Skip to main content

Sensing and Estimation

  • Chapter
  • First Online:
Springer Handbook of Robotics

Part of the book series: Springer Handbooks ((SHB))

Abstract

Sensing and estimation are essential aspects of the design of any robotic system. At a very basic level, the state of the robot itself must be estimated for feedback control. At a higher level, perception, which is defined here to be task-oriented interpretation of sensor data, allows the integration of sensor information across space and time to facilitate planning.

This chapter provides a brief overview of common sensing methods and estimation techniques that have found broad applicability in robotics. The presentation is structured according to a process model that includes sensing, feature extraction, data association, parameter estimation, and model integration. Several common sensing modalities are introduced and characterized. Common methods for estimation in linear and nonlinear systems are discussed, including statistical estimation, the Kalman filter, and sample-based methods. Strategies for robust estimation are also briefly described. Finally, several common representations for estimation are introduced.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAD:

computer-aided design

CCD:

charge-coupled detector

CRF:

conditional random field

EC:

exteroception

EKF:

extended Kalman filter

EM:

expectation maximization

GPCA:

generalized principal component analysis

GPS:

global positioning system

ICP:

iterative closest point

IEKF:

iterated extended Kalman filter

IMU:

inertial measurement unit

IR:

infrared

IRLS:

iteratively reweighted least square

LMedS:

least median of squares

MAP:

maximum a posteriori

MLE:

maximum likelihood estimate

MMSE:

minimum mean-square error

NTSC:

National Television System Committee

PC:

proprioception

RANSAC:

random sample consensus

RFID:

radio frequency identification

RF:

radio frequency

RGB-D:

red–green–blue–depth

UV:

ultraviolet

References

  1. D.C. Marr: Vision (Freeman, Bedford 1982)

    Google Scholar 

  2. R. Siegwart, I.R. Nourbakhsh, D. Scaramuzza: Introduction to Autonomous Mobile Robots, Intelligent Robotics and Autonomous Systems (MIT Press, Cambridge 2011)

    Google Scholar 

  3. J. Fraden: Handbook of Modern Sensors: Physic, Design and Applications, 2nd edn. (Springer, New York 1996)

    Google Scholar 

  4. H. Yousef, M. Boukallel, K. Althoefer: Tactile sensing for dexterous in-hand manipulation in robotics — A review, Sensors Actuators A: Physical 167(2), 171–187 (2011)

    Google Scholar 

  5. M.I. Tiwana, S.J. Redmond, N.H. Lovell: A review of tactile sensing technologies with applications in biomedical engineering, Sensors Actuators A: Physical 179, 17–31 (2012)

    Google Scholar 

  6. G. Dissanayaka, S. Sukkarieh, E. Nebot, H. Durrant-Whyte: The aiding of a low-cost strapdown inertial measurement unit using vehicle model constraints for land vehicle applications, IEEE Trans. Robot. Autom. 17(5), 731–748 (2001)

    Google Scholar 

  7. Z. Zhang: A flexible new technique for camera calibration, IEEE Trans. Pattern. Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Google Scholar 

  8. D. Burschka, J. Geiman, G.D. Hager: Optimal landmark configuration for vision-based control of mobile robots, Proc. Int. Conf. Robot. Autom. ICRA (2003) pp. 3917–3922

    Google Scholar 

  9. J. Baker, N. Anderson, P. Pilles: Ground-penetrating radar surveying in support of archeological site investigations, Comput. Geosci. 23(10), 1093–1099 (1997)

    Google Scholar 

  10. P.V.C. Hough: A method and means for recognizing complex patterns, U.S. Patent 3069654 (1962)

    Google Scholar 

  11. M.A. Fischler, R.C. Bolles: Random Sample concensus: A paradigm for model fitting with applications to image analysis and automated cartography, Commun. ACM 24, 381–395 (1981)

    Google Scholar 

  12. T. Hastie, R. Tibshirani, J. Friedman: The Elements of Statistical Learning, Springer Series in Statistics (Springer, Berlin, Heidelberg 2002)

    MATH  Google Scholar 

  13. R.O. Duda, P.E. Hart: Pattern Classification and Scene Analysis (Wiley-Interscience, New York 1973)

    MATH  Google Scholar 

  14. R. Vidal, Y. Ma, J. Piazzi: A new GPCA algorithm for clustering subspaces by fitting, differentiating and dividing polynomials, Proc. Int. Conf. Cumput. Vis. Pattern Recog. 1, 510–517 (2004)

    Google Scholar 

  15. P. Besl, N.D. McKay: A method for registration of 3-D shapes, IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Google Scholar 

  16. F. Dellaert, S. Seitz, C. Thorpe, S. Thrun: Special issue on Markov chain Monte Carlo methods, Mach. Learn. 50, 45–71 (2003)

    MATH  Google Scholar 

  17. A. Gelb (Ed.): Applied Optimal Estimation (MIT Press, Cambridge 1974)

    Google Scholar 

  18. D. Simon: Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches (Wiley, New York 2006)

    Google Scholar 

  19. A. Doucet, N. de Freitas, N. Gordon: Sequential Monte Carlo Methods in Practice (Springer, Berlin, Heidelberg 2001)

    MATH  Google Scholar 

  20. Y. Bar-Shalom, T. Fortmann: Tracking and Data Association (Academic, New York 1988)

    MATH  Google Scholar 

  21. P.J. Huber: Robust Statistics (Wiley, New York 1981)

    MATH  Google Scholar 

  22. J.O. Berger: Statistical Decision Theory and Bayesian Analysis, 2nd edn. (Springer, New York 1985)

    MATH  Google Scholar 

  23. G.D. Hager: Task-Directed Sensor Fusion and Planning (Kluwer, Boston 1990)

    Google Scholar 

  24. S. Abrams, P.K. Allen, K. Tarabanis: Computing camera viewpoints in a robot work-cell, Int. J. Robot. Res. 18(3), 267–285 (1999)

    Google Scholar 

  25. M. Suppa, P. Wang, K. Gupta, G. Hirzinger: C-space exploration using noisy sensor models, Proc (IEEE, Int. Conf. Robot. Autom 2004) pp. 1927–1932

    Google Scholar 

  26. G.S. Chirikjian, A.B. Kyatkin: Engineering Applications of Noncommutative Harmonic Analysis (CRC, Boca Raton 2000)

    MATH  Google Scholar 

  27. J.C. Kinsey, L.L. Whitcomb: Adaptive identification on the group of rigid body rotations and its application to precision underwater robot navigation, IEEE Trans. Robot. 23, 124–136 (2007)

    Google Scholar 

  28. P.J. Bickel, K.A. Doksum: Mathematical Statistics, 2nd edn. (Prentice-Hall, Upper Saddle River 2006)

    MATH  Google Scholar 

  29. G. Strang: Linear Algebra and its Applications, 4th edn. (Brooks Cole, New York 2005)

    MATH  Google Scholar 

  30. P. McCullagh, J.A. Nelder: Generalized Linear Models, 2nd edn. (Chapman Hall, New York 1989)

    MATH  Google Scholar 

  31. E.L. Lehmann, G. Casella: Theory of Point Estimation (Springer, New York 1998)

    MATH  Google Scholar 

  32. R.E. Kalman: A new approach to linear filtering and prediction problems, Transactions of the ASME, J. Basic Eng. 82, 35–45 (1960)

    Google Scholar 

  33. S. Thrun, D. Fox, W. Burgard: Probabilistic Robotics, Autonomous Robotics and Intelligent Agents (MIT Press, Cambridge 2005)

    MATH  Google Scholar 

  34. C. Bishop: Pattern Recognition and Machine Learning (Springer, New York 2006)

    MATH  Google Scholar 

  35. T. Joachims, T. Finley, C.-N.J. Yu: Cutting-plane training of structural SVMs, Mach. Learn. 77(1), 27–59 (2009)

    MATH  Google Scholar 

  36. S. Lacoste-Julien, M. Jaggi, M. Schmidt, P. Pletscher: Block-coordinate Frank-Wolfe optimization for structural SVMs, Proc. Int. Conf. Mach. Learn. (2013) pp. 53–61

    Google Scholar 

  37. L. Tao, L. Zappella, G.D. Hager, R. Vidal: Surgical gesture segmentation and recognition, Med. Image Comput. Comput.-Assisted Intervent., MICCAI 2013 (2013) pp. 339–346

    Google Scholar 

  38. C. Sutton, A. McCallum: An introduction to conditional random fields for relational learning. In: Introduction to Statistical Relational Learning, ed. by L. Getoor, B. Taskar (MIT Press, Cambridge 2006) pp. 93–128

    Google Scholar 

  39. C. Sutton, A. McCallum: An introduction to conditional random fields, Found. Trends Mach. Learn. 1, 2055–2060 (2010)

    MATH  Google Scholar 

  40. C.A. Müller, S. Behnke: PyStruct-learning structured prediction in python, J. Mach. Learn. Res. 1, 2055–2060 (2013)

    MathSciNet  MATH  Google Scholar 

  41. J.W. Hardin, J.M. Hilbe: Generalized Linear Models and Extensions, 2nd edn. (Stata, College Station 2007)

    MATH  Google Scholar 

  42. G.D. Hager, P.N. Belhumeur: Efficient region tracking of with parametric models of illumination and geometry, IEEE Trans. Pattern Anal. Mach. Intell. 20(10), 1025–1039 (1998)

    Google Scholar 

  43. P.J. Rousseauw, A. Leroy: Robust Regression and Outlier Detection (Wiley, New York 1987)

    Google Scholar 

  44. R.O. Duda, P.E. Hart, D.G. Stork: Pattern Classification, 2nd edn. (Wiley, New York 2001)

    MATH  Google Scholar 

  45. P.C. Mahalanobis: On the generalised distance in statistics, Proc. Nat. Inst. Sci. India 12, 49–55 (1936)

    MATH  Google Scholar 

  46. J. Hamilton: Time Series Analysis (Princeton Univ. Press, Princeton 1994)

    MATH  Google Scholar 

  47. S. Atiya, G.D. Hager: Real-time vision-based robot localization, IEEE Trans. Robot. Autom. 9(6), 785–800 (1993)

    Google Scholar 

  48. G.D. Hager: Task-directed computation of qualitative decisions from sensor data, IEEE Trans. Robot. Autom. 10(4), 415–429 (1994)

    MathSciNet  Google Scholar 

  49. G. Shafer: A Mathematical Theory of Evidence (Princeton Univ. Press, Princeton 1976)

    MATH  Google Scholar 

  50. J. Rosenblatt: DAMN: A distributed architecture for mobile navigation, AAAI 1995 (Spring, Symposium on Lessons Learned for Implementing Software Architectures for Physical Agents 1995) pp. 167–178

    Google Scholar 

  51. R.M. Murrey, Z. Li, S. Sastry: A Mathematical Introduction to Robotic Manipulation (CRC, Boca Raton 1993)

    Google Scholar 

  52. K.J. Åström, B. Wittenmark: Adaptive Control, 2nd edn. (Addison-Wesley, Reading 1995)

    MATH  Google Scholar 

  53. S. Gutmann, C. Schlegel: AMOS: Comparison of scan-matching approaches for self-localization in indoor environments, 1st Euromicro Conf. Adv. Mobile Robotics (1996) pp. 61–67

    Google Scholar 

  54. S. Gutmann: Robust Navigation for Autonomous Mobile Systems, Ph.D. Thesis (Alfred Ludwig University, Freiburg 2000)

    Google Scholar 

  55. H. Samet: The quadtree and related hierarchical data structures, ACM Comput. Surv. 16(2), 187–260 (1984)

    MathSciNet  Google Scholar 

  56. A. Elfes: Sonar-based real-world mapping and navigation, IEEE Trans. Robot. Autom. 3(3), 249–265 (1987)

    Google Scholar 

  57. A. Elfes: A Probabilistic Framework for Robot Perception and Navigation, Ph.D. Thesis (Carnegie Mellon University, Pittsburgh 1989)

    Google Scholar 

  58. M.R. Stytz, G. Frieder, O. Frieder: Three-dimensional medical imaging: Algorithms and computer systems, ACM Comput. Surv. 23(4), 421–499 (1991)

    Google Scholar 

  59. R. Deriche, R. Vaillant, O. Faugeras: From Noisy Edges Points to 3D Reconstruction of a Scene: A robust approach and its uncertainty analysis. In: Theory and Applications of Image Analysis, (World Scientific, Singapore 1992) pp. 71–79

    Google Scholar 

  60. V.N. Vapnik: Statistical Learning Theory (Wiley, New York 1998)

    MATH  Google Scholar 

  61. J. Pearl: Probabilistic Reasoning in Intelligent Systems (Morgan Kaufmann, New York 1988)

    MATH  Google Scholar 

  62. M. Paskin: Thin Junction Tree Filters for Simultaneous Localisation and Mapping, Ph.D. Thesis (University of California, Berkley 2002)

    Google Scholar 

  63. H.R. Everett: Sensors for Mobile Robots: Theory and Application (Peters, London 1995)

    Google Scholar 

  64. D. Forsyth, J. Ponce: Computer Vision - A Modern Approach (Prentice-Hall, Upper Saddle River 2003)

    Google Scholar 

  65. R. Hartley, A. Zisserman: Multiple View Geometry in Computer Vision (Cambridge Univ. Press, Cambridge 2000)

    MATH  Google Scholar 

  66. S. Blackman, R. Popoli: Design and Analysis of Modern Tracking Systems (Artech House, London 1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik I. Christensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Christensen, H.I., Hager, G.D. (2016). Sensing and Estimation. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics