Skip to main content
Log in

The effects of centrally administered fluorocitrate via inhibiting glial cells on working memory in rats

  • Cover Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Although prefrontal and hippocampal neurons are critical for spatial working memory, the function of glial cells in spatial working memory remains uncertain. In this study we investigated the function of glial cells in rats’ working memory. The glial cells of rat brain were inhibited by intracerebroventricular (icv) injection of fluorocitrate (FC). The effects of FC on the glial cells were examined by using electroencephalogram (EEG) recordings and delayed spatial alternation tasks. After icv injection of 10 μL of 0.5 nmol/L or 5 nmol/L FC, the EEG power spectrum recorded from the hippocampus increased, but the power spectrum for the prefrontal cortex did not change, and working memory was unaffected. Following an icv injection of 10 μL of 20 nmol/L FC, the EEG power spectra in both the prefrontal cortex and the hippocampus increased, and working memory improved. The icv injection of 10 μL of 50 nmol/L FC, the EEG power spectra in both the prefrontal cortex and in the hippocampus decreased, and working memory was impaired. These results suggest that spatial working memory is affected by centrally administered FC, but only if there are changes in the EEG power spectrum in the prefrontal cortex. Presumably, the prefrontal glial cells relate to the working memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Newman E A. Glial Cell Inhibition of Neurons by Release of ATP. J Neurosci, 2003, 23: 1659–1666 12629170, 1:CAS:528:DC%2BD3sXjtFyltLs%3D

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Mauch D H, Nägler K, Schumacher S, et al. CNS synaptogenesis promoted by glia-derived cholesterol. Science, 2001, 294: 1354–1357 11701931, 10.1126/science.294.5545.1354, 1:CAS:528:DC%2BD3MXotlKmu7c%3D

    Article  CAS  PubMed  Google Scholar 

  3. Pfrieger F W, Barres B A. Synaptic efficacy enhanced by glial cells in vitro. Science, 1997, 277: 1684–1687 9287225, 10.1126/science.277.5332.1684, 1:CAS:528:DyaK2sXmtVSmsbs%3D

    Article  CAS  PubMed  Google Scholar 

  4. Qian X, Shen Q, Goderie S K, et al. Timing of CNS cell generation: a programmed sequence of neuron and glial cell production roem isolated murine cortical stem cells. Neuron, 2000, 28: 69–80 11086984, 10.1016/S0896-6273(00)00086-6, 1:CAS:528:DC%2BD3cXnvVGlt7o%3D

    Article  CAS  PubMed  Google Scholar 

  5. Ullian E M, Sapperstein S K, Christopherson K S, et al. Control of synapse number by glial. Science, 2001, 291: 657–661 11158678, 10.1126/science.291.5504.657, 1:CAS:528:DC%2BD3MXntlWktQ%3D%3D

    Article  CAS  PubMed  Google Scholar 

  6. Yang Y L, Ge Y P, Chen Y R, et al. Contribution of astrocytes to hippocampal long-term potentiation through release of D-serine. Proc Natl Acad Sci USA, 2003, 100: 15194–15199 14638938, 10.1073/pnas.2431073100, 1:CAS:528:DC%2BD3sXpvFaqu7g%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang J M, Wang H K, Ye C Q, et al. ATP released by astrocytes mediates glutamatergic activity dependent heterosynaptic suppression. Neuron, 2003, 40: 971–982 14659095, 10.1016/S0896-6273(03)00717-7, 1:CAS:528:DC%2BD3sXhtVWgtLbN

    Article  CAS  PubMed  Google Scholar 

  8. Oliet S H, Piet R, Poulain D A. Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science, 2001, 292: 923–926 11340204, 10.1126/science.1059162, 1:CAS:528:DC%2BD3MXjsVSrt7g%3D

    Article  CAS  PubMed  Google Scholar 

  9. Clarke D D. Fluoroacetate and fluorocitrate: Mechanism of action. Neurochem Res, 1991, 16: 1055–1058 1784332, 10.1007/BF00965850, 1:CAS:528:DyaK3MXmt1Gms7Y%3D

    Article  CAS  PubMed  Google Scholar 

  10. Lauble H, Kennedy M C, Emptage M H, et al. The reaction of fluorocitrate with aconitase and the crystal structures of the enzyme-inhibitor complex. Proc Natl Acad Sci USA, 1996, 93: 13699–13703 8942997, 10.1073/pnas.93.24.13699, 1:CAS:528:DyaK28Xnt1Gnsbo%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Paulsen R E, Contestabile A, Villani L, et al. An in vivo model for studying function of brain tissue temporarily devoid of glial cell metabolism: The use of fluorocitrate. J Neurochem, 1987, 48: 1377–1385 3559554, 10.1111/j.1471-4159.1987.tb05674.x, 1:CAS:528:DyaL2sXktFyqurc%3D

    Article  CAS  PubMed  Google Scholar 

  12. Tecle B, Casida J E. Enzymatic defluorination and metabolism of fluoracetate, fluoroacetamide, fluoroethanol, and (-)-erythrofluorocitrate in rats and mice examined by 19F and 13C NMR. Chem Res Toxicol, 1989, 2: 429–435 2519733, 10.1021/tx00012a012, 1:CAS:528:DyaL1MXmtFSgsr4%3D

    Article  CAS  PubMed  Google Scholar 

  13. Hassel B, Paulsen R E, Johnsen A, et al. Selective inhibition of glial cell metabolism in vivo by fluorocitrate. Brain Res, 1992, 576: 120–124 1515906, 10.1016/0006-8993(92)90616-H, 1:CAS:528:DyaK38XitVyntrg%3D

    Article  CAS  PubMed  Google Scholar 

  14. Hassel B, Sonnewald U, Unsgard G, et al. NMR spectroscopy of cultured astrocytes: effects of glutamine and the gliotoxin fluorocitrate. J Neurochem, 1994, 62: 2187–2194 8189227, 1:CAS:528:DyaK2cXktVKisLg%3D

    Article  CAS  PubMed  Google Scholar 

  15. Bosakowski T, Levin A A. Serum citrate as a peripheral indicator of fluoroacetate and fluorocitrate toxicity in rats and dogs. Toxicol Appl Pharmacol, 1986, 85: 428–436 3764925, 10.1016/0041-008X(86)90350-9, 1:CAS:528:DyaL28Xmt1Sgu7g%3D

    Article  CAS  PubMed  Google Scholar 

  16. O’Dowd B S, Gibbs M E, Sedman G L, et al. Astrocytes implicated in the energizing of intermediate memory processes in neonate chicks. Brain Res Cogn Brain Res, 1994, 2: 93–102 7833696, 10.1016/0926-6410(94)90006-X

    Article  PubMed  Google Scholar 

  17. Bruno R, Yu L, Pierre-Pascal L, et al. Representation of objects in space by two classes of Hippocampal Pyramidal cells. J Gen Physiol, 2004, 124: 9–25 10.1085/jgp.200409015

    Article  Google Scholar 

  18. Chang C, Crottaz-Herbette S, Menon V. Temporal dynamics of basal ganglia response and connectivity during verbal working memory. Neuroimage, 2007, 34: 1253–1269 17175179, 10.1016/j.neuroimage.2006.08.056

    Article  PubMed  Google Scholar 

  19. Frank M J, Loughry B, O’Reilly R C. Interactions between frontal cortex and basal ganglia in working memory: a computational model. Cogn Affect Behav Neurosci, 2001, 1: 137–160 12467110, 10.3758/CABN.1.2.137, 1:STN:280:DC%2BD38jgsFKmtQ%3D%3D

    Article  CAS  PubMed  Google Scholar 

  20. Goldman-Rakic P S, Rosvold H E. Localization of function within the dorsolateral prefrontal cortex of the rhesus monkey. Exp Neurol, 1970, 27: 291–304 10.1016/0014-4886(70)90222-0

    Article  Google Scholar 

  21. Katsuyuki S, Richard E P. Prefrontal selection and medial temporal lobe reactivation in retrieval of short-term verbal information. Cereb Cortex, 2004, 14: 914–921 10.1093/cercor/bhh050

    Article  Google Scholar 

  22. Ptito A, Crane J, Leonard G, et al. Visualspatial localization by patients with frontal-lobe lesions invading or sparing area 46. Neuroreport, 1995, 6: 1781–1784 8541481, 10.1097/00001756-199509000-00018, 1:STN:280:DyaK28%2FpvVKmtw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  23. Warren J M, Akert K, eds. The frontal granular cortex and behavior. New York: McGraw-Hill Book Company. 1964

    Google Scholar 

  24. Wang G W, Cai J X. Disconnection of the hippocampal-prefrontal cortical circuits impairs spatial working memory performance in rats. Behav Brain Res, 2006, 175: 329–336 17045348, 10.1016/j.bbr.2006.09.002

    Article  PubMed  Google Scholar 

  25. Wang G W, Cai J X. Reversible disconnection of the hippocampal-prelimbic cortical circuit impairs spatial learning but not passive avoidance learning in rats. Neurobiol Learn Mem, 2008, 90: 365–373 18614383, 10.1016/j.nlm.2008.05.009, 1:CAS:528:DC%2BD1cXpslSkt74%3D

    Article  CAS  PubMed  Google Scholar 

  26. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. 2nd edn. Sydney: Academic Press, 1998

    Google Scholar 

  27. Zahrt J, Taylor J R, Mathew R G, et al. Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci, 1997, 17: 8528–8535 9334425, 1:CAS:528:DyaK2sXntVyju7s%3D

    CAS  PubMed  Google Scholar 

  28. Suyama K, Dykstra K H, Masana MI, et al. In vivo evidence that nonneuronal b-adrenoceptors as well as dopamine receptors contribute to cyclic AMP efflux in rat striatum. J Neurochem, 1994, 62: 1734–1740 8158123, 1:CAS:528:DyaK2cXis1ajtr0%3D, 10.1046/j.1471-4159.1994.62051734.x

    Article  CAS  PubMed  Google Scholar 

  29. Berg-Johnsen J, Paulsen R E, Fonnum F, et al. Changes in evoked potentials and amino acid content during fluorocitrate action studied in rat hippocampal cortex. Exp Brain Res, 1993, 96: 241–246 7903642, 10.1007/BF00227104, 1:CAS:528:DyaK2cXhvVelt7g%3D

    Article  CAS  PubMed  Google Scholar 

  30. Stone E A, Sessler F M, Liu W. Glial localization of adenylate cyclase-coupled beta adrenoreceptors in rat forebrain slices. Brain Res, 1990, 530: 295–300 2176116, 10.1016/0006-8993(90)91298-U, 1:CAS:528:DyaK3MXhtVKg

    Article  CAS  PubMed  Google Scholar 

  31. Stone E A, John S M. Further evidence for a glial localization of rat cortical β-adrenoceptors: Studies of in vivo cyclic AMP responses to catecholamines. Brain Res, 1991, 549: 78–82 1654173, 10.1016/0006-8993(91)90601-Q, 1:CAS:528:DyaK3MXksVamtbY%3D

    Article  CAS  PubMed  Google Scholar 

  32. Goldman-Rakic P S, Friedman H R. Frontal lobe function and dysfunction. In: Levin H S, Eisenberg H M, Benton A L, eds. The Circuitry of Working Memory Revealed by Anatomy and Metabolic Imaging. Oxford: Oxford University Press. 1991. 73–91

    Google Scholar 

  33. Schwabe K, Enkel T, Klein S, et al. Effects of neonatal lesions of the medial prefrontal cortex on adult rat behaviour. Behav Brain Res, 2004, 153: 21–34 15219703, 10.1016/j.bbr.2003.10.030, 1:CAS:528:DC%2BD2cXlt1Wgs7w%3D

    Article  CAS  PubMed  Google Scholar 

  34. Hirose S, Umetani Y, Amitani M, et al. Role of NMDA receptors in the increase of glucose metabolism in the rat brain induced by fluorocitrate. Neurosci Lett, 2007, 415: 259–263 17280781, 10.1016/j.neulet.2007.01.031, 1:CAS:528:DC%2BD2sXjtFGqurc%3D

    Article  CAS  PubMed  Google Scholar 

  35. Largo C, Cuevas P, Somjen C G, et al. The effect of depressing glial function in rat brain in situ on ion homeostasis synaptic transmission and neuron survival. J Neurosci, 1996, 16: 1219–1229 8558250, 1:CAS:528:DyaK28XmsVertg%3D%3D

    CAS  PubMed  Google Scholar 

  36. Paulsen R E, Contestabile A, Villani L, et al. The effect of fluorocitrate on transmitter amino acid release from rat striatal slices. Neurochem Res, 1988, 13: 637–641 2901051, 10.1007/BF00973281, 1:CAS:528:DyaL1cXkvVKrt7Y%3D

    Article  CAS  PubMed  Google Scholar 

  37. Paulsen R E, Fonnum F. Role of glial cells for the basal and Ca21-dependent K1-evoked release of transmitter amino acids investigated by microdialysis. J Neurochem, 1989, 52: 1823–1829 2566651, 10.1111/j.1471-4159.1989.tb07263.x, 1:CAS:528:DyaL1MXktFyiu7w%3D

    Article  CAS  PubMed  Google Scholar 

  38. Szerb J C, Issekutz B. Increase in the stimulation-induced overflow of glutamate by fluoroacetate, a selektive inhibitor of glial tricarboxylic cycle. Brain Res, 1987, 410: 116–120 2884018, 10.1016/S0006-8993(87)80030-6, 1:CAS:528:DyaL2sXktVWnsbY%3D

    Article  CAS  PubMed  Google Scholar 

  39. Baddeley A. Working memory: looking back and looking forward. Nat Rev Neurosci, 2003, 4: 829–839 14523382, 10.1038/nrn1201, 1:CAS:528:DC%2BD3sXnslSitr8%3D

    Article  CAS  PubMed  Google Scholar 

  40. Oscar-Berman M, McNamara P, Freedman M. Frontal Lobe Fuction and Dysfuction. In: Levin H S, Eisenberg H M, Benton A L, eds. Delayed-Response Tasks: Parallels Between Experimental Ablation Studies and Findings in Patients with Frontal Lesions. Oxford: Oxford University Press. 1991. 231–255

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Xia Cai.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 30070251) and the National Basic Research Program of China (Grant No. G1999054000) to Prof. CAI Jing-Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Li, CC., Wang, GW. et al. The effects of centrally administered fluorocitrate via inhibiting glial cells on working memory in rats. SCI CHINA SER C 52, 701–709 (2009). https://doi.org/10.1007/s11427-009-0101-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-009-0101-9

Keywords

Navigation