (trigeminal spinal subnucleus caudalis) are involved in trigeminal neuropathic pain mechanisms. J Neurosci 29(36):11161–11171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olney JW, Ho OL, Rhee V (1971) Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system. Exp Brain Res 14(1):61–76

    Article  CAS  PubMed  Google Scholar 

  • Otis TS, Jahr CE (1998) Anion currents and predicted glutamate flux through a neuronal glutamate transporter. J Neurosci 18(18):7099–7110

    CAS  PubMed  Google Scholar 

  • Pannasch U, Vargová L, Reingruber J, Ezan P, Holcman D, Giaume C, Syková E, Rouach N (2011) Astroglial networks scale synaptic activity and plasticity. Proc Natl Acad Sci USA 108(20):8467–8472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pannasch U, Freche D, Dallérac G, Ghézali G, Escartin C, Ezan P, Cohen-Salmon M, Benchenane K, Abudara V, Dufour A, Lübke JH, Déglon N, Knott G, Holcman D, Rouach N (2014) Connexin 30 sets synaptic strength by controlling astroglial synapse invasion. Nat Neurosci 17(4):549–558

    Article  CAS  PubMed  Google Scholar 

  • Paulsen RE, Contestabile A, Villani L, Fonnum F (1987) An in vivo model for studying function of brain tissue temporarily devoid of glial cell metabolism: the use of fluorocitrate. J Neurochem 48(5):1377–1385

    Article  CAS  PubMed  Google Scholar 

  • Peña-Ortega F (2012) Tonic neuromodulation of the inspiratory rhythm generator. Front Physiol 3:253

    Article  PubMed  PubMed Central  Google Scholar 

  • Perea G, Araque A (2005) Glial calcium signaling and neuron-glia communication. Cell Calcium 38(3–4):375–382

    Article  CAS  PubMed  Google Scholar 

  • Perea G, Yang A, Boyden ES, Sur M (2014) Optogenetic astrocyte activation modulates response selectivity of visual cortex neurons in vivo. Nat Commun 5:3262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petroff OA, Errante LD, Rothman DL, Kim JH, Spencer DD (2002) Glutamate-glutamine cycling in the epileptic human hippocampus. Epilepsia 43(7):703–710

    Article  CAS  PubMed  Google Scholar 

  • Petrova TV, Hu J, Van Eldik LJ (2000) Modulation of glial activation by astrocyte-derived protein S100B: differential responses of astrocyte and microglial cultures. Brain Res 853(1):74–80

    Article  CAS  PubMed  Google Scholar 

  • Pompili E, Fabrizi C, Nori SL, Panetta B, Geloso MC, Corvino V, Michetti F, Fumagalli L (2011) Protease-activated receptor-1 expression in rat microglia after trimethyltin treatment. J Histochem Cytochem 59(3):302–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pow DV (2001) Visualising the activity of the cystine-glutamate antiporter in glial cells using antibodies to aminoadipic acid, a selectively transported substrate. Glia 34(1):27–38

    Article  CAS  PubMed  Google Scholar 

  • Ramirez JM, Tryba AK, Peña F (2004) Pacemaker neurons and neuronal networks: anintegrative view. Curr Opin Neurobiol 14(6):665–674

    Article  CAS  PubMed  Google Scholar 

  • Ransom B, Behar T, Nedergaard M (2003) New roles for astrocytes (stars at last). Trends Neurosci 26(10):520–522

    Article  CAS  PubMed  Google Scholar 

  • Reeves RH, Yao J, Crowley MR, Buck S, Zhang X, Yarowsky P, Gearhart JD, Hilt DC (1994) Astrocytosis and axonal proliferation in the hippocampus of S100b transgenic mice. Proc Natl Acad Sci USA 91(12):5359–5363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichenbach A (1989) Glia:neuron index: review and hypothesis to account for different values in various mammals. Glia 2(2):71–77

    Article  CAS  PubMed  Google Scholar 

  • Ren JQ, Aika Y, Heizmann CW, Kosaka T (1992) Quantitative analysis of neurons and glial cells in the rat somatosensory cortex, with special reference to GABAergic neurons and parvalbumin-containing neurons. Exp Brain Res 92(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Ridet JL, Malhotra SK, Privat A, Gage FH (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20(12):570–577

    Article  CAS  PubMed  Google Scholar 

  • Roder JK, Roder JC, Gerlai R (1996) Memory and the effect of cold shock in the water maze in S100 beta transgenic mice. Physiol Behav 60(2):611–615

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez MJ, Martínez-Sánchez M, Bernal F, Mahy N (2004) Heterogeneity between hippocampal and septal astroglia as a contributing factor to differential in vivo AMPA excitotoxicity. J Neurosci Res 77(3):344–353

    Article  PubMed  CAS  Google Scholar 

  • Romero-Alemán Mdel M, Monzón-Mayor M, Yanes C, Arbelo-Galván JF, Lang D, Renau-Piqueras J, Negrín-Martínez C (2003) S100 immunoreactive glial cells in the forebrain and midbrain of the lizard Gallotia galloti during ontogeny. J Neurobiol 57(1):54–66

    Article  PubMed  CAS  Google Scholar 

  • Rothermundt M, Peters M, Prehn JH, Arolt V (2003) S100B in brain damage and neurodegeneration. Microsc Res Tech 60(6):614–632

    Article  CAS  PubMed  Google Scholar 

  • Sá Santos S, Sonnewald U, Carrondo MJ, Alves PM (2011) The role of glia in neuronal recovery following anoxia: In vitro evidence of neuronal adaptation. Neurochem Int 58(6):665–675

    Article  PubMed  CAS  Google Scholar 

  • Santello M, Calì C, Bezzi P (2012) Gliotransmission and the tripartite synapse. Adv Exp Med Biol 970:307–331

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Ishikawa T, Abe R, Nakayama R, Asada A, Matsuki N, Ikegaya Y (2014) Astrocyte calcium signalling orchestrates neuronal synchronization in organotypic hippocampal slices. J Physiol 592(Pt 13):2771–2783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scarisbrick IA, Radulovic M, Burda JE, Larson N, Blaber SI, Giannini C, Blaber M, Vandell AG (2012) Kallikrein 6 is a novel molecular trigger of reactive astrogliosis. Biol Chem 393(5):355–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shang XL, Wang QB, Liu XP, Yao XQ, Cao FY, Wang Q, Zhang JY, Wang JZ, Liu GP (2015) Fluorocitrate induced the alterations of memory-related proteins and tau hyperphosphorylation in SD rats. Neurosci Lett 584:230–235

    Article  CAS  PubMed  Google Scholar 

  • Shapiro LA, Wang L, Ribak CE (2008) Rapid astrocyte and microglial activation following pilocarpine-induced seizures in rats. Epilepsia 49(Suppl 2):33–41

    Article  CAS  PubMed  Google Scholar 

  • Shavit E, Michaelson DM, Chapman J (2011) Anatomical localization of protease-activated receptor-1 and protease-mediated neuroglial crosstalk on peri-synaptic astrocytic endfeet. J Neurochem 119(3):460–473

    Article  CAS  PubMed  Google Scholar 

  • Shelton MK, McCarthy KD (2000) Hippocampal astrocytes exhibit Ca2 + -elevating muscarinic cholinergic and histaminergic receptors in situ. J Neurochem 74(2):555–563

    Article  CAS  PubMed  Google Scholar 

  • Sherwood CC, Stimpson CD, Raghanti MA, Wildman DE, Uddin M, Grossman LI, Goodman M, Redmond JC, Bonar CJ, Erwin JM, Hof PR (2006) Evolution of increased glia-neuron ratios in the human frontal cortex. Proc Natl Acad Sci USA 103(37):13606–13611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibuki K, Gomi H, Chen L, Bao S, Kim JJ, Wakatsuki H, Fujisaki T, Fujimoto K, Katoh A, Ikeda T, Chen C, Thompson RF, Itohara S (1996) Deficient cerebellar long-term depression, impaired eyeblink conditioning, and normal motor coordination in GFAP mutant mice. Neuron 16(3):587–599

    Article  CAS  PubMed  Google Scholar 

  • Shigetomi E, Bowser DN, Sofroniew MV, Khakh BS (2008) Two forms of astrocyte calcium excitability have distinct effects on NMDA receptor-mediated slow inward currents in pyramidal neurons. J Neurosci 28(26):6659–6663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimoda T, Tateishi K, Shintaku K, Shintaku K, Yada N, Katagi J, Akiyama T, Maekawa H, Shinagawa R, Kondo K (1998) ONO-2506, a novel astrocyte modulating agent, suppresses the increase of COX-2 and iNOSmRNA expression in cultured astrocytes and ischemic brain. Soc Neurosci 24(384):13

    Google Scholar 

  • Shinagawa R, Tateishi N, Shimoda T, Shintaku K, Yada N, Honjo K, Kagamiishi Y, Kondo K (1998) ONO-2506 ameliorates neurodegeneration through inhibition of reduction of GLT-1 expression. Soc Neurosci Abs 24(384):14

    Google Scholar 

  • Shinagawa R, Tateishi N, Shimoda T, Maekawa H, Yada N, Akiyama T, Matsuda S, Katsube N (1999) Modulating effects of ONO-2506 on astrocytic activation in cultured astrocytes from rat cerebrum. Soc Neurosci Abs 25(843):10

    Google Scholar 

  • Somers DL, Beckstead RM (1990) Chronic methionine sulfoximine administration reduces synaptosomal aspartate and glutamate in rat striatum. Neurosci Lett 115(2–3):335–340

    Article  CAS  PubMed  Google Scholar 

  • Somjen GG (1988) Nervenkitt: notes on the history of the concept of neuroglia. Glia 1(1):2–9

    Article  CAS  PubMed  Google Scholar 

  • Sorensen SD, Nicole O, Peavy RD, Montoya LM, Lee CJ, Murphy TJ, Traynelis SF, Hepler JR (2003) Common signaling pathways link activation of murine PAR1, LPA, and S1P receptors to proliferation of astrocytes. Mol Pharmacol 64(5):1199–1209

    Article  CAS  PubMed  Google Scholar 

  • Stransky Z (1969) Time course of rat brain GABA levels following methionine sulphoximine treatment. Nature 224(5219):612–613

    Article  CAS  PubMed  Google Scholar 

  • Striggow F, Riek-Burchardt M, Kiesel A, Schmidt W, Henrich-Noack P, Breder J, Krug M, Reymann KG, Reiser G (2001) Four different types of protease-activated receptors are widely expressed in the brain and are up-regulated in hippocampus by severe ischemia. Eur J Neurosci 14(4):595–608

    Article  CAS  PubMed  Google Scholar 

  • Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100(1):64–119

    Article  CAS  PubMed  Google Scholar 

  • Sun ML, Yu HX, Han Y, Tian J, Yu YQ (2013) Glial modulation of vibrissal sensory processing in rats. Chin J Physiol 56(6):309–317

    Article  PubMed  Google Scholar 

  • Suo Z, Wu M, Ameenuddin S, Anderson HE, Zoloty JE, Citron BA, Andrade-Gordon P, Festoff BW (2002) Participation of protease-activated receptor-1 in thrombin-induced microglial activation. J Neurochem 80(4):655–666

    Article  CAS  PubMed  Google Scholar 

  • Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144(5):810–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson RA, Graham SH (1994) Fluorocitrate and fluoroacetate effects on astrocyte metabolism in vitro. Brain Res 664(1–2):94–100

    Article  CAS  PubMed  Google Scholar 

  • Takada M, Hattori T (1986) Fine structural changes in the rat brain after local injections of gliotoxin, alpha-aminoadipic acid. Histol Histopathol 1(3):271–275

    CAS  PubMed  Google Scholar 

  • Tanahashi S, Yamamura S, Nakagawa M, Motomura E, Okada M (2012) Clozapine, but not haloperidol, enhances glial D-serine and L-glutamate release in rat frontal cortex and primary cultured astrocytes. Br J Pharmacol 165(5):1543–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanigami H, Rebel A, Martin LJ, Chen TY, Brusilow SW, Traystman RJ, Koehler RC (2005a) Effect of glutamine synthetase inhibition on astrocyte swelling and altered astroglial protein expression during hyperammonemia in rats. Neuroscience 131(2):437–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanigami H, Rebel A, Martin LJ, Chen TY, Brusilow SW, Traystman RJ, Koehler RC (2005b) Effect of glutamine synthetase inhibition on astrocyte swelling and altered astroglial protein expression during hyperammonemia in rats. Neuroscience 131(2):437–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tateishi N, Mori T, Kagamiishi Y, Satoh S, Katsube N, Morikawa E, Morimoto T, Matsui T, Asano T (2002) Astrocytic activation and delayed infarct expansion after permanent focal ischemia in rats. Part II: suppression of astrocytic activation by a novel agent (R)-(-)-2-propyloctanoic acid (ONO-2506) leads to mitigation of delayed infarct expansion and early improvement of neurologic deficits. J Cereb Blood Flow Metab 22(6):723–734

    Article  CAS  PubMed  Google Scholar 

  • Theis M, Jauch R, Zhuo L, Speidel D, Wallraff A, Döring B, Frisch C, Söhl G, Teubner B, Euwens C, Huston J, Steinhäuser C, Messing A, Heinemann U, Willecke K (2003) Accelerated hippocampal spreading depression and enhanced locomotory activity in mice with astrocyte-directed inactivation of connexin43. J Neurosci 23(3):766–776

    CAS  PubMed  Google Scholar 

  • Tremblay MÈ, Majewska AK (2011) A role for microglia in synaptic plasticity? Commun Integr Biol 4(2):220–222

    Article  PubMed  PubMed Central  Google Scholar 

  • Trias E, Díaz-Amarilla P, Olivera-Bravo S, Isasi E, Drechsel DA, Lopez N, Bradford CS, Ireton KE, Beckman JS, Barbeito L (2013) Phenotypic transition of microglia into astrocyte-like cells associated with disease onset in a model of inherited ALS. Front Cell Neurosci 7:274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Wagoner NJ, Oh JW, Repovic P, Benveniste EN (1999) Interleukin-6 (IL-6) production by astrocytes: autocrine regulation by IL-6 and the soluble IL-6 receptor. J Neurosci 19(13):5236–5244

    PubMed  Google Scholar 

  • Vandell AG, Larson N, Laxmikanthan G, Panos M, Blaber SI, Blaber M, Scarisbrick IA (2008) Protease-activated receptor dependent and independent signaling by kallikreins 1 and 6 in CNS neuron and astroglial cell lines. J Neurochem 107(3):855–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vellani V, Kinsey AM, Prandini M, Hechtfischer SC, Reeh P, Magherini PC, Giacomoni C, McNaughton PA (2010) Protease activated receptors 1 and 4 sensitize TRPV1 in nociceptive neurones. Mol Pain 6:61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vives V, Alonso G, Solal AC, Joubert D, Legraverend C (2003) Visualization of S100B-positive neurons and glia in the central nervous system of EGFP transgenic mice. J Comp Neurol 457(4):404–419

    Article  CAS  PubMed  Google Scholar 

  • Wajima D, Nakagawa I, Nakase H, Yonezawa T (2013) Neuroprotective effect of suppression of astrocytic activation by arundic acid on brain injuries in rats with acute subdural hematomas. Brain Res 1519:127–135

    Article  CAS  PubMed  Google Scholar 

  • Wall MJ, Dale N (2013) Neuronal transporter and astrocytic ATP exocytosis underlie activity-dependent adenosine release in the hippocampus. J Physiol 591(Pt 16):3853–3871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Ubl JJ, Stricker R, Reiser G (2002a) Thrombin (PAR1)-induced proliferation in astrocytes via MAPK involves multiple signaling pathways. Am J Physiol Cell Physiol 283(5):C1351–C1364

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Ubl JJ, Reiser G (2002b) Four subtypes of protease-activated receptors, co-expressed in rat astrocytes, evoke different physiological signaling. Glia 37(1):53–63

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zaveri HP, Lee TS, Eid T (2009a) The development of recurrent seizures after continuous intrahippocampal infusion of methionine sulfoximine in rats: a video-intracranial electroencephalographic study. Exp Neurol 220(2):293–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Li CC, Wang GW, Cai JX (2009b) The effects of centrally administered fluorocitrate via inhibiting glial cells on working memory in rats. Sci China C Life Sci 52(8):701–709

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhang L, Zhang IY, Chen X, Da Fonseca A, Wu S, Ren H, Badie S, Sadeghi S, Ouyang M, Warden CD, Badie B (2013) S100B promotes glioma growth through chemoattraction of myeloid-derived macrophages. Clin Cancer Res 19(14):3764–3775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward AA Jr (1947) Convulsive activity induced by fluoroacetate. J Neurophysiol 10(2):105–111

    CAS  PubMed  Google Scholar 

  • Westergaard N, Sonnewald U, Schousboe A (1995) Metabolic trafficking between neurons and astrocytes: the glutamate/glutamine cycle revisited. Dev Neurosci 17(4):203–211

    Article  CAS  PubMed  Google Scholar 

  • Willoughby JO, Mackenzie L, Broberg M, Thoren AE, Medvedev A, Sims NR, Nilsson M (2003) Fluorocitrate-mediated astroglial dysfunction causes seizures. J Neurosci Res 74(1):160–166

    Article  CAS  PubMed  Google Scholar 

  • Woo DH, Han KS, Shim JW, Yoon BE, Kim E, Bae JY, Oh SJ, Hwang EM, Marmorstein AD, Bae YC, Park JY, Lee CJ (2012) TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation. Cell 151(1):25–40

    Article  CAS  PubMed  Google Scholar 

  • Xu HL, Koenig HM, Ye S, Feinstein DL, Pelligrino DA (2004) Influence of the glia limitans on pial arteriolar relaxation in the rat. Am J Physiol Heart Circ Physiol 287(1):H331–H339

    Article  CAS  PubMed  Google Scholar 

  • Yamamura S, Hoshikawa M, Dai K, Saito H, Suzuki N, Niwa O, Okada M (2013) ONO-2506 inhibits spike-wave discharges in a genetic animal model without affecting traditional convulsive tests via gliotransmission regulation. Br J Pharmacol 168(5):1088–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Akiyama H, Fenton JW 2nd, Brewer GJ (1997) Thrombin receptor on rat primary hippocampal neurons: coupled calcium and cAMP responses. Brain Res 761(1):11–18

    Article  CAS  PubMed  Google Scholar 

  • Yasuda Y, Tateishi N, Shimoda T, Satoh S, Ogitani E, Fujita S (2004) Relationship between S100beta and GFAP expression in astrocytes during infarction and glial scar formation after mild transient ischemia. Brain Res 1021(1):20–31

    Google Scholar 

  • Yoo SS, Hu PT, Gujar N, Jolesz FA, Walker MP (2007) A deficit in the ability to form new human memories without sleep. Nat Neurosci 10(3):385–392

    Article  CAS  PubMed  Google Scholar 

  • Young JK, Dreshaj IA, Wilson CG, Martin RJ, Zaidi SI, Haxhiu MA (2005) An astrocyte toxin influences the pattern of breathing and the ventilatory response to hypercapnia in neonatal rats. Respir Physiol Neurobiol 147(1):19–30

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Dorothy Pless for editorial comments. Ana Rivera-Angulo and Jonathan-Julio Lorea-Hernández are graduate students at UNAM and received fellowships from CONACyT. This study was supported by CONACyT Grants 235789, 24688, 117 and 181323; and by DGAPA-UNAM Grant IN200715.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Peña-Ortega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Peña-Ortega, F., Rivera-Angulo, A.J., Lorea-Hernández, J.J. (2016). Pharmacological Tools to Study the Role of Astrocytes in Neural Network Functions. In: von Bernhardi, R. (eds) Glial Cells in Health and Disease of the CNS. Advances in Experimental Medicine and Biology, vol 949. Springer, Cham. https://doi.org/10.1007/978-3-319-40764-7_3

Download citation

Publish with us

Policies and ethics