Skip to main content

Clinical Assessment and Rehabilitation of the Upper Limb Following Cervical Spinal Cord Injury

  • Chapter
  • First Online:
Neurorehabilitation Technology

Abstract

The impairment of upper extremity function following a cervical spinal cord injury (SCI) has a significant impact on independence and quality of life due to its bilateral and often symmetrical nature. Upper extremity function following spinal cord injury is commonly assessed with clinical measures of capacity, performance, quantitative sensory testing, and surrogate markers such as electrophysiological and biomedical recordings. More recently novel techniques, such as the use of robotics and senor technology, are beginning to be employed for this purpose. Most currently these assessments are based on ordinal scales with rather subjective rating criteria, and for this reason, a new generation of objective and precise upper extremity functional assessment tests is required. For example, the RULER is a novel scale developed by the authors which is a detailed functional classification of the upper extremity and can distinguish different levels of impairment where changes between these levels can be considered clinically meaningful.

In order to effect changes in function that can be assessed with various devices, physical therapy training is essential. Therapy increases neural plasticity and thereby improves motor function. New rehabilitation therapies based on robots, passive workstations, functional electrical stimulation (FES) systems and novel sensor technology have been developed but mostly focus on the stroke field. Thus, despite huge promise and a large amount of research in stroke, the overall clinical value of these new technology-based therapies in SCI patients’ still needs to be evaluated fully.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wyndaele M, Wyndaele JJ. Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? Spinal Cord. 2006;44(9):523–9 [Meta-Analysis Review].

    Article  CAS  PubMed  Google Scholar 

  2. Curt A, Dietz V. Ambulatory capacity in spinal cord injury: significance of somatosensory evoked potentials and ASIA protocol in predicting outcome. Arch Phys Med Rehabil. 1997;78(1):39–43.

    Article  CAS  PubMed  Google Scholar 

  3. Curt A, Keck ME, Dietz V. Functional outcome following spinal cord injury: significance of motor-evoked potentials and ASIA scores. Arch Phys Med Rehabil. 1998;79(1):81–6.

    Article  CAS  PubMed  Google Scholar 

  4. Anderson KD. Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma. 2004;21(10):1371–83.

    Article  PubMed  Google Scholar 

  5. Snoek GJ, IJzerman MJ, Hermens HJ, Maxwell D, Biering-Sorensen F. Survey of the needs of patients with spinal cord injury: impact and priority for improvement in hand function in tetraplegics. Spinal Cord. 2004;42(9):526–32 [Clinical Trial Controlled Clinical Trial Multicenter Study Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  6. Waters RL, Adkins RH, Yakura JS, Sie I. Motor and sensory recovery following complete tetraplegia. Arch Phys Med Rehabil. 1993;74(3):242–7 [Research Support, U.S. Gov’t, Non-P.H.S.].

    CAS  PubMed  Google Scholar 

  7. Krebs HI, Hogan N, Aisen ML, Volpe BT. Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng. 1998;6(1):75–87 [Clinical Trial Controlled Clinical Trial Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nef T, Mihelj M, Riener R. ARMin: a robot for patient-cooperative arm therapy. Med Biol Eng Comput. 2007;45(9):887–900 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  9. Colombo R, Pisano F, Micera S, Mazzone A, Delconte C, Carrozza MC, et al. Robotic techniques for upper limb evaluation and rehabilitation of stroke patients. IEEE Trans Neural Syst Rehabil Eng. 2005;13(3):311–24 [Clinical Trial Controlled Clinical Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  10. Vanmulken DA, Spooren AI, Bongers HM, Seelen HA. Robot-assisted task-oriented upper extremity skill training in cervical spinal cord injury: a feasibility study. Spinal Cord. 2015;35(7):547–51.

    Google Scholar 

  11. Klamroth-Marganska V, Blanco J, Campen K, Curt A, Dietz V, Ettlin T, et al. Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. Lancet Neurol. 2014;13(2):159–66 [Comparative Study Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  12. Kowalczewski J, Chong SL, Galea M, Prochazka A. In-home tele-rehabilitation improves tetraplegic hand function. Neurorehabil Neural Repair. 2011;25(5):412–22 [Comparative Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  13. Sanchez RJ, Liu J, Rao S, Shah P, Smith R, Rahman T, et al. Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. IEEE Trans Neural Syst Rehabil Eng. 2006;14(3):378–89 [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.].

    Article  PubMed  Google Scholar 

  14. Housman SJ, Scott KM, Reinkensmeyer DJ. A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabil Neural Repair. 2009;23(5):505–14 [Randomized Controlled Trial Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.].

    Article  PubMed  Google Scholar 

  15. Popovic MR, Keller T. Modular transcutaneous functional electrical stimulation system. Med Eng Phys. 2005;27(1):81–92 [Case Reports Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  16. Popovic MR, Curt A, Keller T, Dietz V. Functional electrical stimulation for grasping and walking: indications and limitations. Spinal Cord. 2001;39(8):403–12 [Research Support, Non-U.S. Gov’t Review].

    Article  CAS  PubMed  Google Scholar 

  17. Kapadia NM, Bagher S, Popovic MR. Influence of different rehabilitation therapy models on patient outcomes: hand function therapy in individuals with incomplete SCI. J Spinal Cord Med. 2014;37(6):734–43 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  PubMed Central  Google Scholar 

  18. Leuenberger K, Gassert R. Low-power sensor module for long-term activity monitoring. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:2237–41. doi:10.1109/IEMBS.2011.6090424.

  19. Moncada-Torres A, Leuenberger K, Gonzenbach R, Luft A, Gassert R. Activity classification based on inertial and barometric pressure sensors at different anatomical locations. Physiol Meas. 2014;35(7):1245–63.

    Article  CAS  PubMed  Google Scholar 

  20. Dobkin BH, Dorsch A. The promise of mHealth: daily activity monitoring and outcome assessments by wearable sensors. Neurorehabil Neural Repair. 2011;25(9):788–98.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kirshblum SC, Burns SP, Biering-Sorensen F, Donovan W, Graves DE, Jha A, et al. International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med. 2011;34(6):535–46.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Spiess M, Schubert M, Kliesch U, Halder P. Evolution of tibial SSEP after traumatic spinal cord injury: baseline for clinical trials. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2008;119(5):1051–61 [Research Support, Non-U.S. Gov’t].

    Article  Google Scholar 

  23. Kramer JL, Moss AJ, Taylor P, Curt A. Assessment of posterior spinal cord function with electrical perception threshold in spinal cord injury. J Neurotrauma. 2008;25(8):1019–26 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  24. Chen AC, Niddam DM, Arendt-Nielsen L. Contact heat evoked potentials as a valid means to study nociceptive pathways in human subjects. Neurosci Lett. 2001;316(2):79–82 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  25. Kramer JL, Haefeli J, Curt A, Steeves JD. Increased baseline temperature improves the acquisition of contact heat evoked potentials after spinal cord injury. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2012;123(3):582–9 [Research Support, Non-U.S. Gov’t].

    Article  CAS  Google Scholar 

  26. Ulrich A, Haefeli J, Blum J, Min K, Curt A. Improved diagnosis of spinal cord disorders with contact heat evoked potentials. Neurology. 2013;80(15):1393–9 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  27. Kimura J. Nerve conduction studies and electromyography. Dyck PJ, Thomas PK, editors. Philadelphia: Saunders; 1993.

    Google Scholar 

  28. Kimura J. Electrodiagnosis in diseases of nerve and muscle: principles and practices. Philadelphia: Davis; 1983.

    Google Scholar 

  29. Mathiowetz V, Weber K, Volland G, Kashman N. Reliability and validity of grip and pinch strength evaluations. J Hand Surg [Am]. 1984;9(2):222–6.

    Article  CAS  Google Scholar 

  30. Jaber R, Hewson DJ, Duchene J. Design and validation of the grip-ball for measurement of hand grip strength. Med Eng Phys. 2012;34(9):1356–61 [Research Support, Non-U.S. Gov’t Validation Studies].

    Article  PubMed  Google Scholar 

  31. Sisto SA, Dyson-Hudson T. Dynamometry testing in spinal cord injury. J Rehabil Res Dev. 2007;44(1):123–36 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Review].

    Article  PubMed  Google Scholar 

  32. Fattal C. Critical review of the evaluation of the results of upper limb functional surgery in tetraplegia since 50 years. Ann Readapt Med Phys. 2004;47(1):30–47 [Meta-Analysis].

    Article  CAS  PubMed  Google Scholar 

  33. Shin H, Moon SW, Kim GS, Park JD, Kim JH, Jung MJ, et al. Reliability of the pinch strength with digitalized pinch dynamometer. Ann Rehabil Med. 2012;36(3):394–9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hingtgen B, McGuire JR, Wang M, Harris GF. An upper extremity kinematic model for evaluation of hemiparetic stroke. J Biomech. 2006;39(4):681–8 [Clinical Trial].

    Article  PubMed  Google Scholar 

  35. Alt Murphy M, Willen C, Sunnerhagen KS. Kinematic variables quantifying upper-extremity performance after stroke during reaching and drinking from a glass. Neurorehabil Neural Repair. 2011;25(1):71–80 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  36. Lange B, Chang CY, Suma E, Newman B, Rizzo AS, Bolas M. Development and evaluation of low cost game-based balance rehabilitation tool using the Microsoft Kinect sensor. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng. 2011;2011:1831–4 [Research Support, Non-U.S. Gov’t].

    Google Scholar 

  37. Pastor I, Hayes HA, Bamberg SJ. A feasibility study of an upper limb rehabilitation system using kinect and computer games. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng. 2012;2012:1286–9 [Research Support, Non-U.S. Gov’t].

    Google Scholar 

  38. Kurillo G, Han JJ, Obdrzalek S, Yan P, Abresch RT, Nicorici A, et al. Upper extremity reachable workspace evaluation with Kinect. Stud Health Tech Inform. 2013;184:247–53 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.].

    Google Scholar 

  39. Gil-Agudo A, de Los Reyes-Guzman A, Dimbwadyo-Terrer I, Penasco-Martin B, Bernal-Sahun A, Lopez-Monteagudo P, et al. A novel motion tracking system for evaluation of functional rehabilitation of the upper limbs. Neural Regen Res. 2013;8(19):1773–82.

    PubMed  PubMed Central  Google Scholar 

  40. de Castro MC, Cliquet Jr A. An artificial grasping evaluation system for the paralysed hand. Med Biol Eng Comput. 2000;38(3):275–80.

    Article  PubMed  Google Scholar 

  41. Vanello N, Hartwig V, Tesconi M, Ricciardi E, Tognetti A, Zupone G, Gassert R, Chapuis D, Sgambelluri N, Scilingo EP, Giovannetti G, Positano V, Santarelli MF, Bicchi A, Pietrini P, de Rossi D, Landini L. Sensing glove for brain studies: design and assessment of its compatibility for fMRI with a robust test. Mechatron IEEE/ASME Trans 2008. 2008;13(3):345–54.

    Article  Google Scholar 

  42. Merians AS, Tunik E, Fluet GG, Qiu Q, Adamovich SV. Innovative approaches to the rehabilitation of upper extremity hemiparesis using virtual environments. Eur J Phys Rehabil Med. 2009;45(1):123–33.

    CAS  PubMed  Google Scholar 

  43. Friedman N, Chan V, Reinkensmeyer AN, Beroukhim A, Zambrano GJ, Bachman M, et al. Retraining and assessing hand movement after stroke using the MusicGlove: comparison with conventional hand therapy and isometric grip training. J Neuroeng Rehabil. 2014;11:76 [Randomized Controlled Trial Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  PubMed  PubMed Central  Google Scholar 

  44. Buffi JH, Sancho Bru JL, Crisco JJ, Murray WM. Evaluation of hand motion capture protocol using static computed tomography images: application to an instrumented glove. J Biomech Eng. 2014;136(12):124501 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  45. Schuster-Amft C, Henneke A, Hartog-Keisker B, Holper L, Siekierka E, Chevrier E, et al. Intensive virtual reality-based training for upper limb motor function in chronic stroke: a feasibility study using a single case experimental design and fMRI. Disabil Rehabil Assist Technol. 2014;10(5):385–92.

    Google Scholar 

  46. Dipietro L, Sabatini AM, Dario P. A survey of glove-based systems and their applications. Syst Man Cybern Part C Appl Rev IEEE Trans. 2008;38(4):461–82.

    Article  Google Scholar 

  47. Laver K, George S, Thomas S, Deutsch JE, Crotty M. Cochrane review: virtual reality for stroke rehabilitation. Eur J Phys Rehabil Med. 2012;48(3):523–30.

    CAS  PubMed  Google Scholar 

  48. Laver KE, George S, Thomas S, Deutsch JE, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2015;2:CD008349.

    PubMed  Google Scholar 

  49. Balasubramanian S, Klein J, Burdet E. Robot-assisted rehabilitation of hand function. Curr Opin Neurol. 2010;23(6):661–70.

    Google Scholar 

  50. Cusmano I, Sterpi I, Mazzone A, Ramat S, Delconte C, Pisano F, et al. Evaluation of upper limb sense of position in healthy individuals and patients after stroke. J Healthc Eng. 2014;5(2):145–62 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  51. Simo L, Botzer L, Ghez C, Scheidt RA. A robotic test of proprioception within the hemiparetic arm post-stroke. J Neuroeng Rehabil. 2014;11:77 [Research Support, N.I.H., Extramural].

    Article  PubMed  PubMed Central  Google Scholar 

  52. Colombo R, Cusmano I, Sterpi I, Mazzone A, Delconte C, Pisano F. Test-retest reliability of robotic assessment measures for the evaluation of upper limb recovery. IEEE Trans Neural Syst Rehabil Eng. 2014;22(5):1020–9 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  53. Zariffa J, Kapadia N, Kramer J, Taylor P, Alizadeh-Meghrazi M, Zivanovic V, et al. Relationship between clinical assessments of function and measurements from an upper-limb robotic rehabilitation device in cervical spinal cord injury. IEEE Trans Neural Syst Rehabil Eng. 2011;20(3):341–50.

    Google Scholar 

  54. Prochazka A, Kowalczewski J. A fully automated, quantitative test of upper limb function. J Mot Behav. 2015;47(1):19–28 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  55. Oess NP, Wanek J, Curt A. Design and evaluation of a low-cost instrumented glove for hand function assessment. J Neuroeng Rehabil. 2012;9:2 [Research Support, Non-U.S. Gov’t Validation Studies].

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kiuchi K, Inayama T, Muraoka Y, Ikemoto S, Uemura O, Mizuno K. Preliminary study for the assessment of physical activity using a triaxial accelerometer with a gyro sensor on the upper limbs of subjects with paraplegia driving a wheelchair on a treadmill. Spinal Cord. 2014;52(7):556–63.

    Article  CAS  PubMed  Google Scholar 

  57. Brogioli M, Popp WL, Albisser U, Brust AK, Frotzler A, Gassert R, et al. Novel sensor technology to assess independence and limb-use laterality in cervical spinal cord injury. J Neurotrauma. 2016. [Epub ahead of print].

    Google Scholar 

  58. Popp WL, Brogioli M, Leuenberger K, Albisser U, Frotzler A, Curt A, et al. A novel algorithm for detecting active propulsion in wheelchair users following spinal cord injury. Med Eng Phys. 2016;38(3):267–74. doi:10.1016/j.medengphy.2015.12.011.

    Google Scholar 

  59. Buck M, Beckers D. Rehabilitation bei Querschnittlähmung: Ein multidisziplinärer Leitfaden (Rehabilitation und Prävention). Berlin: Springer; 1993.

    Book  Google Scholar 

  60. Nigst H. Operationen an Tetraplegikern. In: Buck-Gramcko D, Nigst H, editors. Motorische Ersatzoperationen der Oberen Extremität. Stuttgart: Hippokrates-Verlag; 1991. p. 11–8.

    Google Scholar 

  61. Moberg E. Surgical treatment for absent single-hand grip and elbow extension in quadriplegia. Principles and preliminary experience. J Bone Joint Surg Am. 1975;57(2):196–206.

    CAS  PubMed  Google Scholar 

  62. McDowell CL, Moberg EA, Smith AG. International conference on surgical rehabilitation of the upper limb in tetraplegia. J Hand Surg [Am]. 1979;4(4):387–90 [Congresses].

    Article  CAS  Google Scholar 

  63. MacAvoy MC, Green DP. Critical reappraisal of medical research council muscle testing for elbow flexion. J Hand Surg [Am]. 2007;32(2):149–53.

    Article  Google Scholar 

  64. Velstra IM, Curt A, Frotzler A, Abel R, Kalsi-Ryan S, Rietman JS, et al. Changes in strength, sensation, and prehension in acute cervical spinal cord injury: European multicenter responsiveness study of the GRASSP. Neurorehabil Neural Repair. 2015;29(8):755–66.

    Google Scholar 

  65. Kalsi-Ryan S, Beaton D, Curt A, Duff S, Popovic MR, Rudhe C, et al. The Graded Redefined Assessment of Strength Sensibility and Prehension (GRASSP): reliability and validity. J Neurotrauma. 2011;29(5):905–14.

    Article  PubMed  Google Scholar 

  66. Post MW, Van Lieshout G, Seelen HA, Snoek GJ, Ijzerman MJ, Pons C. Measurement properties of the short version of the Van Lieshout test for arm/hand function of persons with tetraplegia after spinal cord injury. Spinal Cord. 2006;44(12):763–71 [Validation Studies].

    Article  CAS  PubMed  Google Scholar 

  67. Fattal C. Motor capacities of upper limbs in tetraplegics: a new scale for the assessment of the results of functional surgery on upper limbs. Spinal Cord. 2004;42(2):80–90 [Evaluation Studies Validation Studies].

    Article  CAS  PubMed  Google Scholar 

  68. Land NE, Odding E, Duivenvoorden HJ, Bergen MP, Stam HJ. Tetraplegia Hand Activity Questionnaire (THAQ): the development, assessment of arm-hand function-related activities in tetraplegic patients with a spinal cord injury. Spinal Cord. 2004;42(5):294–301.

    Article  CAS  PubMed  Google Scholar 

  69. Thorsen R, Ferrarin M, Spadone R, Frigo C. Functional control of the hand in tetraplegics based on residual synergistic EMG activity. Artif Organs. 1999;23(5):470–3 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  70. Marino RJ, Shea JA, Stineman MG. The capabilities of upper extremity instrument: reliability and validity of a measure of functional limitation in tetraplegia. Arch Phys Med Rehabil. 1998;79(12):1512–21.

    Article  CAS  PubMed  Google Scholar 

  71. Sollerman C, Ejeskar A. Sollerman hand function test. A standardised method and its use in tetraplegic patients. Scand J Plast Reconstr Surg Hand Surg. 1995;29(2):167–76 [Comparative Study].

    Article  CAS  PubMed  Google Scholar 

  72. Wuolle KS, Van Doren CL, Thrope GB, Keith MW, Peckham PH. Development of a quantitative hand grasp and release test for patients with tetraplegia using a hand neuroprosthesis. J Hand Surg [Am]. 1994;19(2):209–18 [Research Support, U.S. Gov’t, Non-P.H.S.].

    Article  CAS  Google Scholar 

  73. Vanden Berghe A, Van Laere M, Hellings S, Vercauteren M. Reconstruction of the upper extremity in tetraplegia: functional assessment, surgical procedures and rehabilitation. Paraplegia. 1991;29(2):103–12.

    Article  CAS  PubMed  Google Scholar 

  74. Rogers JC, Figone JJ. Traumatic quadriplegia: follow-up study of self-care skills. Arch Phys Med Rehabil. 1980;61(7):316–21.

    CAS  PubMed  Google Scholar 

  75. Wolf SL, Lecraw DE, Barton LA, Jann BB. Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Exp Neurol. 1989;104(2):125–32 [Research Support, U.S. Gov’t, Non-P.H.S.].

    Article  CAS  PubMed  Google Scholar 

  76. Platz T, Pinkowski C, van Wijck F, Kim IH, di Bella P, Johnson G. Reliability and validity of arm function assessment with standardized guidelines for the Fugl-Meyer test, action research arm test and box and block test: a multicentre study. Clin Rehabil. 2005;19(4):404–11. Multicenter Study Research Support, Non-U.S. Gov’t Validation Studies.

    Article  PubMed  Google Scholar 

  77. Jebsen RH, Taylor N, Trieschmann RB, Trotter MJ, Howard LA. An objective and standardized test of hand function. Arch Phys Med Rehabil. 1969;50(6):311–9.

    CAS  PubMed  Google Scholar 

  78. Gloss DS, Wardle MG. Use of the minnesota rate of manipulation test for disability evaluation. Percept Mot Skills. 1982;55(2):527–32.

    Article  CAS  PubMed  Google Scholar 

  79. Sears ED, Chung KC. Validity and responsiveness of the Jebsen-Taylor hand function test. J Hand Surg [Am]. 2010;35(1):30–7 [Comparative Study Research Support, N.I.H., Extramural Validation Studies].

    Article  Google Scholar 

  80. Hudak PL, Amadio PC, Bombardier C. Development of an upper extremity outcome measure: the DASH (disabilities of the arm, shoulder and hand) [corrected]. The Upper Extremity Collaborative Group (UECG). Am J Ind Med. 1996;29(6):602–8 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  81. Law M, Baptiste S, McColl M, Opzoomer A, Polatajko H, Pollock N. The Canadian occupational performance measure: an outcome measure for occupational therapy. Can J Occup Ther. 1990;57(2):82–7 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  82. van Hedel HJ, Dokladal P, Hotz-Boendermaker S. Mismatch between investigator-determined and patient-reported independence after spinal cord injury: consequences for rehabilitation and trials. Neurorehabil Neural Repair. 2011;25(9):855–64 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  83. Kalsi-Ryan S, Beaton D, Curt A, Popovic MR, Verrier MC, Fehlings MG. Outcome of the upper limb in cervical spinal cord injury: profiles of recovery and insights for clinical studies. J Spinal Cord Med. 2014;37(5):503–10.

    Article  PubMed  PubMed Central  Google Scholar 

  84. MacKenzie CI, Iberall T. The grasping hand. Advances in psychology. Amsterdam: North-Holland; 1994. p. 370.

    Google Scholar 

  85. Mulcahey MJ, Smith BT, Betz RR. Psychometric rigor of the grasp and release test for measuring functional limitation of persons with tetraplegia: a preliminary analysis. J Spinal Cord Med. 2004;27(1):41–6 [Research Support, Non-U.S. Gov’t Validation Studies].

    CAS  PubMed  Google Scholar 

  86. Schlesinger G. Der mechanische Aufbau der kunstlichen Glieder. In: Schlesinger G, editor. Ersatzglieder und Arbeitshilfen. Berlin: Springer; 1919.

    Google Scholar 

  87. Light CM, Chappell PH, Kyberd PJ. Establishing a standardized clinical assessment tool of pathologic and prosthetic hand function: normative data, reliability, and validity. Arch Phys Med Rehabil. 2002;83(6):776–83 [Evaluation Studies].

    Article  PubMed  Google Scholar 

  88. Napier JR. The prehensile movements of the human hand. J Bone Joint Surg (Br). 1956;38-B(4):902–13.

    CAS  Google Scholar 

  89. Cutkosky MR. On grasp choice, grasp models, and the design of hands for manufacturing tasks. Robot Autom IEEE Trans 1989. 1989;5(3):269–79.

    Article  Google Scholar 

  90. Kvien TK, Heiberg T, Hagen KB. Minimal clinically important improvement/difference (MCII/MCID) and patient acceptable symptom state (PASS): what do these concepts mean? Ann Rheum Dis. 2007;66 Suppl 3:iii40–1 [Review].

    PubMed  PubMed Central  Google Scholar 

  91. Jaeschke R, Singer J, Guyatt GH. Measurement of health status. Ascertaining the minimal clinically important difference. Control Clin Trials. 1989;10(4):407–15 [Clinical Trial Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  92. Wu X, Liu J, Tanadini LG, Lammertse DP, Blight AR, Kramer JL, et al. Challenges for defining minimal clinically important difference (MCID) after spinal cord injury. Spinal Cord. 2015;53(2):84–91 [Review].

    Article  CAS  PubMed  Google Scholar 

  93. van de Ven-Stevens LA, Munneke M, Terwee CB, Spauwen PH, van der Linde H. Clinimetric properties of instruments to assess activities in patients with hand injury: a systematic review of the literature. Arch Phys Med Rehabil. 2009;90(1):151–69 [Review].

    Article  PubMed  Google Scholar 

  94. Rousson V, Gasser T, Seifert B. Assessing intrarater, interrater and test-retest reliability of continuous measurements. Stat Med. 2002;21(22):3431–46 [Comparative Study Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  95. Freehafer AA, Vonhaam E, Allen V. Tendon transfers to improve grasp after injuries of the cervical spinal cord. J Bone Joint Surg Am. 1974;56(5):951–9.

    CAS  PubMed  Google Scholar 

  96. Hentz VR, Brown M, Keoshian LA. Upper limb reconstruction in quadriplegia: functional assessment and proposed treatment modifications. J Hand Surg [Am]. 1983;8(2):119–31.

    Article  CAS  Google Scholar 

  97. Catz A, Itzkovich M, Agranov E, Ring H, Tamir A. SCIM – spinal cord independence measure: a new disability scale for patients with spinal cord lesions. Spinal Cord. 1997;35(12):850–6 [Clinical Trial Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  98. Catz A, Itzkovich M, Steinberg F, Philo O, Ring H, Ronen J, et al. The catz-itzkovich SCIM: a revised version of the spinal cord independence measure. Disabil Rehabil. 2001;23(6):263–8 [Evaluation Studies Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  99. Catz A, Itzkovich M, Tesio L, Biering-Sorensen F, Weeks C, Laramee MT, et al. A multicenter international study on the spinal cord independence measure, version III: rasch psychometric validation. Spinal Cord. 2007;45(4):275–91 [Multicenter Study Research Support, Non-U.S. Gov’t Validation Studies].

    CAS  PubMed  Google Scholar 

  100. Starkey ML, Bleul C, Maier IC, Schwab ME. Rehabilitative training following unilateral pyramidotomy in adult rats improves forelimb function in a non-task specific way. Exp Neurol. 2011;232(1):81–9.

    Article  PubMed  Google Scholar 

  101. Starkey ML, Bleul C, Kasper H, Mosberger AC, Zorner B, Giger S, et al. High-impact, self-motivated training within an enriched environment with single animal tracking dose-dependently promotes motor skill acquisition and functional recovery. Neurorehabil Neural Repair. 2014;28(6):594–605.

    Article  PubMed  Google Scholar 

  102. Maier IC, Baumann K, Thallmair M, Weinmann O, Scholl J, Schwab ME. Constraint-induced movement therapy in the adult rat after unilateral corticospinal tract injury. J Neurosci. 2008;28(38):9386–403.

    Article  CAS  PubMed  Google Scholar 

  103. Carmel JB, Berrol LJ, Brus-Ramer M, Martin JH. Chronic electrical stimulation of the intact corticospinal system after unilateral injury restores skilled locomotor control and promotes spinal axon outgrowth. J Neurosci. 2010;30(32):10918–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Girgis J, Merrett D, Kirkland S, Metz GA, Verge V, Fouad K. Reaching training in rats with spinal cord injury promotes plasticity and task specific recovery. Brain. 2007;130(Pt 11):2993–3003.

    Article  CAS  PubMed  Google Scholar 

  105. Krajacic A, Weishaupt N, Girgis J, Tetzlaff W, Fouad K. Training-induced plasticity in rats with cervical spinal cord injury: effects and side effects. Behav Brain Res. 2010;214(2):323–31.

    Article  PubMed  Google Scholar 

  106. Nooijen CF, de Groot S, Postma K, Bergen MP, Stam HJ, Bussmann JB, et al. A more active lifestyle in persons with a recent spinal cord injury benefits physical fitness and health. Spinal Cord. 2012;50(4):320–3.

    Article  CAS  PubMed  Google Scholar 

  107. Zariffa J, Kapadia N, Kramer JL, Taylor P, Alizadeh-Meghrazi M, Zivanovic V, et al. Feasibility and efficacy of upper limb robotic rehabilitation in a subacute cervical spinal cord injury population. Spinal Cord. 2011;50(3):220–6.

    Article  PubMed  Google Scholar 

  108. Snoek GJ, IJzerman MJ, in ’t Groen FA, Stoffers TS, Zilvold G. Use of the NESS handmaster to restore handfunction in tetraplegia: clinical experiences in ten patients. Spinal Cord. 2000;38(4):244–9 [Clinical Trial].

    Article  CAS  PubMed  Google Scholar 

  109. Popovic D, Stojanovic A, Pjanovic A, Radosavljevic S, Popovic M, Jovic S, et al. Clinical evaluation of the bionic glove. Arch Phys Med Rehabil. 1999;80(3):299–304 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  110. Thomson K, Pollock A, Bugge C, Brady M. Commercial gaming devices for stroke upper limb rehabilitation: a systematic review. Int J Stroke. 2014;9(4):479–88.

    Article  PubMed  Google Scholar 

  111. Brokaw EB, Nichols D, Holley RJ, Lum PS. Robotic therapy provides a stimulus for upper limb motor recovery after stroke that is complementary to and distinct from conventional therapy. Neurorehabil Neural Repair. 2014;28(4):367–76 [Randomized Controlled Trial Research Support, U.S. Gov’t, Non-P.H.S.].

    Article  PubMed  Google Scholar 

  112. Staubli P, Nef T, Klamroth-Marganska V, Riener R. Effects of intensive arm training with the rehabilitation robot ARMin II in chronic stroke patients: four single-cases. J Neuroeng Rehabil. 2009;6:46.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Brokaw EB, Black I, Holley RJ, Lum PS. Hand Spring Operated Movement Enhancer (HandSOME): a portable, passive hand exoskeleton for stroke rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2011;19(4):391–99 [Research Support, U.S. Gov’t, Non-P.H.S.].

    Google Scholar 

  114. Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010;362(19):1772–83.

    Article  CAS  PubMed  Google Scholar 

  115. Ang KK, Chua KS, Phua KS, Wang C, Chin ZY, Kuah CW, et al. A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke. Clin EEG Neurosci. 2014 Apr 21.

    Google Scholar 

  116. Taylor P, Esnouf J, Hobby J. The functional impact of the freehand system on tetraplegic hand function. Clinical results. Spinal Cord. 2002;40(11):560–6 [Clinical Trial Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  117. Alon G, McBride K. Persons with C5 or C6 tetraplegia achieve selected functional gains using a neuroprosthesis. Arch Phys Med Rehabil. 2003;84(1):119–24 [Evaluation Studies Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  118. Prochazka A, Gauthier M, Wieler M, Kenwell Z. The bionic glove: an electrical stimulator garment that provides controlled grasp and hand opening in quadriplegia. Arch Phys Med Rehabil. 1997;78(6):608–14 [Clinical Trial Multicenter Study Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  119. Szturm T, Peters JF, Otto C, Kapadia N, Desai A. Task-specific rehabilitation of finger-hand function using interactive computer gaming. Arch Phys Med Rehabil. 2008;89(11):2213–7 [Case Reports Clinical Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  120. Tong KY, Mak AF, Ip WY. Command control for functional electrical stimulation hand grasp systems using miniature accelerometers and gyroscopes. Med Biol Eng Comput. 2003;41(6):710–7 [Evaluation Studies Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  121. Markopoulos P, Timmermans AA, Beursgens L, van Donselaar R, Seelen HA. Us’em: the user-centered design of a device for motivating stroke patients to use their impaired arm-hand in daily life activities. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:5182–7.

    PubMed  Google Scholar 

  122. Mijovic B, Popovic MB, Popovic DB. Synergistic control of forearm based on accelerometer data and artificial neural networks. Braz J Med Biol Res. 2008;41(5):389–97. 41.

    Article  CAS  PubMed  Google Scholar 

  123. Lee JK, Park EJ. 3D spinal motion analysis during staircase walking using an ambulatory inertial and magnetic sensing system. Med Biol Eng Comput. 2011;49(7):755–64.

    Article  PubMed  Google Scholar 

  124. Luinge HJ, Veltink PH, Baten CT. Ambulatory measurement of arm orientation. J Biomech. 2007;40(1):78–85.

    Article  CAS  PubMed  Google Scholar 

  125. Warms CA, Belza BL. Actigraphy as a measure of physical activity for wheelchair users with spinal cord injury. Nurs Res. 2004;53(2):136–43 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  Google Scholar 

  126. Bussmann JB, Kikkert MA, Sluis TA, Bergen MP, Stam HJ, van den Berg-Emons HJ. Effect of wearing an activity monitor on the amount of daily manual wheelchair propulsion in persons with spinal cord injury. Spinal Cord. 2010;48(2):128–33 [Evaluation Studies].

    Article  CAS  PubMed  Google Scholar 

  127. Postma K, van den Berg-Emons HJ, Bussmann JB, Sluis TA, Bergen MP, Stam HJ. Validity of the detection of wheelchair propulsion as measured with an activity monitor in patients with spinal cord injury. Spinal Cord. 2005;43(9):550–7 [Clinical Trial Research Support, Non-U.S. Gov’t Validation Studies].

    Article  CAS  PubMed  Google Scholar 

  128. Wilson SK, Hasler JP, Dall PM, Granat MH. Objective assessment of mobility of the spinal cord injured in a free-living environment. Spinal Cord. 2008;46(5):352–7.

    Article  CAS  PubMed  Google Scholar 

  129. Coulter EH, Dall PM, Rochester L, Hasler JP, Granat MH. Development and validation of a physical activity monitor for use on a wheelchair. Spinal Cord. 2011;49(3):445–50 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  130. Paquin K, Ali S, Carr K, Crawley J, McGowan C, Horton S. Effectiveness of commercial video gaming on fine motor control in chronic stroke within community-level rehabilitation. Disabil Rehabil. 2015;14:1–8.

    Article  Google Scholar 

  131. Thomson K, Pollock A, Bugge C, Brady MC. Commercial gaming devices for stroke upper limb rehabilitation: a survey of current practice. Disabil Rehabil Assist Technol. 2015;30:1–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Louise Starkey MA, MSc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Starkey, M.L., Curt, A. (2016). Clinical Assessment and Rehabilitation of the Upper Limb Following Cervical Spinal Cord Injury. In: Reinkensmeyer, D., Dietz, V. (eds) Neurorehabilitation Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-28603-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28603-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28601-3

  • Online ISBN: 978-3-319-28603-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics