Skip to main content

Petroleum Geomechanics: A Computational Perspective

  • Chapter
  • First Online:
New Frontiers in Oil and Gas Exploration

Abstracts

Petroleum geomechanics is concerned with rock and fracture behavior in reservoir, drilling, completion, and production engineering. Typical problems in petroleum geomechanics include subsidence, borehole stability, and hydraulic fracturing. All are coupled problems that involve heat transfer, fluid flow, rock/fracture deformation, and/or solute transport. Numerical solutions through modeling are desired for such complicated systems. In this chapter, we present the mathematical descriptions of these typical problems in petroleum geomechanics, point out the challenges in solving these problems, and address those challenges by a variety of classical and emerging numerical techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. OGJ. (2000–2010). Various news articles on subjects such as Ekofisk subsidence and redevelopment, casing shear, etc. Oil and Gas Journal.

    Google Scholar 

  2. Geertsma, J. (1966). Problems of rock mechanics in petroleum production engineering. Proceedings of the First Congress of International Society of Rock Mechanics (Vol. I, pp. 585–594). Lisbon.

    Google Scholar 

  3. Rothenburg, L., Bratli, R. K., & Dusseault, M. B. (1994). A poroelastic solution for transient fluid flow into a well. PMRI Publications, University of Waterloo, Canada, available upon request.

    Google Scholar 

  4. Hettema, M., Papamichos, E., & Schutjens, P. (2002). Subsidence delay: Field observations and analysis. Oil and Gas Science and Technology., 57, 443–458.

    Article  Google Scholar 

  5. Salamon, M. D. G. (1963). Elastic analysis of displacements and stresses induced by the mining of seam or reef deposits. Part I. Journal of the South African Institute of Mining and Metallurgy, 64, 128–149.

    Google Scholar 

  6. Rothenburg, L., Carvalho Jr., A. L. P., & Dusseault, M. B. (2007). Performance of a mining panel over tachyhydrite in Taquari-Vassouras potash mine. Proceedings of 6th Conference on the Mechanical Behavior of Salt, Hannover, 9 p.

    Google Scholar 

  7. Crouch, S. L., & Starfield, A. M. (1983). Boundary element methods in solid mechanics. London: Allen and Unwin.

    MATH  Google Scholar 

  8. Detournay, E., & Cheng, A. H.-D. (1993). Fundamentals of poroelasticity. In J. A. Hudson (Ed.), Comprehensive rock engineering: Principles, practice and projects (Vol. 2, pp. 113–171). Oxford: Pergamon.

    Google Scholar 

  9. Zimmerman, R. W. (1991). Compressibility of sandstones. Amsterdam: Elsevier.

    Google Scholar 

  10. Biot, M. A. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, 12, 155–164.

    Article  MATH  Google Scholar 

  11. Sandhu, R. S., & Wilson, E. L. (1969). Finite element analysis of seepage in elastic medium. Journal of the Engineering Mechanics Division, ASCE, 95, 641–651.

    Google Scholar 

  12. Gambolati, G., & Freeze, R. A. (1973). Mathematical simulation of the subsidence of Venice. I. Theory. Water Resources Research, 9, 721–733.

    Article  Google Scholar 

  13. Lewis, R. W., & Schrefler, B. A. (1998). The finite element method in the static and dynamic deformation and consolidation of porous media. New York: John Wiley.

    MATH  Google Scholar 

  14. Zienkiewicz, O. C., & Taylor, R. L. (1991). The finite element method, solid and fluid mechanics, dynamics and non-linearity (Vol. 2). London: McGraw-Hill.

    MATH  Google Scholar 

  15. Dusseault, M. B. (1995). Radioactive waste disposal. Nature, 375, 625.

    Article  Google Scholar 

  16. Dusseault, M. B., Rothenburg, L., & Bachu, S. (2002). Sequestration of CO2 in salt caverns. In: Proceedings of the Canadian international Petrol Conference. Calgary, Alberta. Paper 2002-237.

    Google Scholar 

  17. Dusseault, M. B. (2003a). Coupled processes and petroleum geomechanics. Proceedings of Geoproc 2003, International Conference on Coupled THMC Processes in Porous Media (pp. 44–57). Stockholm, Sweden.

    Google Scholar 

  18. FjÓ•r, E., Holt, R. M., Horsrud, P., Raaen, A. M., & Risnes, R. (1992). Petroleum related rock mechanics. Amsterdam: Elsevier.

    Google Scholar 

  19. Franklin, J. A., & Dusseault, M. B. (1989). Rock engineering. New York: McGraw-Hill Publishing Company.

    Google Scholar 

  20. Dusseault, M. B. (2003b). Coupled thermo-mechano-chemical processes in shales: The petroleum borehole. Proceedings of Geoproc 2003, International Conference on Coupled THMC Processes in Porous Media (pp. 571–578). Stockholm, Sweden.

    Google Scholar 

  21. Abousleiman, Y., Cui, L., Ekbote, S., Zaman, M., Roegiers, J.-C., & Cheng, A. H.-D. (1997). Applications of time-dependent pseudo-3D stress analysis in evaluating wellbore stability. International Journal of Rock Mechanics and Mining Sciences, 34, 421–422.

    Article  Google Scholar 

  22. Dusseault, M. B. (1994). Analysis of borehole stability. Proceedings of 8th IACMAB Conference (Vol. 1, pp. 125–137) Morgantown, WV. Invited paper.

    Google Scholar 

  23. Dusseault, M. B. (1999). Petroleum geomechanics: Excursions into coupled behavior. Journal of Canadian Petroleum Technology, 38, 10–14.

    Google Scholar 

  24. Dusseault, M. B., Bruno, M. S., & Barrera, J. (2001). Casing shear: Causes, cases, cures. SPE Drilling & Completion Journal, 16, 98–107.

    Article  Google Scholar 

  25. Fam, M. A., Dusseault, M. B., & Fooks, J. C. (2003). Drilling in mudrocks: Rock behavior issues. Journal of Petroleum Science and Engineering, 38, 155–166.

    Article  Google Scholar 

  26. Rothenburg, L., & Bruno, M. S. (1997). Micromechanical modeling of sand production and arching effects around a cavity. International Journal of Rock Mechanics and Mining Sciences. 34(3–4), Paper #068.

    Google Scholar 

  27. Wang, Y., & Dusseault, M. B. (2003). A coupled conductive—convective thermoporoelastic solution and implications for wellbore stability. Journal of Petroleum Science and Engineering, 38, 187–198.

    Article  Google Scholar 

  28. Yuan, Y. -G., Abousleiman, Y., & Roegiers, J. -C. (1995). Fluid penetration around a borehole under coupled hydro-electro-chemico-thermal potentials. The 46th Annual Technical Meeting of the Petroleum Society of CIM, Alberta, Canada.

    Google Scholar 

  29. Dusseault, M. B., & Hojka, K. (1992). Conduction and convection in thermoelastic porous solids as a tool in prediction of enhanced rock permeability. In M. Quintard & M. Todorovic (Eds.), Heat and mass transfer in porous media (pp. 203–219). Amsterdam: Elsevier.

    Google Scholar 

  30. Coussy, O. (1995). Mechanics of porous continua. New York: Wiley.

    MATH  Google Scholar 

  31. Sherwood, J. D. (1993). Biot poroelasticity of a chemically active shale. Proceedings of the Royal Society of London A, 440, 365–377.

    Article  MATH  Google Scholar 

  32. Dusseault, M. B., Wang, Y., & Simmons, J. V. (1998). Induced stresses near a fire flood front. AOSTRA Journal of Research., 4, 153–170.

    Google Scholar 

  33. Yin, S., Dusseault, M. B., & Rothenburg, L. (2009). Thermal reservoir modelling in petroleum geomechanics. International Journal for Numerical and Analytical Methods in Geomechanics, 33, 449–485.

    Article  MATH  Google Scholar 

  34. Yin, S., Towler, B. F., Dusseault, M. B., & Rothenburg, L. (2010). Fully coupled THMC modeling of wellbore stability with thermal and solute convection considered. Transport in Porous Media, 84, 773–798.

    Article  MathSciNet  Google Scholar 

  35. Strang, G., & Fix, G. (1973). An analysis of the finite element method. New Jersey: Prentice-Hall.

    MATH  Google Scholar 

  36. Donea, J., & Huerta, A. (2003). Finite element methods for flow problems. Chichester, England: John Wiley & Sons.

    Book  Google Scholar 

  37. Hughes, T. J. R., Franca, L. P., & Hulbert, G. (1989). A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations. Computational Methods in Applied Mechanics and Engineering, 73, 173–189.

    Article  MathSciNet  MATH  Google Scholar 

  38. Gresho, P. M., Lee, R. L., & Sani, R. (1978). Advection-dominated flows with emphasis on the consequences of mass lumping. In R. H. Gallager, O. C. Zienkiewicz, J. T. Oden, M. Morandi Cecchi, & C. Taylor (Eds.), Finite elements in fluids (Vol. 3, pp. 335–351). Chichester: Wiley.

    Google Scholar 

  39. Harari, I. (2005). Stability of semidiscrete formulations for parabolic problems at small time steps. Computer Methods in Applied Mechanics and Engineering, 193, 1491–1516.

    Article  MathSciNet  MATH  Google Scholar 

  40. Hauke, G., & Doweidar, M. H. (2006). Fourier analysis of semi-discrete and space-time stabilized methods for the advective-diffusive-reactive equation: III. SGS/GSGS. Computer Methods in Applied Mechanics and Engineering, 195, 6158–6176.

    Article  MathSciNet  MATH  Google Scholar 

  41. Carslaw, H. S., & Jaeger, J. C. (1959). Conduction of heat in solids (2nd ed.). Oxford: Clarendon.

    MATH  Google Scholar 

  42. Perkins, T. K., & Gonzalez, J. A. (1985). The effect of thermoelastic stresses on injection well fracturing. Society of Petroleum Engineers Journal, 25, 78–88.

    Article  Google Scholar 

  43. Settari, A., & Warren, G. M. (1994). Simulation and field analysis of waterflood induced fracturing. Proceedings of SPE/ISRM Meeting Rock Mechanics in Petroleum Engineering (pp. 435–445).

    Google Scholar 

  44. Svendsen, A. P., Wright, M. S., Clifford, P. J., & Berry, P. J. (1991). Thermally induced fracturing of Ula water injectors. SPE Production Engineering, 6, 384–393.

    Article  Google Scholar 

  45. Yin, S. (2013). Numerical analysis of thermal fracturing in subsurface cold water injection by finite element methods. International Journal for Numerical and Analytical Methods in Geomechanics, 37, 2523–2538.

    Article  Google Scholar 

  46. Belytschko, T., Gracie, R., & Ventura, G. (2009). A review of extended/generalized finite element methods for material modeling. Modelling and Simulation in Materials Science and Engineering, 17, 1–24.

    Article  MathSciNet  MATH  Google Scholar 

  47. Kraaijeveld, F. (2009). Propagating discontinuities in ionized porous media. PhD thesis, University of Technology of Eindhoven.

    Google Scholar 

  48. Larsson, R., Runesson, K., & Sture, S. (1996). Embedded localization band in undrained soil based on regularized strong discontinuity theory and FE-analysis. International Journal of Solids and Structures, 33, 3081–3101.

    Article  MATH  Google Scholar 

  49. Roels, S., Moonen, P., de Proft, K., & Carmeliet, J. (2006). A coupled discrete-continuum approach to simulate moisture effects on damage processes in porous materials. Computer Methods in Applied Mechanics and Engineering, 195, 7139–7153.

    Article  MATH  Google Scholar 

  50. Rethore, J., de Borst, R., & Abellan, M. A. (2007). A two-scale approach for fluid flow in fractured porous media. International Journal for Numerical Methods in Engineering, 71, 780–800.

    Article  MathSciNet  MATH  Google Scholar 

  51. Al-Khoury, R., & Sluys, L. J. (2007). A computational model for fracturing porous media. International Journal for Numerical Methods in Engineering, 70, 423–444.

    Article  MATH  Google Scholar 

  52. Lamb, A. R., Gorman, G. J., Gosselin, O. R., & Onaisi, A. (2010). Finite element coupled deformation and fluid flow in fracture porous media. SPE 131725, SPE EUROPEC/EAGE Annual Conference and Exhibition, Barcelona, Spain.

    Google Scholar 

  53. Masters, I., Pao, W. K. S., & Lewis, R. W. (2000). Coupling temperature to a double-porosity model of deformable porous media. International Journal for Numerical Methods in Engineering, 49, 400–421.

    Article  MATH  Google Scholar 

  54. Wells, G. N., & Sluys, L. J. (2001). A new method for modelling cohesive cracks using finite elements. International Journal for Numerical Methods in Engineering, 50, 2667–2682.

    Article  MATH  Google Scholar 

  55. Gasser, T. C., & Holzapfel, G. A. (2005). Modeling 3D crack propagation in unreinforced concrete using PUFEM. Computer Methods in Applied Mechanics and Engineering, 194, 2859–2896.

    Article  MATH  Google Scholar 

  56. Belytschko, T., Parimi, C., Moes, N., Sukumar, N., & Usui, S. (2003). Structured extended finite element methods for solids defined by implicit surfaces. International Journal for Numerical Methods in Engineering, 56, 609–635.

    Article  MATH  Google Scholar 

  57. Zhang, J., Standifird, W. B., Roegiers, J.-C., & Zhang, Y. (2007). Stress-dependent fluid flow and permeability in fractured media: From lab experiments to engineering applications. Rock Mechanics and Rock Engineering, 40, 3–21.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunde Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dusseault, M.B., Gracie, R., Basu, D., Rothenburg, L., Yin, S. (2016). Petroleum Geomechanics: A Computational Perspective. In: Jin, C., Cusatis, G. (eds) New Frontiers in Oil and Gas Exploration. Springer, Cham. https://doi.org/10.1007/978-3-319-40124-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40124-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40122-5

  • Online ISBN: 978-3-319-40124-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics