Skip to main content

MEMS Lorentz Force Magnetometers

  • Chapter
  • First Online:
High Sensitivity Magnetometers

Abstract

Lorentz force magnetometers based on microelectromechanical systems (MEMS) have several advantages such as small size, low power consumption, high sensitivity, wide dynamic range, high resolution, and low cost batch fabrication. These magnetometers have potential applications in biomedicine, navigation systems, telecommunications, automotive industry, space satellites, and non-destructive testing. This chapter includes the development of MEMS magnetometers composed by resonant structures that use the Lorentz force and different signal processing techniques. In addition, it presents the operation principle, sensing techniques, fabrication processes, applications, and challenges of MEMS magnetometers. Future applications will consider the integration of magnetometers with different devices (e.g., accelerometers, gyroscopes, energy harvesting and temperature sensors) on a single chip.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.K. Ananthasuresh, K.J. Vinoy, S. Gopalakrishnan, K.N. Bhat, V.K. Aatre, Micro and Smart Systems Technology and Modeling (Wiley, Danvers, 2012)

    Google Scholar 

  2. S.D. Senturia, Microsystem Design (Kluwer Academic Publishers, New York, 2002)

    Google Scholar 

  3. A.L. Herrera-May, L.A. Aguilera-Cortés, P.J. García-Ramírez, E. Manjarrez, Resonant magnetic field sensor based on MEMS technology. Sensors 9, 7785–7813 (2009)

    Article  Google Scholar 

  4. O. Solgaard, A.A. Godil, R.T. Howe, L.P. Lee, Y.-A. Peter, H. Zappe, Optical MEMS: from micromirrors to complex systems. J. Microelectromech. Syst. 23, 517–538 (2014)

    Article  Google Scholar 

  5. D. Yamane, T. Konishi, T. Matsushima, K. Machida, H. Toshiyoshi, K. Masu, Design of sub-1 g microelectromechanical systems accelerometers. Appl. Phy. Lett. 104, 074102Ç (2014)

    Google Scholar 

  6. Z. Deyhim, Z. Yousefi, H.B. Ghavifekr, E.N. Aghdam, A high sensitive and robust controllable MEMS gyroscope with inherently linear control force using a high performance 2-DOF oscillator. Microsyst. Technol. 21, 227–237 (2015)

    Article  Google Scholar 

  7. A.L. Herrera-May, J.A. Tapia, S.M. Domínguez-Nicolás, R. Juarez-Aguirre, E.A. Gutierrez-D, A. Flores, E. Figueras, E. Manjarrez, Improved detection of magnetic signals by a MEMS sensor using stochastic resonance. PLoS ONE 9, e109534 (2014)

    Article  Google Scholar 

  8. S. Kulwant, J. Robin, V. Soney, J. Akhtar, Fabrication of electron beam physical vapor deposited polysilicon piezoresistive MEMS pressure sensor. Sens. Actuators A 223, 151–158 (2015)

    Article  Google Scholar 

  9. Y. Liu, P. Song, J. Liu, D.J.H. Tng, R. Hu, H. Chen, Y. Hu, C.H. Tan, J. Wang, J. Liu, L. Ye, K.-T. Yong, An in-vivo evaluation of a MEMS drug delivery device using Kunming mice model. Biomed. Microdevices 17, 6 (2015)

    Article  Google Scholar 

  10. W. Zhenlu, S. Xuejin, C. Xiaoyang, Design, modeling, and characterization of a MEMS electrothermal microgripper. Microsyst. Technol. 21, 2307–2314 (2015)

    Article  Google Scholar 

  11. H. Tai-Ran, MEMS & Microsystems. Design and Manufacture (McGraw Hill, New York, 2002)

    Google Scholar 

  12. S. Sedky, Post-processing Techniques for Integrated MEMS (Artech House, Norwood, 2006)

    Google Scholar 

  13. A.L. Herrera-May, M. Lara-Castro, F. López-Huerta, P. Gkotsis, J.-P. Raskin, E. Figueras, A MEMS-based magnetic field sensor with simple resonant structure and linear electrical response. Microelectron. Eng. 142, 12–21 (2015)

    Article  Google Scholar 

  14. “MEMS Packaging,” Yole Développement report. http://www.i-micronews.com/mems-sensors-report/product/mems-packaging.html

  15. O. Tabata, T. Tsuchiya, MEMS and NEMS Simulation, in MEMS: A Practical Guide to Design, Analysis, and Applications, ed. by J.G. Korvink, O. Paul (William Andrew Inc, New York, 2006), pp. 53–186

    Google Scholar 

  16. F.R. Bloom, S. Bouwstra, M. Elwenspoek, J.H.J. Fluitman, Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry. J. Vac. Sci. Technol. B 10, 19–26 (1992)

    Article  Google Scholar 

  17. A.L. Herrera-May, L.A. Aguilera-Cortés, L. García-González, E. Figueras-Costa, Mechanical behavior of a novel resonant microstructure for magnetic applications considering the squeeze-film damping. Microsyst. Technol. 15, 259–268 (2009)

    Article  Google Scholar 

  18. R. Lifshit, M.L. Roukes, Thermoelastic damping in micro-and nanomechanical systems. Phys. Rev. B 61, 5600–5609 (2000)

    Article  Google Scholar 

  19. Z. Hao, A. Erbil, F. Ayazi, An analytical model for support loss in micromachined beam resonators with in-plane flexural vibrations. Sens. Actuators A 109, 156–164 (2003)

    Article  Google Scholar 

  20. A.L. Herrera-May, P.J. García-Ramírez, L.A. Aguilera-Cortés, J. Martínez-Castillo, A. Sauceda-Carvajal, L. García-González, E. Figueras-Costa, A resonant magnetic field microsensor with high quality factor at atmospheric pressure. J. Micromech. Microeng. 19, 15016 (2009)

    Article  Google Scholar 

  21. A.L. Herrera-May, P.J. García-Ramírez, L.A. Aguilera-Cortés, E. Figueras, J. Martínez-Castillo, E. Manjarrez, A. Sauceda, L. García- González, R. Juárez-Aguirre, Mechanical design and characterization of a resonant magnetic field microsensor with linear response and high resolution. Sens. Actuators A 165, 299–409 (2011)

    Article  Google Scholar 

  22. S.M. Dominguez-Nicolas, R. Juarez-Aguirre, P.J. Garcia-Ramirez, A.L. Herrera-May, Signal conditioning system with a 4–20 mA output for a resonant magnetic field sensor based on MEMS technology. IEEE Sens. J. 12, 935–942 (2012)

    Article  Google Scholar 

  23. S. Brugger, O. Paul, Field-concentrator-based resonant magnetic sensor with integrated planar coils. J. Microelectromech. Syst. 18, 1432–1443 (2009)

    Article  Google Scholar 

  24. M. Li, V.T. Rouf, M.J. Thompson, D.A. Horsley, Three-axis Lorentz-force magnetic sensor for electronic compass applications. J. Microelectromech. Syst. 21, 1002–1010 (2012)

    Article  Google Scholar 

  25. G. Wu, D. Xu, B. Xiong, D. Feng, Y. Wang, Resonant magnetic field sensor with capacitive driving and electromagnetic induction sensing. IEEE Electron Devices Lett. 34, 459–461 (2013)

    Article  Google Scholar 

  26. G. Langfelder, C. Buffa, A. Frangi, A. Tocchio, E. Lasalandra, A. Longoni, Z-axis magnetometers for MEMS inertial measurement units using an industrial process. IEEE Trans. Industr. Electron. 60, 3983–3990 (2013)

    Article  Google Scholar 

  27. F. Keplinger, S. Kvasnica, H. Hauser, R. Grössinger, Optical readouts of cantilever bending designed for high magnetic field application. IEEE Trans. Magn. 39, 3304–3306 (2003)

    Article  Google Scholar 

  28. F. Keplinger, S. Kvasnica, A. Jachimowicz, F. Kohl, J. Steurer, H. Hauser, Lorentz force based magnetic field sensor with optical readout. Sens. Actuators A 110, 112–118 (2004)

    Article  Google Scholar 

  29. D.K. Wickenden, J.L. Champion, R. Osiander, R.B. Givens, J.L. Lamb, J.A. Miragliotta, D.A. Oursler, T.J. Kistenmacher, Micromachined polysilicon resonating xylophone bar magnetometer. Acta Astronaut. 52, 421–425 (2003)

    Article  Google Scholar 

  30. S.M. Domínguez-Nicolás, R. Juárez-Aguirre, A.L. Herrera-May, P.J. García-Ramírez, E. Figueras, E. Gutierrez, J.A. Tapia, A. Trejo, E. Manjarrez, Respiratory magnetogram detected with a MEMS device. Int. J. Med. Sci. 10, 1445–1450 (2013)

    Article  Google Scholar 

  31. R. Juárez-Aguirre, S.M. Domínguez-Nicolás, E. Manjarrez, J.A. Tapia, E. Figueras, H. Vázquez-Leal, L.A. Aguilera-Cortés, A.L. Herrera-May, Digital signal processing by virtual instrumentation of a MEMS magnetic field sensor for biomedical applications. Sensors 13, 15068–15084 (2013)

    Article  Google Scholar 

  32. J. Acevedo-Mijangos, C. Soler-Balcázar, H. Vazquez-Leal, J. Martínez-Castillo, A.L. Herrera-May, Design and modeling of a novel microsensor to detect magnetic fields in two orthogonal directions. Microsyst. Technol. 19, 1897–1912 (2013)

    Article  Google Scholar 

  33. A. Dubov, A. Dubov, S. Kolokolnikov, Application of the metal magnetic memory method for detection of defects at the initial stage of their development for prevention of failures of power engineering welded steel structures and steam turbine parts. Weld World 58, 225–236 (2014)

    Article  Google Scholar 

  34. A.L. Herrera-May, L.A. Aguilera-Cortés, P.J. García-Ramírez, N.B. Mota-Carrillo, W.Y. Padrón-Hernández, E. Figueras, Development of Resonant Magnetic Field Microsensors: Challenges and Future Applications, in Microsensors, ed. by I. Minin (InTech, Croatia, 2011), pp. 65–84

    Google Scholar 

  35. M. Lara-Castro, A.L. Herrera-May, R. Juarez-Aguirre, F. López-Huerta, C.A. Ceron-Alvarez, I.E. Cortes-Mestizo, E.A. Morales-Gonzalez, H. Vazquez-Leal, S.M. Dominguez-Nicolas, Portable signal conditioning system of a MEMS magnetic field sensor for industrial applications. Microsyst. Technol. (2016). doi:10.1007/s00542-016-2816-4

  36. G. Laghi, S. Dellea, A. Longoni, P. Minotti, A. Tocchio, S. Zerbini, G. Lagfelder, Torsional MEMS magnetometer operated off-resonance for in-plane magnetic field detection. Sens. Actuators A 229, 218–226 (2015)

    Article  Google Scholar 

  37. C.M.N. Brigante, N. Abbate, A. Basile, A.C. Faulisi, S. Sessa, Towards miniaturization of a MEMS-based wearable motion capture system. IEEE Trans. Industr. Electron. 58, 3234–3241 (2011)

    Article  Google Scholar 

  38. S.P. Won, F. Golnaraghi, W.W. Melek, A fastening tool tracking system using an IMUand a position sensor with Kalman filters and a fuzzy expert system. IEEE Trans. Industr. Electron. 56, 1782–1792 (2009)

    Article  Google Scholar 

  39. R.N. Dean, A. Luque, Applications of microelectromechanical systems in industrial processes and services. IEEE Trans. Industr. Electron. 56, 913–925 (2009)

    Article  Google Scholar 

  40. H. Lamy, V. Rochus, I. Niyonzima, P. Rochus, A xylophone bar magnetometer for micro/pico satellites. Acta Astronaut. 67, 793–809 (2010)

    Article  Google Scholar 

  41. S. Ranvier, V. Rochus, S. Druart, H. Lamy, P. Rochus, L.A. Francis, Detection methods for MEMS-Based xylophone bar magnetometer for pico satellites. J. Mech. Eng. Autom. 1, 342–350 (2011)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by Sandia National Laboratory’s University Alliance Program, FORDECYT-CONACYT through grant 115976, and projects PRODEP “Estudio de Dispositivos Electrónicos y Electromecánicos con Potencial Aplicación en Fisiología y Optoelectrónica” and “Sistema Electrónico de Medición de Campo Magnético Residual de Estructuras Ferromagnéticas”. The authors would like to thank Dr. Eduard Figueras of IMB-CNM (CSIC) for his collaboration into the fabrication of MEMS magnetometers and B.S. Fernando Bravo-Barrera of LAPEM for his assistance with the SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustín Leobardo Herrera-May .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Herrera-May, A.L., López-Huerta, F., Aguilera-Cortés, L.A. (2017). MEMS Lorentz Force Magnetometers. In: Grosz, A., Haji-Sheikh, M., Mukhopadhyay, S. (eds) High Sensitivity Magnetometers. Smart Sensors, Measurement and Instrumentation, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-34070-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34070-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34068-5

  • Online ISBN: 978-3-319-34070-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics