Skip to main content

The Culture and Maintenance of Functional Retinal Pigment Epithelial Monolayers from Adult Human Eye

  • Protocol
  • First Online:
Epithelial Cell Culture Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 945))

Abstract

The retinal pigment epithelium (RPE) is implicated in many eye diseases, including age-related macular degeneration, and therefore isolating and culturing these cells from recently deceased adult human donors is the ideal source for disease studies. Adult RPE could also be used as a cell source for transplantation therapy for RPE degenerative disease, likely requiring first in vitro expansion of the cells obtained from a patient. Previous protocols have successfully extracted RPE from adult donors; however improvements in yield, cell survival, and functionality are needed. We describe here a protocol optimized for adult human tissue that yields expanded cultures of RPE with morphological, phenotypic, and functional characteristics similar to freshly isolated RPE. These cells can be expanded and cultured for several months without senescence, gross cell death, or undergoing morphological changes. The protocol takes around a month to obtain functional RPE monolayers with accurate morphological characteristics and normal protein expression, as shown through immunohistochemistry analysis, RNA expression profiles via quantitative PCR (qPCR), and transepithelial resistance (TER) measurements. Included in this chapter are steps used to extract RPE from human adult globes, cell culture, cell splitting, cell bleaching, immunohistochemistry, and qPCR for RPE markers, and TER measurements as functional test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sonoda S, Spee C, Barron E, Ryan SJ, Kannan R, Hinton DR (2009) A protocol for the culture and differentiation of highly polarized human retinal pigment epithelial cells. Nat Protoc 4:662–673

    Article  PubMed  CAS  Google Scholar 

  2. Gamm DM, Melvan JN, Shearer RL, Pinilla I, Sabat G, Svendsen CN, Wright LS (2008) A novel serum-free method for culturing human prenatal retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 49:788–799

    Article  PubMed  Google Scholar 

  3. Geisen P, McColm JR, King BM, Hartnett ME (2006) Characterization of barrier properties and inducible VEGF expression of several types of retinal pigment epithelium in medium-term culture. Curr Eye Res 31:739–748

    Article  PubMed  CAS  Google Scholar 

  4. Maminishkis A, Chen S, Jalickee S, Banzon T, Shi G, Wang FE, Ehalt T, Hammer JA, Miller SS (2006) Confluent monolayers of cultured human fetal retinal pigment epithelium exhibit morphology and physiology of native tissue. Invest Ophthalmol Vis Sci 47:3612–3624

    Article  PubMed  Google Scholar 

  5. Flood MT, Gouras P (1981) The organization of human retinal pigment epithelium in vitro. Vis Res 21:119–126

    Article  PubMed  CAS  Google Scholar 

  6. Vielkind U, Crawford BJ (1988) Evaluation of different procedures for the dissociation of retinal pigmented epithelium into single viable cells. Pigment Cell Res 1:419–433

    Article  PubMed  CAS  Google Scholar 

  7. Lopashov GV (1983) Transdifferentiation of pigmented epithelium induced by the influence of lens epithelium in frogs. Differentiation 24:27–32

    Article  PubMed  CAS  Google Scholar 

  8. Grisanti S, Guidry C (1995) Transdifferentiation of retinal pigment epithelial cells from epithelial to mesenchymal phenotype. Invest Ophthalmol Vis Sci 36:391–405

    PubMed  CAS  Google Scholar 

  9. Casaroli-Marano RP, Pagan R, Vilaro S (1999) Epithelial–mesenchymal transition in proliferative vitreoretinopathy: intermediate filament protein expression in retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 40: 2062–2072

    PubMed  CAS  Google Scholar 

  10. Saika S, Kono-Saika S, Tanaka T, Yamanaka O, Ohnishi Y, Sato M, Muragaki Y, Ooshima A, Yoo J, Flanders KC, Roberts AB (2004) Smad3 is required for dedifferentiation of retinal pigment epithelium following retinal detachment in mice. Lab Invest 84:1245–1258

    Article  PubMed  CAS  Google Scholar 

  11. Lee H, O’Meara SJ, O’Brien C, Kane R (2007) The role of gremlin, a BMP antagonist, and epithelial-to-mesenchymal transition in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 48:4291–4299

    Article  PubMed  Google Scholar 

  12. Garcia S, Lopez E, Lopez-Colome AM (2008) Glutamate accelerates RPE cell proliferation through ERK1/2 activation via distinct receptor-specific mechanisms. J Cell Biochem 104:377–390

    Article  PubMed  CAS  Google Scholar 

  13. Kim JW, Kang KH, Burrola P, Mak TW, Lemke G (2008) Retinal degeneration triggered by inactivation of PTEN in the retinal pigment epithelium. Genes Dev 22:3147–3157

    Article  PubMed  CAS  Google Scholar 

  14. Liu Y, Ye F, Li Q, Tamiya S, Darling DS, Kaplan HJ, Dean DC (2009) Zeb1 represses Mitf and regulates pigment synthesis, cell proliferation, and epithelial morphology. Invest Ophthalmol Vis Sci 50:5080–5088

    Article  PubMed  Google Scholar 

  15. Tamiya S, Liu L, Kaplan HJ (2009) Loss of cell–cell contact initiates epithelial–mesenchymal transition and proliferation of retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 50(11):5080–5088

    Google Scholar 

  16. Liu Y, Xin Y, Ye F, Wang W, Lu Q, Kaplan HJ, Dean DC (2010) Taz-Tead1 Links Cell-Cell Contact to Zeb1 Expression, Proliferation and Dedifferen-tiation in Retinal Pigment Epithelial Cells. Invest Ophthalmol Vis Sci 51(7):3372–3378

    Google Scholar 

  17. Hay ED (1995) An overview of epithelio-mesenchymal transformation. Acta Anat (Basel) 154:8–20

    Article  CAS  Google Scholar 

  18. Tso MO, Cunha-Vaz JG, Shih CY, Jones CW (1980) Clinicopathologic study of blood-retinal barrier in experimental diabetes mellitus. Arch Ophthalmol 98:2032–2040

    Article  PubMed  CAS  Google Scholar 

  19. Caldwell RB, McLaughlin RJ, Boykins LG (1982) Intramembrane changes in retinal pigment epithelial cell junctions of the dystrophic rat retina. Invest Ophthalmol Vis Sci 23:305–318

    PubMed  CAS  Google Scholar 

  20. Noell WK, Albrecht R (1971) Irreversible effects on visible light on the retina: role of vitamin A. Science 172:76–79

    Article  PubMed  CAS  Google Scholar 

  21. Bridges CD (1976) Vitamin A and the role of the pigment epithelium during bleaching and regeneration of rhodopsin in the frog eye. Exp Eye Res 22:435–455

    Article  PubMed  CAS  Google Scholar 

  22. Saari JC, Bredberg L, Garwin GG (1982) Identification of the endogenous retinoids associated with three cellular retinoid-binding proteins from bovine retina and retinal pigment epithelium. J Biol Chem 257:13329–13333

    PubMed  CAS  Google Scholar 

  23. Edwards RB, Szamier RB (1977) Defective phagocytosis of isolated rod outer segments by RCS rat retinal pigment epithelium in culture. Science 197:1001–1003

    Article  PubMed  CAS  Google Scholar 

  24. Noell WK, Crapper DR, Paganelli CV (1965) Transretinal currents and ion fluxes. In: Snell FM, Noell WK (eds) Transcellular membrane potentials and ion fluxes. Gordon and Breach, New York, NY, pp 92–130

    Google Scholar 

  25. Steinberg RH, Miller S (1973) Aspects of electrolyte transport in frog pigment epithelium. Exp Eye Res 16:365–372

    Article  PubMed  CAS  Google Scholar 

  26. Miller SS, Steinberg RH (1977) Active transport of ions across frog retinal pigment epithelium. Exp Eye Res 25:235–248

    Article  PubMed  CAS  Google Scholar 

  27. Miller SS, Steinberg RH (1977) Passive ionic properties of frog retinal pigment epithelium. J Membr Biol 36:337–372

    Article  PubMed  CAS  Google Scholar 

  28. Eagle RC Jr (1984) Mechanisms of maculopathy. Ophthalmology 91:613–625

    PubMed  Google Scholar 

  29. Burke JM, Skumatz CM, Irving PE, McKay BS (1996) Phenotypic heterogeneity of retinal pigment epithelial cells in vitro and in situ. Exp Eye Res 62:63–73

    Article  PubMed  CAS  Google Scholar 

  30. Feng W, Zheng JJ, Lutz DA, McLaughlin BJ (2003) Loss of RPE phenotype affects phagocytic function. Graefes Arch Clin Exp Ophthalmol 241:232–240

    Article  PubMed  CAS  Google Scholar 

  31. Whittaker JR (1967) Loss of melanotic phenotype in vitro by differentiated retinal pigment cells: demonstration of mechanisms involved. Dev Biol 15:553–574

    Article  PubMed  CAS  Google Scholar 

  32. Flood MT, Gouras P, Kjeldbye H (1980) Growth characteristics and ultrastructure of human retinal pigment epithelium in vitro. Invest Ophthalmol Vis Sci 19:1309–1320

    PubMed  CAS  Google Scholar 

  33. Rodriguez-Boulan E, Nelson WJ (1989) Morphogenesis of the polarized epithelial cell phenotype. Science 245:718–725

    Article  PubMed  CAS  Google Scholar 

  34. Luna EJ, Hitt AL (1992) Cytoskeleton–plasma membrane interactions. Science 258:955–964

    Article  PubMed  CAS  Google Scholar 

  35. Hitt AL, Luna EJ (1994) Membrane interactions with the actin cytoskeleton. Curr Opin Cell Biol 6:120–130

    Article  PubMed  CAS  Google Scholar 

  36. Turksen K, Opas M, Kalnins VI (1989) Cytoskeleton, adhesion, and extracellular matrix of fetal human retinal pigmented epithelial cells in culture. Ophthalmic Res 21:56–66

    Article  PubMed  CAS  Google Scholar 

  37. Song MK, Lui GM (1990) Propagation of fetal human RPE cells: preservation of original culture morphology after serial passage. J Cell Physiol 143:196–203

    Article  PubMed  CAS  Google Scholar 

  38. Gouras P, Cao H, Sheng Y, Tanabe T, Efremova Y, Kjeldbye H (1994) Patch culturing and transfer of human fetal retinal epithelium. Graefes Arch Clin Exp Ophthalmol 232: 599–607

    Article  PubMed  CAS  Google Scholar 

  39. Castillo BV Jr, Little CW, del Cerro C, del Cerro M (1995) An improved method of isolating fetal human retinal pigment epithelium. Curr Eye Res 14:677–683

    Article  PubMed  Google Scholar 

  40. Zhu M, Provis JM, Penfold PL (1998) Isolation, culture and characteristics of human foetal and adult retinal pigment epithelium. Aust N Z J Ophthalmol 26(Suppl 1):S50–S52

    Article  PubMed  Google Scholar 

  41. Hu J, Bok D (2001) A cell culture medium that supports the differentiation of human retinal pigment epithelium into functionally polarized monolayers. Mol Vis 7:14–19

    PubMed  CAS  Google Scholar 

  42. Rak DJ, Hardy KM, Jaffe GJ, McKay BS (2006) Ca++-switch induction of RPE differentiation. Exp Eye Res 82:648–656

    Article  PubMed  CAS  Google Scholar 

  43. Tezel TH, Del Priore LV (1998) Serum-free media for culturing and serial-passaging of adult human retinal pigment epithelium. Exp Eye Res 66:807–815

    Article  PubMed  CAS  Google Scholar 

  44. McKay BS, Burke JM (1994) Separation of phenotypically distinct subpopulations of cultured human retinal pigment epithelial cells. Exp Cell Res 213:85–92

    Article  PubMed  CAS  Google Scholar 

  45. Stump RJ, Lovicu FJ, Ang SL, Pandey SK, McAvoy JW (2006) Lithium stabilizes the polarized lens epithelial phenotype and inhibits proliferation, migration, and epithelial mesenchymal transition. J Pathol 210:249–257

    Article  PubMed  CAS  Google Scholar 

  46. Papageorgis P, Lambert AW, Ozturk S, Gao F, Pan H, Manne U, Alekseyev YO, Thiagalingam A, Abdolmaleky HM, Lenburg M, Thiagalingam S (2010) Smad signaling is required to maintain epigenetic silencing during breast cancer progression. Cancer Res 70:968–978

    Article  PubMed  CAS  Google Scholar 

  47. De S, Rabin DM, Salero E, Lederman PL, Temple S, Stern JH (2007) Human retinal pigment epithelium cell changes and expression of alphaB-crystallin: a biomarker for retinal pigment epithelium cell change in age-related macular degeneration. Arch Ophthalmol 125:641–645

    Article  PubMed  CAS  Google Scholar 

  48. Hemesath TJ, Steingrimsson E, McGill G, Hansen MJ, Vaught J, Hodgkinson CA, Arnheiter H, Copeland NG, Jenkins NA, Fisher DE (1994) Microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev 8:2770–2780

    Article  PubMed  CAS  Google Scholar 

  49. McCarthy KM, Skare IB, Stankewich MC, Furuse M, Tsukita S, Rogers RA, Lynch RD, Schneeberger EE (1996) Occludin is a functional component of the tight junction. J Cell Sci 109(Pt 9):2287–2298

    PubMed  CAS  Google Scholar 

  50. Redmond TM, Yu S, Lee E, Bok D, Hamasaki D, Chen N, Goletz P, Ma JX, Crouch RK, Pfeifer K (1998) Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat Genet 20:344–351

    Article  PubMed  CAS  Google Scholar 

  51. Denker BM, Nigam SK (1998) Molecular structure and assembly of the tight junction. Am J Physiol 274:F1–F9

    PubMed  CAS  Google Scholar 

  52. Martinez-Morales JR, Dolez V, Rodrigo I, Zaccarini R, Leconte L, Bovolenta P, Saule S (2003) OTX2 activates the molecular network underlying retina pigment epithelium differentiation. J Biol Chem 278:21721–21731

    Article  PubMed  CAS  Google Scholar 

  53. Saari JC, Nawrot M, Kennedy BN, Garwin GG, Hurley JB, Huang J, Possin DE, Crabb JW (2001) Visual cycle impairment in cellular retinaldehyde binding protein (CRALBP) knockout mice results in delayed dark adaptation. Neuron 29:739–748

    Article  PubMed  CAS  Google Scholar 

  54. Fischmeister R, Hartzell HC (2005) Volume sensitivity of the bestrophin family of chloride channels. J Physiol 562:477–491

    Article  PubMed  CAS  Google Scholar 

  55. Hunt RC, Davis AA (1990) Altered expression of keratin and vimentin in human retinal pigment epithelial cells in vivo and in vitro. J Cell Physiol 145:187–199

    Article  PubMed  CAS  Google Scholar 

  56. Dunn KC, Aotaki-Keen AE, Putkey FR, Hjelmeland LM (1996) ARPE-19, a human retinal pigment epithelial cell line with differentiated properties. Exp Eye Res 62:155–169

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally Temple .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Blenkinsop, T.A., Salero, E., Stern, J.H., Temple, S. (2012). The Culture and Maintenance of Functional Retinal Pigment Epithelial Monolayers from Adult Human Eye. In: Randell, S., Fulcher, M. (eds) Epithelial Cell Culture Protocols. Methods in Molecular Biology, vol 945. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-125-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-125-7_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-124-0

  • Online ISBN: 978-1-62703-125-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics