Skip to main content

Abstract

Zooplankton species are distributed throughout the three-dimensional water body and most species are motile, which means that their distribution (vertically and horizontally) is variable and tends to be patchy (Tonolli 1971b; Levin and Segel 1976; Vilar et al. 2003). The term “patchiness” was first introduced by Hardy in 1936, but the concept was first described by Haeckel in 1890 with the observation that plankton was not “evenly” distributed (Cassie 1968). Various species have different environmental preferences and occupy different habitats, which along with water movements produces spatial and temporal heterogeneity. The various methods of collecting and counting zooplankton can lead to gear- and method-specific biases (Mack et al. 2012). Therefore, quantitative sampling and counting are difficult. Errors associated with quantitative research may be categorized into three types. Errors associated with (1) counting the specimens in a sample, errors associated with (2) obtaining a representative sample of the population in a site and water body (Wetzel and Likens 1990), and errors associated with the proper (3) species identification. We will deal with these errors and their solutions more deeply in the following subchapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali AK, Primicerio R, Folstad I, Liljedal S, Berge J (2009) Morphological correlates of mating frequency and clutch size in wild caught female Eudiaptomus graciloides (Copepoda: Calanoida). J Plankton Res 31(4):389–397. doi:10.1093/plankt/fbn130

    Article  Google Scholar 

  • Alric B, Jenny J-P, Berthon V, Arnaud F, Pignol C, Reyss J-L, Sabatier P, Perga M-E (2013) Local forcings affect lake zooplankton vulnerability and response to climate warming. Ecology 94:2767–2780. doi:10.1890/12-1903.1

    Article  PubMed  Google Scholar 

  • Arbour JH, Brown CM (2014) Incomplete specimens in geometric morphometric analyses. Methods Ecol Evol 5:16–26. doi:10.1111/2041-210X.12128

    Article  Google Scholar 

  • Bekker EI (2011) Morphological basics of systematics of Eurycercidae Kurz, 1875 sensu Dumont et Silva-Briano, 1998 (Cladocera: Anomopoda) family. Biol Bull 38(5):476–486

    Article  Google Scholar 

  • Benzie JAH (2005) Cladocera: the genus Daphnia (including Daphniopsis), vol 21. Kenobi Productions, Backhuys, Ghent, pp 1–376. ISBN 90-5782-151-6

    Google Scholar 

  • Bittel L (1976) Near-bottom plankton as a productive element in the lake ecosystem. Acta UNC Limnol Pap 9:45–64

    Google Scholar 

  • Błędzki LA (2013) Secchi disk. Retrieved from encyclopedia of Earth, Washington. http://www.eoearth.org/view/article/51cbeedc7896bb431f69ac00

  • Boronat L, Miracle MR, Armengol X (2001) Cladoceran assemblages in a mineralization gradient. Hydrobiologia 442(1–3):75–88

    Article  Google Scholar 

  • Bottrell HH, Duncan A, Gliwicz ZM, Grygierek E, Herzig A, Hillbricht-Ilkowska A, Kurasawa H, Larsson P, Weglenska T (1976) A review of some problems in zooplankton production studies. Norw J Zool 24:419–456

    Google Scholar 

  • Braun WJ, Murdoch DJ (2007) A first course in statistical programming with R. Cambridge University Press, Cambridge, 163 pp

    Book  Google Scholar 

  • Cassie RM (1968) Sample design. In: Tranter DJ (ed) Zooplankton sampling. UNESCO, Paris, pp 105–121

    Google Scholar 

  • Catalan J, Barbieri MG, Bartumeus F, Bitusik P, Botev I, Brancelj A, Cogalniceanu D, Manca M, Marchetto A, Ognjanova-Rumenova N, Pla S, Rieradevall M, Sorvari S, Stefkova E, Stuchlik E, Ventura M (2009) Ecological thresholds in European alpine lakes. Freshw Biol 54(12):2494–2517

    Article  CAS  Google Scholar 

  • Champeau A (1965) Étude biologique et biométrique du Copépode Mixodiaptomus kupelwieseri en Camargue [Biological and biometrical study of Mixodiaptomus kupelwieseri in Camargue (Copepoda)] (in French). Ann Limnol 1(2197):212

    Google Scholar 

  • Chao A, Shen T-J (2010) Program SPADE (Species Prediction And Diversity Estimation). Program and user’s guide. http://chao.stat.nthu.edu.tw

  • Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, Ellison AM (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84(1):45–67

    Article  Google Scholar 

  • Checkley DM, Davis RE, Herman AW, Jackson GA, Beanlands B, Regier LA (2008) Assessing plankton and other particles in situ with the SOLOPC. Limnol Oceanogr 53(5):2123–2136

    Article  Google Scholar 

  • Cleveland WS (1993) Visualizing data. AT&T Bell Laboratories, Murray Hill

    Google Scholar 

  • Colwell RK (2013) EstimateS: statistical estimation of species richness and shared species from samples. Version 9 and earlier. User’s guide and application. http://purl.oclc.org/estimates

  • Crawley MJ (2007) The R book. Wiley, Chichester, 942 pp

    Book  Google Scholar 

  • Cruz-Pizarro L (1984) Morphological and biometrical considerations of 2 Diaptomids (Mixodiaptomus laciniatus, Diaptomus cyaneus) from a High Mountain Lake, La-Caldera, Granada, Spain (Copepoda, Calanoida). Crustaceana 46:225–240

    Google Scholar 

  • de Bernardi R (1984) Methods for the estimation of zooplankton abundance. In: Downing JA, Rigler FH (eds) A manual on methods for the assessment of secondary productivity in fresh waters. IBP handbook, vol 17, 2nd edn. Blackwell Science, Oxford, pp 59–86

    Google Scholar 

  • DeVries DR, Stein RA (1991) Comparison of three zooplankton samplers: a taxon-specific assessment. J Plankton Res 13:53–59

    Article  Google Scholar 

  • Dlouha S, Thielsch A, Kraus RHS, Seda J, Schwenk K, Petrusek A (2010) Identifying hybridizing taxa within the Daphnia longispina species complex: a comparison of genetic methods and phenotypic approaches. Hydrobiologia 643:107–122. doi:10.1007/s10750-010-0128-8

    Article  CAS  Google Scholar 

  • Dodson SI, Frey DG (1991) Cladocera and other Branchiopoda. In: Thorp JH, Covich AP (eds) Ecology and classification of North American freshwater invertebrates. Academic, San Diego, pp 723–786

    Google Scholar 

  • Dodson SI, Lee CE (2006) Recommendations for taxonomic submissions to Hydrobiologia. Hydrobiologia 556:1–5

    Article  Google Scholar 

  • Dodson SI, Newman AL, Will-Wolf S, Alexander ML, Woodford MP, Egeren S (2009) The relationship between zooplankton community structure and lake characteristics in temperate lakes (Northern Wisconsin, USA). J Plankton Res 31(1):93–100. doi:10.1093/plankt/fbn095

    Article  CAS  Google Scholar 

  • Dodson SI, Skelly DA, Lee CE (2010) Out of Alaska: morphological diversity within the genus Eurytemora from its ancestral Alaskan range (Crustacea, Copepoda). Hydrobiologia 653(1):131–148. doi:10.1007/s10750-010-0351-3

    Article  Google Scholar 

  • Downing JA, Perusse M, Frenette Y (1987) Effect of interreplicate variance on zooplankton sampling design and data analysis. Limnol Oceanogr 32(3):673–680

    Article  Google Scholar 

  • Dytham C (2011) Choosing and using statistics: a bilogist’s guide, 3rd edn. Wiley-Blackwell, Oxford, 298 pp

    Google Scholar 

  • Edmondson WT, Winberg GG (1971) A manual of methods for the assessment of secondary productivity in fresh waters, IBP handbook, vol 17. Blackwell, Oxford, pp 1–501

    Google Scholar 

  • Einsle UK (1988) Taxonomy of the genus Megacyclops (Crustacea, Copepoda): morphometry and the use of enzyme electrophoresis. Hydrobiologia 167–168:387–391

    Article  Google Scholar 

  • Elliott JM (1977) Some methods for the statistical analysis of samples of benthic invertebrates, 2nd edn, vol 25. Freshwater Biology Association Scientific Publication, Westmorland, pp 1–144

    Google Scholar 

  • Ellison AM (2001) Exploratory data analysis and graphic display. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments, 2nd edn. Oxford University Press, New York, pp 37–62

    Google Scholar 

  • Elmoor-Loureiro L (2004a) Morphological abnormalities in the cladoceran Ilyocryptus spinifer (Apipucos Reservoir, Pernambuco State, Brazil). Braz J Biol 64(1):53–58

    Article  CAS  PubMed  Google Scholar 

  • Faria JC, Grosjean P, Jelihovschi E (2009) Tinn-R—GUI/Editor for R language and environment statistical computing. http://sourceforge.net/projects/tinn-r

  • Faustova M, Sacherova V, Svensson JE, Taylor DJ (2011) Radiation of European Eubosmina (Cladocera) from Bosmina (E.) longispina-concordance of multipopulation molecular data with paleolimnology. Limnol Oceanogr 56(2):440–450

    Article  CAS  Google Scholar 

  • Ferson S, Rohlf FJ, Koehn RK (1985) Measuring shape variation of two-dimensional outlines. Syst Zool 34:59–68

    Article  Google Scholar 

  • Fischer EA (2013) Public access to data from federally funded research: provisions in OMB circular A-110. Report for Congress, 7-5700, R42983. Congressional Research Service

    Google Scholar 

  • Fraser JH (1968) The history of plankton sampling. In: Tranter DJ (ed) Zooplankton sampling. UNESCO, Paris, pp 11–18

    Google Scholar 

  • Fraser LH, Al Henry H, Carlyle CN, White SR, Beierkuhnlein C, Cahill JF Jr, Casper BB, Cleland E, Collins SL, Dukes JS, Knapp AK, Lind E, Long R, Luo Y, Reich PB, Smith MD, Sternberg M, Turkington R (2013) Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science. Front Ecol Environ 11(3):147–155. doi:10.1890/110279

    Article  Google Scholar 

  • Frey DG (1973) Comparative morphology and biology of three species of Eurycercus (Chydoridae, Cladocera) with a description of Eurycercus macrocanthus sp. nov. Int Rev Hydrobiol 58(2):221–267

    Article  Google Scholar 

  • Gannon JE (1971) Two counting cells for the enumeration of zooplankton micro-Crustacea. Trans Am Microsc Soc 90:486–490

    Article  Google Scholar 

  • Gardener M (2013) The essential R reference. Wiley, Hoboken, 554 pp

    Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4(4):379–391

    Article  Google Scholar 

  • Gotelli NJ, Ellison AM (2013) A primer of ecological statistics, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Gotelli NJ, Entsminger GL (2009) EcoSim: null models software for ecology. Version 7 edn. Acquired Intelligence & Kesey-Bear. http://www.uvm.edu/~ngotelli/EcoSim/EcoSim.html

  • Gotelli NJ, Graves GR (1996) Null models in ecology. Smithsonian Institution Press, Washington, 368 pp

    Google Scholar 

  • Hakanson L (1995) Models to predict Secchi depth in small glacial lakes. Aquat Sci 57:31–53

    Article  Google Scholar 

  • Håkanson L, Peters RH (1995) Predictive limnology. SPB Academic, Amsterdam

    Google Scholar 

  • Hampton SE, Tewksbury JJ, Strasser CA (2012) Ecological data in the information age. Front Ecol Environ 10(2):59

    Article  Google Scholar 

  • Hampton SE, Strasser CA, Tewksbury JJ, Gram WK, Budden AE, Batcheller AL, Duke CS, Porter JH (2013) Big data and the future of ecology. Front Ecol Environ 11(3):156–162. doi:10.1890/120103

    Article  Google Scholar 

  • Haney JF, Hall DJ (1973) Sugar-coated Daphnia: a preservation technique for Cladocera. Limnol Oceanogr 18:331–333

    Article  Google Scholar 

  • Helms DR, Helms CW, Kosinski RJ, Cummings JR (1998) Biology in the laboratory. W. H. Freeman, New York

    Google Scholar 

  • Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211

    Article  Google Scholar 

  • Isaev M (1995) EFAWin. Windows shell for EFA. http://life.bio.sunysb.edu/morph/

  • Jackson HW, Williams LG (1962) Calibration and use of certain plankton counting equipment. Trans Am Microsc Soc 81:97–103

    Article  Google Scholar 

  • Jongman RHG, Ter Braak CJF, Van Tongeren OFR (1987) Data analysis in community and landscape ecology. Pudoc, Wageningen

    Google Scholar 

  • Kajak Z, Kacprzak K, Polkowski R (1965) Tube bottom sampler for taking samples of micro- and macrobenthos and for sampling undisturbed structures of mud samples. Ecol Pol 11:159–165

    Google Scholar 

  • Kamiński KZ (1979c) Niektóre anomalie u wioslarek (Cladocera) [On some anomalies in Cladocera]. Przegl Zool 23(4):352–353

    Google Scholar 

  • Karanovic T, Eberhard SM, Murdoch A (2011) A cladistic analysis and taxonomic revision of Australian Metacyclops and Goniocyclops, with description of four new species and three new genera (Copepoda, Cyclopida). Crustaceana 84(1):1–67

    Article  Google Scholar 

  • Korovchinsky N (2008) Redescription of Latona setifera (O. F. Muller, 1776) from the type locality and reinstatement of Latona glacialis Wesenberg-Lund, 1894 (Crustacea: Cladocera: Sididae) as a valid species. Steenstrupia 30(1):1–19

    Google Scholar 

  • Kotov AA, Elias-Gutiérrez M (2009) A phylogenetic analysis of Ilyocryptus SARS, 1862 (Cladocera: Ilyocryptidae). Int Rev Hydrobiol 94(2):208–225

    Article  Google Scholar 

  • Kotov AA, Štifter P (2006) Cladocera: family Ilyocryptidae (Branchiopoda: Cladocera: Anomopoda), vol 22. Kenobi Production, Bachuys, Gent, pp 1–172. ISBN 90-5782-167-2

    Google Scholar 

  • Koźmiński Z (1927) Über die Variabilitat der Cyclopiden aus der strenuus-Gruppe auf Grund von quantitativen Untersuchungen. Bull Acad Sci Cracovie Ser B:1–114

    Google Scholar 

  • Koźmiński Z (1933) Badania morfometryczne i ekologiczne nad oczlikami (Cyclopidae) z grupy strenuus. Arch Hydrobiol Ryb 7:59–140

    Google Scholar 

  • Koźmiński Z (1934) Über die morphologische Gruppierung der Arten des Subgenus Cyclops. Bull Int Acad Pol Sci Lett Ser B Sci Nat:105–121

    Google Scholar 

  • Koźmiński Z (1936) Morphometrische und ökologische Untersuchungen an Cyclopiden der strenuus-Gruppe. Int Rev Hydrobiol Hydrogr 33:161–240

    Article  Google Scholar 

  • Kuhl FP, Giardina CR (1982) Elliptic Fourier features of a closed contour. Comput Graph Image Process 18:236–258

    Article  Google Scholar 

  • Lajus D, Sukhikh N, Alekseev V (2015) Cryptic or pseudocryptic: can morphological methods inform copepod taxonomy? An analysis of publications and a case study of the Eurytemora affinis species complex. Ecol Evol 5(12):2374–2385. doi:10.1002/ece3.1521

    Article  PubMed  PubMed Central  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Development in environmental modelling, 2nd edn. Elsevier, Amsterdam, 853 pp

    Google Scholar 

  • Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge, 269 pp

    Book  Google Scholar 

  • Levin SA, Segel LA (1976) Hypothesis for origin of planktonic patchiness. Nature 259(5545):659. doi:10.1038/259659a0

    Article  Google Scholar 

  • Limpert E, Stahel WA, Abbt M (2001) Log-normal distributions across the sciences: keys and clues. Bioscience 51(5):341–352. doi:10.1641/0006-3568(2001)051[0341:lndats]2.0.co;2

    Article  Google Scholar 

  • Lindberg K (1957) Le groupe Cyclops rubens (syn, Cyclops strenuus). Rebisuin du genre Cyclops s. str. (O.F. Müller, 1770) (Crustaceans Copepodes). CWK Gleerup, Lund, pp 1–335

    Google Scholar 

  • Logan M (2010) Biostatistical design and analysis using R. A practical guide. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  • Mack HR, Conroy JD, Blocksom KA, Stein RA, Ludsin SA (2012) A comparative analysis of zooplankton field collection and sample enumeration methods. Limnol Oceanogr Methods 10:41–53

    Article  Google Scholar 

  • Maguire CM, Grey J (2006) Determination of zooplankton dietary shift following a zebra mussel invasion, as indicated by stable isotope analysis. Freshw Biol 51(7):1310–1319

    Article  CAS  Google Scholar 

  • Marrone F, Lo Brutto S, Hundsdoerfer AK, Arculeo M (2013) Overlooked cryptic endemism in copepods: systematics and natural history of the calanoid subgenus Occidodiaptomus Borutzky 1991 (Copepoda, Calanoida, Diaptomidae). Mol Phylogenet Evol 66(1):190–202

    Article  PubMed  Google Scholar 

  • Marsh CD (1911) Structural abnormalities in Copepoda. Trans Wisconsin Acad Sci Arts Lett 17(1):195–196

    Google Scholar 

  • Mast AR, Nyffeler R (2003) Using a null model to recognize significant co-occurrence prior to identifying candidate areas of endemism. Syst Biol 52(2):271–280

    Article  PubMed  Google Scholar 

  • McCauley E (1984) The estimation of the abundance and biomass of zooplankton in samples. In: Downing JA, Rigler FH (eds) A manual of methods for the assessment of secondary productivity in fresh waters. IBP handbook, vol 17, 2nd edn. Blackwell Scientific, London, pp 228–265

    Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach, 300 pp

    Google Scholar 

  • McCune B, Mefford MJ (2010) PC-ORD. Multivariate analysis of ecological data, 6th edn. MjM Software, Gleneden Beach

    Google Scholar 

  • McLeod AI (2011) Kendall: Kendall rank correlation and Mann-Kendall trend test. R package version 2.2. http://CRAN.R-project.org/package=Kendall

  • Mirabdullayev IM, Defaye D (2002) On taxonomy of the Acanthocyclops robustus complex (Copepoda, Cyclopidae). 1. Acanthocyclops robustus (G. o. Sars, 1863) and Acanthocyclops trajani n. sp. Selevinia 1–4:7–20

    Google Scholar 

  • Miracle MR (1974) Niche structure in freshwater zooplankton: a principal components approach. Ecology 55:1306–1316

    Article  Google Scholar 

  • Moore TR, Bubier JL, Bledzki L (2007) Litter decomposition in temperate peatland ecosystems: the effect of substrate and site. Ecosystems 10(6):949–963

    Article  Google Scholar 

  • Motulsky H (1995) Intuitive biostatistics. Oxford University Press, New York

    Google Scholar 

  • Murrell P (2006) R Graphics. Computer science and data analysis series. Chapman & Hall/CRC, London, 301 pp

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) Vegan: community ecology package. R package version 2.2-1. http://CRAN.R-project.org/package=vegan

  • Omair M, Vanderploeg HA, Jude DJ, Fahnenstiel GL (1999) First observations of tumor-like abnormalities (exophytic lesions) on Lake Michigan zooplankton. Can J Fish Aquat Sci 56(10):1711–1715

    Article  Google Scholar 

  • Orlova-Bienkowskaja MJ (1993) The comparative morphology of the thoracic limbs of Simocephalus (Crustacea, Daphniiformes, Daphniidae) from Northern Palearctic. Zool Zhurnal 72(3):35–44

    Google Scholar 

  • Papińska K, Pijanowska J (1980) Pelagic and near-bottom crustaceans in five Masurian lakes. Ekol Pol 28:219–229

    Google Scholar 

  • Papińska K, Prejs K (1979) Crustaceans of the near-bottom water and bottom sediments in 24 Masurian lakes with special consideration to cyclopoid copepods. Ekol Pol 27(4):603–624

    Google Scholar 

  • Peterson SA, Urquhart NS, Welch EB (1999) Sample representativeness: a must for reliable regional lake condition estimates. Environ Sci Technol 33(10):1559–1565

    Article  CAS  Google Scholar 

  • Pombo M, Martinelli-Filho JE (2012) New non-sexual skeletal abnormalities in Acartia Lilljeborgh Giesbrecht, 1889 (Copepoda, Calanoida). Crustaceana 85(2):249–255

    Article  Google Scholar 

  • Prepas E (1978) Sugar-frosted Daphnia: an improved fixation technique for Cladocera. Limnol Oceanogr 23:557–559

    Article  Google Scholar 

  • Qian SS (2010) Environmental and ecological statistics with R. Chapman & Hall? CRC applied environmental statistics. CRC, Boca Raton, 421 pp

    Google Scholar 

  • Quinn GP, Keough KJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Edinburgh, 537 pp

    Book  Google Scholar 

  • Ravera O, Tonolli V (1956) Body size and number of eggs in Diaptomids, as related to water renewal in mountain lakes. Limnol Oceanogr 1:118–122

    Article  Google Scholar 

  • Raykov T, Marcoulides GA (2013) Basic statistics. An introduction with R. Rowman & Littlefield, Lanham, 330 pp

    Google Scholar 

  • RCoreTeam (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Reimann C, Filzmoser P, Garrett R, Dutter R (2008) Statistical data analysis explained. Applied environmental statistics with R. Wiley, Chichester, 343 pp

    Book  Google Scholar 

  • Riccardi N, Lucini L, Benagli C, Welker M, Wicht B, Tonolla M (2012) Potential of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the identification of freshwater zooplankton: a pilot study with three Eudiaptomus (Copepoda: Diaptomidae) species. J Plankton Res 34(6):484–492. doi:10.1093/plankt/fbs022

    Article  CAS  Google Scholar 

  • Riv’er IK (1989) Comparative morphology of representatives of the bosminidae family cladocera. Zool Zhurnal 68(6):141–146

    Google Scholar 

  • Rowe CL, Adamowicz SJ, Hebert PDN (2007) Three new cryptic species of the freshwater zooplankton genus Holopedium (Crustacea: Branchiopoda: Ctenopoda), revealed by genetic methods. Zootaxa 1656:1–49

    Google Scholar 

  • Saraswati PK, Sabnis SV (2006) Comparison of CART and discriminant analysis of morphometric data in Foraminiferal taxonomy. Anuário do Instituto de Geociências—UFRJ 29(1):153–162

    Google Scholar 

  • Sarkar D (2008) Lattice. Multivariate data visualization with R. Springer, New York

    Google Scholar 

  • Sastri AR, Juneau P, Beisner BE (2013) Evaluation of chitobiase-based estimates of biomass and production rates for developing freshwater crustacean zooplankton communities. J Plankton Res 35(2):407–420. doi:10.1093/plankt/fbs104

    Article  CAS  Google Scholar 

  • Scheiner SM, Gurevitch J (2001) Design and analysis of ecological experiments, 2nd edn. Oxford University Press, Oxford, 415 pp

    Google Scholar 

  • Smirnov N (2001a) Morpho-functional grounds of life mode of “Cladocera”. XI. On comparative morphology of antenna in Anomopoda (Phyllopoda: Crustacea). Arthropoda Selecta 10(3):181–184

    Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. The principles and practice of statistic in biological research, 3rd edn. W.H. Freeman, New York, 887 pp

    Google Scholar 

  • Sousa F, Elmoor-Loureiro L, Souza M (2011) Occurrence of abnormalities on labral keel of Coronatella monacantha (Cladocera, Anomopoda, Chydoridae) in a population from Ceara, Brazil. Braz J Biol 71(3):797–798

    Article  CAS  PubMed  Google Scholar 

  • Steedman HF (1976) Zooplankton fixation and preservation. The UNESCO Press, Paris, 350 pp

    Google Scholar 

  • Swofford DL (2000) PAUP: phylogenetic analysis using parsimony (and other methods). 4.0b 10th edn. Illinois Natural History Survey, Illinois

    Google Scholar 

  • Tellioglu A (2007) Morphometric variables and individual volume of Macrocyclops albidus and Cyclops vicinus females (Copepoda, Cyclopida) from Hazar Lake (Elazig-Turkey). Iran J Sci Technol Trans A Sci 31(A3):301–307

    Google Scholar 

  • Thackeray SJ, George DG, Jones RI, Winfield IJ (2006) Statistical quantification of the effect of thermal stratification on patterns of dispersion in a freshwater zooplankton community. Aquat Ecol 40(1):23–32

    Article  CAS  Google Scholar 

  • Thum RA (2004) Using 18S rDNA to resolve diaptomid copepod (Copepoda: Calanoida: Diaptomidae) phylogeny: an example with the North American genera. Hydrobiologia 519(1–3):135–141

    Article  CAS  Google Scholar 

  • Tonolli V (1961) Studio sulla dinamica del populatio di un Copepode (Eudiaptomus vulgaris Schmeil). Memorie dell’Istituto Italiano di Idrobiologia Dott Marco de Marchi 13:179–202

    Google Scholar 

  • Tonolli L (1971a) Allomorphotic relationship of antenna to body length in Eudiaptomus vulgaris Schmeil. Limnol Oceanogr 16(2):467–472

    Article  Google Scholar 

  • Tonolli V (1971b) Methods of collection. Zooplankton. In: Edmondson WT, Winberg GG (eds) A manual on methods in assessment of secondary productivity in fresh waters. IBP handbook, vol 17. Blackwell Science, Oxford

    Google Scholar 

  • Tranter DJ (1968) Reviews on zooplankton sampling methods. In: Tranter DJ (ed) Zooplankton sampling. Monographs on oceanographic methodology. UNESCO, Paris, pp 9–144

    Google Scholar 

  • Tranter DJ, Smith PE (1968) Filtration performance. In: Tranter DJ (ed) Zooplankton sampling. UNESCO, Paris, pp 27–56

    Google Scholar 

  • Tufte ER (1983) The visual display of quantitative information. Graphic Press, Cheshire, 197 pp

    Google Scholar 

  • Tukey JW (1977) Exploratory data analysis. Addison-Wesley, Reading, 499 pp

    Google Scholar 

  • Underwood AJ (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge, 504 pp

    Google Scholar 

  • Van Damme K, Dumont HJ (2010) Cladocera of the Lencois Maranhenses (NE—Brazil): faunal composition and a reappraisal of Sars’ Method. Braz J Biol 70(3):755–779

    Article  PubMed  Google Scholar 

  • Vilar JMG, Sole RV, Rubi JM (2003) On the origin of plankton patchiness. Physica A 317(1–2):239–246. doi:10.1016/s0378-4371(02)01322-5

    Article  Google Scholar 

  • Wetzel RG, Likens GE (1990) Limnological analyses, 2nd edn. Springer, New York, 391 pp

    Google Scholar 

  • Wierzbicka M (1953) Limnocalanus macrurus G. O. sars w jeziorach polnocno-wschodniej Polski. [Limnocalanus macrurus G.O.Sars in the lakes of north-eastern Poland] (in Polish). Fragmenta Faunistica Musei Zoologici Polonici 6:525–540

    Article  Google Scholar 

  • Wierzbicka M (1959a) Analyse morphometrique comparee de Cyclops furcifer Claus et de Cyclops strenuus Fidher en provenance de Zaborow et de Parczew. Pol Arch Hydrobiol 5(2):171–182

    Google Scholar 

  • Wierzbicka M (1959b) Cyclops furcifer Claus dans la classification du sous-genre Cyclops O.F.M. Pol Arch Hydrobiol 5:161–169

    Google Scholar 

  • Wierzbicka M (1960) Cyclops bohater Kozm. dans le nouveau biotope. Pol Arch Hydrobiol 7:143–157

    Google Scholar 

  • Williamson CE, Butler NM (1987) Temperature, food and mate limitation of copepod reproductive rates: separating the effects of multiple hypotheses. J Plankton Res 9:821–836

    Article  Google Scholar 

  • Williamson CE, Reid JW (2001) Copepoda. In: Thorp JH, Covich AP (eds) Ecology and classification of North American freshwater invertebrates, 2nd edn. Academic, San Diego, pp 915–954

    Chapter  Google Scholar 

  • Wolda H (1981) Similarity indices, sample size and diversity. Oecologia 50:296–302

    Article  Google Scholar 

  • Young SS, Ni MH, Liu MY (2012) Systematic study of the Simocephalus sensu stricto species group (Cladocera: Daphniidae) from Taiwan by morphometric and molecular analyses. Zool Stud 51(2):222–231

    Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, Upper Saddle River, 917 pp

    Google Scholar 

  • Zelditch ML, Swiderski DL, Sjeets HD, Fink WL (2004) Geometric morphometrics for biologists: a primer. Elsevier Academic, Amsterdam, 443 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Błędzki, L.A., Rybak, J.I. (2016). Methods. In: Freshwater Crustacean Zooplankton of Europe . Springer, Cham. https://doi.org/10.1007/978-3-319-29871-9_4

Download citation

Publish with us

Policies and ethics