Skip to main content

Stem Cell Therapy for Retinal Disease Treatment: An Update

  • Chapter
  • First Online:
Neurological Regeneration

Abstract

At this time, the main targets of stem cell therapy for retinal degenerative disease are age-related macular degeneration, Stargardt disease, and retinitis pigmentosa. The goal of stem cell therapy is to either to “rescue” the surviving retinal cells (by providing the necessary support or generating neurotrophic agents) and/or to “replace” the cells that have degenerated. Stem cells being used in ongoing early human trials to treat degenerative retinal disease include induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE), embryonic stem cell-derived RPE, iPSC-neural progenitor cells, bone marrow-derived stem cells, and human central nervous system derived stem cells among others. It is too early to judge the outcome of these sources of tissue, but early results are positive. Continuing research in various aspects of transplantation- establishing cell lines without danger of tumor formation or immune rejection, refining surgical techniques and instruments, and identifying factors that promote cell survival, differentiation, and integration of the transplanted cells, should allow for rapid and continued progress in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akimoto M, Cheng H, Zhu D, Brzezinski JA, Khanna R, Filippova E, Oh EC, Jing Y, Linares JL, Brooks M, Zareparsi S, Mears AJ, Hero A, Glaser T, Swaroop A (2006) Targeting of GFP to newborn rods by Nrl promoter and temporal expression profiling of flow-sorted photoreceptors. Proc Natl Acad Sci U S A 103(10):3890–3895. doi:10.1073/pnas.0508214103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amirpour N, Karamali F, Rabiee F, Rezaei L, Esfandiari E, Razavi S, Dehghani A, Razmju H, Nasr-Esfahani MH, Baharvand H (2012) Differentiation of human embryonic stem cell-derived retinal progenitors into retinal cells by Sonic hedgehog and/or retinal pigmented epithelium and transplantation into the subretinal space of sodium iodate-injected rabbits. Stem Cells Dev 21(1):42–53. doi:10.1089/scd.2011.0073

    Article  CAS  PubMed  Google Scholar 

  • Anguera MC, Sadreyev R, Zhang Z, Szanto A, Payer B, Sheridan SD, Kwok S, Haggarty SJ, Sur M, Alvarez J, Gimelbrant A, Mitalipova M, Kirby JE, Lee JT (2012) Molecular signatures of human induced pluripotent stem cells highlight sex differences and cancer genes. Cell Stem Cell 11(1):75–90. doi:10.1016/j.stem.2012.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araki R, Uda M, Hoki Y, Sunayama M, Nakamura M, Ando S, Sugiura M, Ideno H, Shimada A, Nifuji A, Abe M (2013) Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature 494(7435):100–104. doi:10.1038/nature11807

    Article  CAS  PubMed  Google Scholar 

  • Arnhold S, Klein H, Semkova I, Addicks K, Schraermeyer U (2004) Neurally selected embryonic stem cells induce tumor formation after long-term survival following engraftment into the subretinal space. Invest Ophthalmol Vis Sci 45(12):4251–4255. doi:10.1167/iovs.03-1108

    Article  PubMed  Google Scholar 

  • Arnhold S, Heiduschka P, Klein H, Absenger Y, Basnaoglu S, Kreppel F, Henke-Fahle S, Kochanek S, Bartz-Schmidt KU, Addicks K, Schraermeyer U (2006) Adenovirally transduced bone marrow stromal cells differentiate into pigment epithelial cells and induce rescue effects in RCS rats. Invest Ophthalmol Vis Sci 47(9):4121–4129. doi:10.1167/iovs.04-1501

    Article  PubMed  Google Scholar 

  • Ashtari M, Zhang H, Cook PA, Cyckowski LL, Shindler KS, Marshall KA, Aravand P, Vossough A, Gee JC, Maguire AM, Baker CI, Bennett J (2015) Plasticity of the human visual system after retinal gene therapy in patients with Leber’s congenital amaurosis. Sci Transl Med 7(296):296ra110. doi:10.1126/scitranslmed.aaa8791

  • Assawachananont J, Mandai M, Okamoto S, Yamada C, Eiraku M, Yonemura S, Sasai Y, Takahashi M (2014) Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice. Stem Cell Rep 2(5):662–674. doi:10.1016/j.stemcr.2014.03.011

    Article  Google Scholar 

  • Barber AC, Hippert C, Duran Y, West EL, Bainbridge JW, Warre-Cornish K, Luhmann UF, Lakowski J, Sowden JC, Ali RR, Pearson RA (2013) Repair of the degenerate retina by photoreceptor transplantation. Proc Natl Acad Sci U S A 110(1):354–359. doi:10.1073/pnas.1212677110

    Article  CAS  PubMed  Google Scholar 

  • Bharti K, Miller SS, Arnheiter H (2011) The new paradigm: retinal pigment epithelium cells generated from embryonic or induced pluripotent stem cells. Pigment Cell Melanoma Res 24(1):21–34. doi:10.1111/j.1755-148X.2010.00772.x

    Article  PubMed  Google Scholar 

  • Binder S, Stanzel BV, Krebs I, Glittenberg C (2007) Transplantation of the RPE in AMD. Prog Retin Eye Res 26(5):516–554. doi:10.1016/j.preteyeres.2007.02.002

    Article  PubMed  Google Scholar 

  • Blenkinsop TA, Salero E, Stern JH, Temple S (2013) The culture and maintenance of functional retinal pigment epithelial monolayers from adult human eye. Methods Mol Biol 945:45–65. doi:10.1007/978-1-62703-125-7_4

    Article  PubMed  CAS  Google Scholar 

  • Bull ND, Limb GA, Martin KR (2008) Human Muller stem cell (MIO-M1) transplantation in a rat model of glaucoma: survival, differentiation, and integration. Invest Ophthalmol Vis Sci 49(8):3449–3456. doi:10.1167/iovs.08-1770

    Article  PubMed  Google Scholar 

  • Carr AJ, Smart MJ, Ramsden CM, Powner MB, da Cruz L, Coffey PJ (2013) Development of human embryonic stem cell therapies for age-related macular degeneration. Trends Neurosci 36(7):385–395. doi:10.1016/j.tins.2013.03.006

    Article  CAS  PubMed  Google Scholar 

  • Carter DA, Mayer EJ, Dick AD (2007) The effect of postmortem time, donor age and sex on the generation of neurospheres from adult human retina. Br J Ophthalmol 91(9):1216–1218. doi:10.1136/bjo.2007.118141

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung YG, Eum JH, Lee JE, Shim SH, Sepilian V, Hong SW, Lee Y, Treff NR, Choi YH, Kimbrel EA, Dittman RE, Lanza R, Lee DR (2014) Human somatic cell nuclear transfer using adult cells. Cell Stem Cell 14(6):777–780. doi:10.1016/j.stem.2014.03.015

    Article  CAS  PubMed  Google Scholar 

  • Coles BL, Angenieux B, Inoue T, Del Rio-Tsonis K, Spence JR, McInnes RR, Arsenijevic Y, van der Kooy D (2004) Facile isolation and the characterization of human retinal stem cells. Proc Natl Acad Sci U S A 101(44):15772–15777. doi:10.1073/pnas.0401596101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Cruz PM, Yasumura D, Weir J, Matthes MT, Abderrahim H, LaVail MM, Vollrath D (2000) Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet 9(4):645–651

    Article  PubMed  Google Scholar 

  • De Schaepdrijver L, Simoens P, Lauwers H, De Geest JP (1989) Retinal vascular patterns in domestic animals. Res Vet Sci 47(1):34–42

    PubMed  Google Scholar 

  • Diniz B, Thomas P, Thomas B, Ribeiro R, Hu Y, Brant R, Ahuja A, Zhu D, Liu L, Koss M, Maia M, Chader G, Hinton DR, Humayun MS (2013) Subretinal implantation of retinal pigment epithelial cells derived from human embryonic stem cells: improved survival when implanted as a monolayer. Invest Ophthalmol Vis Sci 54(7):5087–5096. doi:10.1167/iovs.12-11239

    Article  PubMed  PubMed Central  Google Scholar 

  • Drukker M, Katz G, Urbach A, Schuldiner M, Markel G, Itskovitz-Eldor J, Reubinoff B, Mandelboim O, Benvenisty N (2002) Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci U S A 99(15):9864–9869. doi:10.1073/pnas.142298299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Q, Lu SJ, Klimanskaya I, Gomes I, Kim D, Chung Y, Honig GR, Kim KS, Lanza R (2010) Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence. Stem Cells 28(4):704–712. doi:10.1002/stem.321

    Article  PubMed  Google Scholar 

  • Gage FH (2000) Mammalian neural stem cells. Science 287(5457):1433–1438

    Article  CAS  PubMed  Google Scholar 

  • Genead MA, Fishman GA, Stone EM, Allikmets R (2009) The natural history of stargardt disease with specific sequence mutation in the ABCA4 gene. Invest Ophthalmol Vis Sci 50(12):5867–5871. doi:10.1167/iovs.09-3611

    Article  PubMed  Google Scholar 

  • Gong J, Sagiv O, Cai H, Tsang SH, Del Priore LV (2008) Effects of extracellular matrix and neighboring cells on induction of human embryonic stem cells into retinal or retinal pigment epithelial progenitors. Exp Eye Res 86(6):957–965. doi:10.1016/j.exer.2008.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Cordero A, West EL, Pearson RA, Duran Y, Carvalho LS, Chu CJ, Naeem A, Blackford SJ, Georgiadis A, Lakowski J, Hubank M, Smith AJ, Bainbridge JW, Sowden JC, Ali RR (2013) Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina. Nat Biotechnol 31(8):741–747. doi:10.1038/nbt.2643

    Article  CAS  PubMed  Google Scholar 

  • Gullapalli VK, Sugino IK, Van Patten Y, Shah S, Zarbin MA (2005) Impaired RPE survival on aged submacular human Bruch’s membrane. Exp Eye Res 80(2):235–248. doi:10.1016/j.exer.2004.09.006

    Article  CAS  PubMed  Google Scholar 

  • Gullapalli VK, Khodair MA, Kolomeyer AM, Sugino IK, Madreperla S, Zarbin MA (2012) Transplantation frontiers. In: Ryan SJ, Schachat AP, Wilkinson CP, Hinton DR, Sadda SR, Wiedemann P (eds) Retina, vol 3. 6th edn. Elsevier, Philadelphia

    Google Scholar 

  • Heier JS, Brown DM, Chong V, Korobelnik JF, Kaiser PK, Nguyen QD, Kirchhof B, Ho A, Ogura Y, Yancopoulos GD, Stahl N, Vitti R, Berliner AJ, Soo Y, Anderesi M, Groetzbach G, Sommerauer B, Sandbrink R, Simader C, Schmidt-Erfurth U, View GVS (2012) Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology 119(12):2537–2548. doi:10.1016/j.ophtha.2012.09.006

    Article  PubMed  Google Scholar 

  • Hippert C, Graca AB, Pearson RA (2016) Gliosis can impede integration following photoreceptor transplantation into the diseased retina. Adv Exp Med Biol 854:579–585. doi:10.1007/978-3-319-17121-0_77

    Article  PubMed  Google Scholar 

  • Hsiung J, Zhu D, Hinton DR (2015) Polarized human embryonic stem cell-derived retinal pigment epithelial cell monolayers have higher resistance to oxidative stress-induced cell death than nonpolarized cultures. Stem Cells Transl Med 4(1):10–20. doi:10.5966/sctm.2014-0205

    Article  CAS  PubMed  Google Scholar 

  • Huang JC, Ishida M, Hersh P, Sugino IK, Zarbin MA (1998) Preparation and transplantation of photoreceptor sheets. Curr Eye Res 17(6):573–585

    Article  CAS  PubMed  Google Scholar 

  • Idelson M, Alper R, Obolensky A, Ben-Shushan E, Hemo I, Yachimovich-Cohen N, Khaner H, Smith Y, Wiser O, Gropp M, Cohen MA, Even-Ram S, Berman-Zaken Y, Matzrafi L, Rechavi G, Banin E, Reubinoff B (2009) Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell 5(4):396–408. doi:10.1016/j.stem.2009.07.002

    Article  CAS  PubMed  Google Scholar 

  • Jacobson SG, Cideciyan AV, Roman AJ, Sumaroka A, Schwartz SB, Heon E, Hauswirth WW (2015) Improvement and decline in vision with gene therapy in childhood blindness. N Engl J Med 372(20):1920–1926. doi:10.1056/NEJMoa1412965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones BW, Watt CB, Frederick JM, Baehr W, Chen CK, Levine EM, Milam AH, Lavail MM, Marc RE (2003) Retinal remodeling triggered by photoreceptor degenerations. J Comp Neurol 464(1):1–16. doi:10.1002/cne.10703

    Article  PubMed  Google Scholar 

  • Kamao H, Mandai M, Okamoto S, Sakai N, Suga A, Sugita S, Kiryu J, Takahashi M (2014) Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Rep 2(2):205–218. doi:10.1016/j.stemcr.2013.12.007

    Article  CAS  Google Scholar 

  • Kang X, Yu Q, Huang Y, Song B, Chen Y, Gao X, He W, Sun X, Fan Y (2015) Effects of integrating and non-integrating reprogramming methods on copy number variation and genomic stability of human induced pluripotent stem cells. PLoS One 10(7), e0131128. doi:10.1371/journal.pone.0131128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khodair MA, Zarbin MA, Townes-Anderson E (2003) Synaptic plasticity in mammalian photoreceptors prepared as sheets for retinal transplantation. Invest Ophthalmol Vis Sci 44(11):4976–4988

    Article  PubMed  Google Scholar 

  • Klimanskaya I, Hipp J, Rezai KA, West M, Atala A, Lanza R (2004) Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells 6(3):217–245. doi:10.1089/clo.2004.6.217

    Article  CAS  PubMed  Google Scholar 

  • Kokkinaki M, Sahibzada N, Golestaneh N (2011) Human induced pluripotent stem-derived retinal pigment epithelium (RPE) cells exhibit ion transport, membrane potential, polarized vascular endothelial growth factor secretion, and gene expression pattern similar to native RPE. Stem Cells 29(5):825–835. doi:10.1002/stem.635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolomeyer AM, Zarbin MA (2014) Trophic factors in the pathogenesis and therapy for retinal degenerative diseases. Surv Ophthalmol 59(2):134–165. doi:10.1016/j.survophthal.2013.09.004

    Article  PubMed  Google Scholar 

  • Kundu J, Michaelson A, Baranov P, Young MJ, Carrier RL (2014) Approaches to cell delivery: substrates and scaffolds for cell therapy. Dev Ophthalmol 53:143–154. doi:10.1159/000357369

    Article  PubMed  Google Scholar 

  • Lamba DA, Karl MO, Ware CB, Reh TA (2006) Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci U S A 103(34):12769–12774. doi:10.1073/pnas.0601990103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis GP, Linberg KA, Fisher SK (1998) Neurite outgrowth from bipolar and horizontal cells after experimental retinal detachment. Invest Ophthalmol Vis Sci 39(2):424–434

    CAS  PubMed  Google Scholar 

  • Li L, Baroja ML, Majumdar A, Chadwick K, Rouleau A, Gallacher L, Ferber I, Lebkowski J, Martin T, Madrenas J, Bhatia M (2004) Human embryonic stem cells possess immune-privileged properties. Stem Cells 22(4):448–456. doi:10.1634/stemcells.22-4-448

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Tsai YT, Hsu CW, Erol D, Yang J, Wu WH, Davis RJ, Egli D, Tsang SH (2012) Long-term safety and efficacy of human-induced pluripotent stem cell (iPS) grafts in a preclinical model of retinitis pigmentosa. Mol Med 18:1312–1319. doi:10.2119/molmed.2012.00242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu B, Wang S, Girman S, McGill T, Ragaglia V, Lund R (2010) Human adult bone marrow-derived somatic cells rescue vision in a rodent model of retinal degeneration. Exp Eye Res 91(3):449–455. doi:10.1016/j.exer.2010.06.024

    Article  CAS  PubMed  Google Scholar 

  • Lu B, Zhu D, Hinton D, Humayun MS, Tai YC (2012) Mesh-supported submicron parylene-C membranes for culturing retinal pigment epithelial cells. Biomed Microdevices 14(4):659–667. doi:10.1007/s10544-012-9645-8

    Article  CAS  PubMed  Google Scholar 

  • Lu B, Tai YC, Humayun MS (2014) Microdevice-based cell therapy for age-related macular degeneration. Dev Ophthalmol 53:155–166. doi:10.1159/000357375

    Article  PubMed  Google Scholar 

  • Lund RD, Adamson P, Sauve Y, Keegan DJ, Girman SV, Wang S, Winton H, Kanuga N, Kwan AS, Beauchene L, Zerbib A, Hetherington L, Couraud PO, Coffey P, Greenwood J (2001) Subretinal transplantation of genetically modified human cell lines attenuates loss of visual function in dystrophic rats. Proc Natl Acad Sci U S A 98(17):9942–9947. doi:10.1073/pnas.171266298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lund RD, Wang S, Klimanskaya I, Holmes T, Ramos-Kelsey R, Lu B, Girman S, Bischoff N, Sauve Y, Lanza R (2006) Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells 8(3):189–199. doi:10.1089/clo.2006.8.189

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Baranov P, Patel S, Ouyang H, Quach J, Wu F, Qiu A, Luo H, Hicks C, Zeng J, Zhu J, Lu J, Sfeir N, Wen C, Zhang M, Reade V, Patel S, Sinden J, Sun X, Shaw P, Young M, Zhang K (2014) Human retinal progenitor cell transplantation preserves vision. J Biol Chem 289(10):6362–6371. doi:10.1074/jbc.M113.513713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacLaren RE, Pearson RA, MacNeil A, Douglas RH, Salt TE, Akimoto M, Swaroop A, Sowden JC, Ali RR (2006) Retinal repair by transplantation of photoreceptor precursors. Nature 444(7116):203–207. doi:10.1038/nature05161

    Article  CAS  PubMed  Google Scholar 

  • Maeda T, Lee MJ, Palczewska G, Marsili S, Tesar PJ, Palczewski K, Takahashi M, Maeda A (2013) Retinal pigmented epithelial cells obtained from human induced pluripotent stem cells possess functional visual cycle enzymes in vitro and in vivo. J Biol Chem 288(48):34484–34493. doi:10.1074/jbc.M113.518571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marquardt T (2003) Transcriptional control of neuronal diversification in the retina. Prog Retin Eye Res 22(5):567–577

    Article  CAS  PubMed  Google Scholar 

  • Mathivanan I, Trepp C, Brunold C, Baerlocher G, Enzmann V (2015) Retinal differentiation of human bone marrow-derived stem cells by co-culture with retinal pigment epithelium in vitro. Exp Cell Res 333(1):11–20. doi:10.1016/j.yexcr.2015.02.001

    Article  CAS  PubMed  Google Scholar 

  • Mayer EJ, Carter DA, Ren Y, Hughes EH, Rice CM, Halfpenny CA, Scolding NJ, Dick AD (2005) Neural progenitor cells from postmortem adult human retina. Br J Ophthalmol 89(1):102–106. doi:10.1136/bjo.2004.057687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nazari H, Zhang L, Zhu D, Chader GJ, Falabella P, Stefanini F, Rowland T, Clegg DO, Kashani AH, Hinton DR, Humayun MS (2015) Stem cell based therapies for age-related macular degeneration: The promises and the challenges. Prog Retin Eye Res 48:1–39. doi:10.1016/j.preteyeres.2015.06.004

    Article  CAS  PubMed  Google Scholar 

  • Osakada F, Ikeda H, Mandai M, Wataya T, Watanabe K, Yoshimura N, Akaike A, Sasai Y, Takahashi M (2008) Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol 26(2):215–224. doi:10.1038/nbt1384

    Article  CAS  PubMed  Google Scholar 

  • Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451(7175):141–146. doi:10.1038/nature06534

    Article  CAS  PubMed  Google Scholar 

  • Park SS, Bauer G, Abedi M, Pontow S, Panorgias A, Jonnal R, Zawadzki RJ, Werner JS, Nolta J (2015) Intravitreal autologous bone marrow CD34+ cell therapy for ischemic and degenerative retinal disorders: preliminary phase 1 clinical trial findings. Invest Ophthalmol Vis Sci 56(1):81–89. doi:10.1167/iovs.14-15415

    Article  CAS  PubMed Central  Google Scholar 

  • Parmeggiani F (2011) Clinics, epidemiology and genetics of retinitis pigmentosa. Curr Genomics 12(4):236–237. doi:10.2174/138920211795860080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson RA (2014) Advances in repairing the degenerate retina by rod photoreceptor transplantation. Biotechnol Adv 32(2):485–491. doi:10.1016/j.biotechadv.2014.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson RA, Barber AC, West EL, MacLaren RE, Duran Y, Bainbridge JW, Sowden JC, Ali RR (2010) Targeted disruption of outer limiting membrane junctional proteins (Crb1 and ZO-1) increases integration of transplanted photoreceptor precursors into the adult wild-type and degenerating retina. Cell Transplant 19(4):487–503. doi:10.3727/096368909X486057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson RA, Barber AC, Rizzi M, Hippert C, Xue T, West EL, Duran Y, Smith AJ, Chuang JZ, Azam SA, Luhmann UF, Benucci A, Sung CH, Bainbridge JW, Carandini M, Yau KW, Sowden JC, Ali RR (2012) Restoration of vision after transplantation of photoreceptors. Nature 485(7396):99–103. doi:10.1038/nature10997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radtke ND, Aramant RB, Seiler M, Petry HM (1999) Preliminary report: indications of improved visual function after retinal sheet transplantation in retinitis pigmentosa patients. Am J Ophthalmol 128(3):384–387

    Article  CAS  PubMed  Google Scholar 

  • Radtke ND, Aramant RB, Petry HM, Green PT, Pidwell DJ, Seiler MJ (2008) Vision improvement in retinal degeneration patients by implantation of retina together with retinal pigment epithelium. Am J Ophthalmol 146(2):172–182. doi:10.1016/j.ajo.2008.04.009

    Article  PubMed  Google Scholar 

  • Redenti S, Tao S, Yang J, Gu P, Klassen H, Saigal S, Desai T, Young MJ (2008) Retinal tissue engineering using mouse retinal progenitor cells and a novel biodegradable, thin-film poly(e-caprolactone) nanowire scaffold. J Ocul Biol Dis Infor 1(1):19–29. doi:10.1007/s12177-008-9005-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18(4):399–404. doi:10.1038/74447

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, Kim RY, Group MS (2006) Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 355(14):1419–1431. doi:10.1056/NEJMoa054481

    Article  CAS  PubMed  Google Scholar 

  • Saini JS, Temple S, Stern JH (2016) Human retinal pigment epithelium stem cell (RPESC). Adv Exp Med Biol 854:557–562. doi:10.1007/978-3-319-17121-0_74

    Article  PubMed  Google Scholar 

  • Sakai T, Calderone JB, Lewis GP, Linberg KA, Fisher SK, Jacobs GH (2003) Cone photoreceptor recovery after experimental detachment and reattachment: an immunocytochemical, morphological, and electrophysiological study. Invest Ophthalmol Vis Sci 44(1):416–425

    Article  PubMed  Google Scholar 

  • Salero E, Blenkinsop TA, Corneo B, Harris A, Rabin D, Stern JH, Temple S (2012) Adult human RPE can be activated into a multipotent stem cell that produces mesenchymal derivatives. Cell Stem Cell 10(1):88–95. doi:10.1016/j.stem.2011.11.018

    Article  CAS  PubMed  Google Scholar 

  • Schraermeyer U, Thumann G, Luther T, Kociok N, Armhold S, Kruttwig K, Andressen C, Addicks K, Bartz-Schmidt KU (2001) Subretinally transplanted embryonic stem cells rescue photoreceptor cells from degeneration in the RCS rats. Cell Transplant 10(8):673–680

    CAS  PubMed  Google Scholar 

  • Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, Hubschman JP, Davis JL, Heilwell G, Spirn M, Maguire J, Gay R, Bateman J, Ostrick RM, Morris D, Vincent M, Anglade E, Del Priore LV, Lanza R (2015) Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385(9967):509–516. doi:10.1016/S0140-6736(14)61376-3

    Article  PubMed  Google Scholar 

  • Seiler MJ, Aramant RB, Thomas BB, Peng Q, Sadda SR, Keirstead HS (2010) Visual restoration and transplant connectivity in degenerate rats implanted with retinal progenitor sheets. Eur J Neurosci 31(3):508–520. doi:10.1111/j.1460-9568.2010.07085.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Matsuno Y, Fouse SD, Rao N, Root S, Xu R, Pellegrini M, Riggs AD, Fan G (2008) X-inactivation in female human embryonic stem cells is in a nonrandom pattern and prone to epigenetic alterations. Proc Natl Acad Sci U S A 105(12):4709–4714. doi:10.1073/pnas.0712018105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh MS, Charbel Issa P, Butler R, Martin C, Lipinski DM, Sekaran S, Barnard AR, MacLaren RE (2013) Reversal of end-stage retinal degeneration and restoration of visual function by photoreceptor transplantation. Proc Natl Acad Sci U S A 110(3):1101–1106. doi:10.1073/pnas.1119416110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singhal S, Lawrence JM, Bhatia B, Ellis JS, Kwan AS, Macneil A, Luthert PJ, Fawcett JW, Perez MT, Khaw PT, Limb GA (2008) Chondroitin sulfate proteoglycans and microglia prevent migration and integration of grafted Muller stem cells into degenerating retina. Stem Cells 26(4):1074–1082. doi:10.1634/stemcells.2007-0898

    Article  PubMed  Google Scholar 

  • Sohn EH, Jiao C, Kaalberg E, Cranston C, Mullins RF, Stone EM, Tucker BA (2015) Allogenic iPSC-derived RPE cell transplants induce immune response in pigs: a pilot study. Sci Rep 5:11791. doi:10.1038/srep11791

    Article  PubMed  PubMed Central  Google Scholar 

  • Song WK, Park KM, Kim HJ, Lee JH, Choi J, Chong SY, Shim SH, Del Priore LV, Lanza R (2015) Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in Asian patients. Stem Cell Rep 4(5):860–872. doi:10.1016/j.stemcr.2015.04.005

    Article  CAS  Google Scholar 

  • Stanzel BV, Liu Z, Somboonthanakij S, Wongsawad W, Brinken R, Eter N, Corneo B, Holz FG, Temple S, Stern JH, Blenkinsop TA (2014) Human RPE stem cells grown into polarized RPE monolayers on a polyester matrix are maintained after grafting into rabbit subretinal space. Stem Cell Rep 2(1):64–77. doi:10.1016/j.stemcr.2013.11.005

    Article  CAS  Google Scholar 

  • Sugino IK, Rapista A, Sun Q, Wang J, Nunes CF, Cheewatrakoolpong N, Zarbin MA (2011a) A method to enhance cell survival on Bruch’s membrane in eyes affected by age and age-related macular degeneration. Invest Ophthalmol Vis Sci 52(13):9598–9609. doi:10.1167/iovs.11-8400

    Article  PubMed  Google Scholar 

  • Sugino IK, Sun Q, Wang J, Nunes CF, Cheewatrakoolpong N, Rapista A, Johnson AC, Malcuit C, Klimanskaya I, Lanza R, Zarbin MA (2011b) Comparison of FRPE and human embryonic stem cell-derived RPE behavior on aged human Bruch’s membrane. Invest Ophthalmol Vis Sci 52(8):4979–4997. doi:10.1167/iovs.10-5386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Mandai M, Kamao H, Hashiguchi T, Shikamura M, Kawamata S, Sugita S, Takahashi M (2015) Protective effects of human iPS-Derived retinal pigmented epithelial cells in comparison with human mesenchymal stromal cells and human neural stem cells on the degenerating retina in rd1 mice. Stem Cells 33(5):1543–1553. doi:10.1002/stem.1960

    Article  CAS  PubMed  Google Scholar 

  • Tachibana M, Amato P, Sparman M, Gutierrez NM, Tippner-Hedges R, Ma H, Kang E, Fulati A, Lee HS, Sritanaudomchai H, Masterson K, Larson J, Eaton D, Sadler-Fredd K, Battaglia D, Lee D, Wu D, Jensen J, Patton P, Gokhale S, Stouffer RL, Wolf D, Mitalipov S (2013) Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 153(6):1228–1238. doi:10.1016/j.cell.2013.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. doi:10.1016/j.cell.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  • Tao S, Young C, Redenti S, Zhang Y, Klassen H, Desai T, Young MJ (2007) Survival, migration and differentiation of retinal progenitor cells transplanted on micro-machined poly(methyl methacrylate) scaffolds to the subretinal space. Lab Chip 7(6):695–701. doi:10.1039/b618583e

    Article  CAS  PubMed  Google Scholar 

  • Tezel TH, Del Priore LV, Berger AS, Kaplan HJ (2007) Adult retinal pigment epithelial transplantation in exudative age-related macular degeneration. Am J Ophthalmol 143(4):584–595. doi:10.1016/j.ajo.2006.12.007

    Article  PubMed  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  PubMed  Google Scholar 

  • Tsai Y, Lu B, Bakondi B, Girman S, Sahabian A, Sareen D, Svendsen CN, Wang S (2015) Human iPSC-Derived neural progenitors preserve vision in an AMD-like model. Stem Cells 33(8):2537–2549. doi:10.1002/stem.2032

    Article  CAS  PubMed  Google Scholar 

  • Tucker BA, Redenti SM, Jiang C, Swift JS, Klassen HJ, Smith ME, Wnek GE, Young MJ (2010) The use of progenitor cell/biodegradable MMP2-PLGA polymer constructs to enhance cellular integration and retinal repopulation. Biomaterials 31(1):9–19. doi:10.1016/j.biomaterials.2009.09.015

    Article  CAS  PubMed  Google Scholar 

  • Vollrath D, Feng W, Duncan JL, Yasumura D, D’Cruz PM, Chappelow A, Matthes MT, Kay MA, LaVail MM (2001) Correction of the retinal dystrophy phenotype of the RCS rat by viral gene transfer of Mertk. Proc Natl Acad Sci U S A 98(22):12584–12589. doi:10.1073/pnas.221364198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weissman IL (2000) Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 287(5457):1442–1446

    Article  CAS  PubMed  Google Scholar 

  • Wenkel H, Streilein JW (2000) Evidence that retinal pigment epithelium functions as an immune-privileged tissue. Invest Ophthalmol Vis Sci 41(11):3467–3473

    CAS  PubMed  Google Scholar 

  • West EL, Pearson RA, Tschernutter M, Sowden JC, MacLaren RE, Ali RR (2008) Pharmacological disruption of the outer limiting membrane leads to increased retinal integration of transplanted photoreceptor precursors. Exp Eye Res 86(4):601–611. doi:10.1016/j.exer.2008.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong WL, Su X, Li X, Cheung CM, Klein R, Cheng CY, Wong TY (2014) Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health 2(2):e106–e116. doi:10.1016/S2214-109X(13)70145-1

    Article  PubMed  Google Scholar 

  • Xian B, Huang B (2015) The immune response of stem cells in subretinal transplantation. Stem Cell Res Ther 6:161. doi:10.1186/s13287-015-0167-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yabut O, Bernstein HS (2011) The promise of human embryonic stem cells in aging-associated diseases. Aging (Albany NY) 3(5):494–508

    Article  CAS  Google Scholar 

  • Yamada M, Johannesson B, Sagi I, Burnett LC, Kort DH, Prosser RW, Paull D, Nestor MW, Freeby M, Greenberg E, Goland RS, Leibel RL, Solomon SL, Benvenisty N, Sauer MV, Egli D (2014) Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells. Nature 510(7506):533–536. doi:10.1038/nature13287

    Article  CAS  PubMed  Google Scholar 

  • Yanai A, Laver C, Joe AW, Gregory-Evans K (2016) Efficient production of photoreceptor precursor cells from human embryonic stem cells. Methods Mol Biol 1307:357–369. doi:10.1007/7651_2013_57

    Article  PubMed  Google Scholar 

  • Yang P, Seiler MJ, Aramant RB, Whittemore SR (2002) In vitro isolation and expansion of human retinal progenitor cells. Exp Neurol 177(1):326–331

    Article  CAS  PubMed  Google Scholar 

  • Yuan X, Zhang H, Wei YJ, Hu SS (2007) Embryonic stem cell transplantation for the treatment of myocardial infarction: immune privilege or rejection. Transpl Immunol 18(2):88–93. doi:10.1016/j.trim.2007.05.003

    Article  CAS  PubMed  Google Scholar 

  • Zarbin MA (2004) Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol 122(4):598–614. doi:10.1001/archopht.122.4.598

    Article  PubMed  Google Scholar 

  • Zarbin M (2016) Cell-based therapy for degenerative retinal disease. Trends Mol Med 22(2):115–134. doi:10.1016/j.molmed.2015.12.007

    Article  PubMed  Google Scholar 

  • Zhao T, Zhang ZN, Rong Z, Xu Y (2011) Immunogenicity of induced pluripotent stem cells. Nature 474(7350):212–215. doi:10.1038/nature10135

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported in part by the New Jersey Lions Eye Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco A. Zarbin MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gullapalli, V.K., Zarbin, M.A. (2017). Stem Cell Therapy for Retinal Disease Treatment: An Update. In: Pham, P. (eds) Neurological Regeneration. Stem Cells in Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-33720-3_12

Download citation

Publish with us

Policies and ethics