Skip to main content

Designing Robots That Challenge to Optimize Motor Learning

  • Chapter
  • First Online:
Neurorehabilitation Technology

Abstract

The purpose of this chapter is to provide the reader with a better understanding of the theory and practice of providing effective levels of challenge for people with motor disability, using rehabilitation robotics to provide the safety and assurance that is necessary to prevent physical harm and mental frustration. First, we describe the therapeutic context with which clinicians encounter the need to design challenge into the motor learning sessions that are typical for individuals who are recovering from impaired movement. Second, we explore the challenge point framework as a major breakthrough in our understanding of the nature of challenge in motor performance and how this challenge contributes to efficacious motor learning. Next, we describe ways in which rehabilitation robotics can be designed and implemented to explore the ways in which people with motor disability can learn to move again and how results with these devices suggest extending the challenge point framework to take into account self-efficacy and willingness to practice. Finally, we provide a detailed example of a robotic system that works collaboratively with the clinician to provide physical challenge during walking and balance training in people with poststroke hemiparesis using a library of novel techniques. We conclude by providing further thoughts to engineers and clinicians who collaborate to develop a next generation of rehabilitation robotics that build on the concepts of optimal challenge into the engineering design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guadagnoli MA, Lee TD. Challenge point: a framework for conceptualizing the effects of various practice conditions in motor learning. J Mot Behav. 2004;36:212–24.

    Article  PubMed  Google Scholar 

  2. Bjork R. Assessing our own competence: heuristics and illusions. Cambridge: The MIT Press; 1999.

    Google Scholar 

  3. Kelley CR. What is adaptive training? Hum Factors J Hum Factors Ergon Soc. 1969;11:547–56.

    Google Scholar 

  4. Lintern G, Gopher D. Adaptive training of perceptual-motor skills: issues, results, and future directions. Int J Man Mach Stud. 1978;10:521–51.

    Article  Google Scholar 

  5. Williges BH, Williges RC. Learner-centered versus automatic adaptive motor skill training. J Mot Behav. 1977;9:325–31.

    CAS  PubMed  Google Scholar 

  6. Lee TD, Schmidt RA. PaR (Plan-act-Review) golf: motor learning research and improving golf skills. Int J Golf Sci. 2014;3:2–25.

    Google Scholar 

  7. Griffiths JS. Optimal challenge point training for the post-stroke arm and hand: a randomized controlled pilot trial. Unpublished Master’s thesis, Faculty of Health Science, McMaster University, Hamilton, ON, Canada, 2009.

    Google Scholar 

  8. Pollock CL, Boyd LA, Hunt MA, Garland SJ. Use of the challenge point framework to guide motor learning of stepping reactions for improved balance control in people with stroke: a case series. Phys Ther. 2014;94:562–70.

    Article  PubMed  Google Scholar 

  9. Van der Loos M, Reinkensmeyer D. Health care and rehabilitation robotics. In: Siciliano B, Khatib O, editors. Springer handbook of robotics. Berlin Heidelberg. Springer; 2008. p. 1223–51.

    Google Scholar 

  10. Aisen ML, Krebs HI, Hogan N, McDowell F, Volpe B. The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. Arch Neurol. 1997;54:443–6.

    Article  CAS  PubMed  Google Scholar 

  11. Lum PS, Burgar CG, Shor PC, Majmundar M, Van der Loos M. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil. 2002;83:952–9.

    Article  PubMed  Google Scholar 

  12. Kahn LE, Zygman ML, Rymer WZ, Reinkensmeyer DJ. Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: a randomized controlled pilot study. J Neuroeng Rehabil. 2006;3:12.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dietz V, Colombo G, Jensen L, Baumgartner L. Locomotor capacity of spinal cord in paraplegic patients. Ann Neurol. 1995;37:574–82.

    Article  CAS  PubMed  Google Scholar 

  14. Uhlenbrock D, Sarkodie-Gyan T, Reiter F, Konrad M, Hesse S. Development of a servo-controlled gait trainer for the rehabilitation of non-ambulatory patients. Biomed Tech. 1997;42:196–202.

    Article  CAS  Google Scholar 

  15. Reinkensmeyer DJ, Housman SJ. If I can’t do it once, why do it a hundred times?: connecting volition to movement success in a virtual environment motivates people to exercise the arm after stroke. Proc Virtual Rehabil Conf. 2007:44–8.

    Google Scholar 

  16. Rowe JB. Benefits of robotic assistance for retraining finger movement ability after chronic stroke. Irvine: University of California; 2015.

    Google Scholar 

  17. Ryan R. Control and information in the intrapersonal sphere: an extension of cognitive evaluation theory. J Pers Soc Psychol. 1982;43:450–61.

    Article  Google Scholar 

  18. Hornby TG, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke. 2008;39:1786–92.

    Article  PubMed  Google Scholar 

  19. Hidler J, Nichols D, Pelliccio M, Brady K, Campbell DD, Kahn JH, Hornby TG. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair. 2009;23:5–13.

    Article  PubMed  Google Scholar 

  20. Wolbrecht ET, Chan V, Reinkensmeyer DJ, Bobrow JE. Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2008;16:286–97.

    Article  PubMed  Google Scholar 

  21. Reinkensmeyer DJ, Akoner OM, Ferris DP, Gordon KE. Slacking by the human motor system: computational models and implications for robotic orthoses. Proc 2009 IEEE Eng Med Biol Conf. 2009:2129–32.

    Google Scholar 

  22. Emken JL, Benitez R, Sideris A, Bobrow JE, Reinkensmeyer DJ. Motor adaptation as a greedy optimization of error and effort. J Neurophysiol. 2007;97:3997–4006.

    Article  PubMed  Google Scholar 

  23. Israel JF, Campbell DD, Kahn JH, Hornby TG. Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury. Phys Ther. 2006;86:1466–78.

    Article  PubMed  Google Scholar 

  24. Hu XL, Tong K-YY, Song R, Zheng XJ, Leung WWF. A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke. Neurorehabil Neural Repair. 2009;23:837–46.

    Article  CAS  PubMed  Google Scholar 

  25. Patton JL, Stoykov ME, Kovic M, Mussa-Ivaldi FA. Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp Brain Res. 2006;168:368–83.

    Article  PubMed  Google Scholar 

  26. Emken JL, Reinkensmeyer DJ. Robot-enhanced motor learning: accelerating internal model formation during locomotion by transient dynamic amplification. IEEE Trans Neural Syst Rehabil Eng. 2005;13:33–9.

    Article  PubMed  Google Scholar 

  27. Abdollahi F, Case Lazarro ED, Listenberger M, Kenyon RV, Kovic M, Bogey RA, Hedeker D, Jovanovic BD, Patton JL. Error augmentation enhancing arm recovery in individuals with chronic stroke: a randomized crossover design. Neurorehabil Neural Repair. 2014;28:120–8.

    Article  PubMed  Google Scholar 

  28. Duarte JE, Reinkensmeyer DJ. Effects of robotically modulating kinematic variability on motor skill learning and motivation. J Neurophysiol. 2015;113:2682–91.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Milot M-H, Marchal-Crespo L, Green CS, Cramer SC, Reinkensmeyer DJ. Comparison of error-amplification and haptic-guidance training techniques for learning of a timing-based motor task by healthy individuals. Exp Brain Res. 2010;201:119–31.

    Article  PubMed  Google Scholar 

  30. Marchal-Crespo L, van Raai M, Rauter G, Wolf P, Riener R. The effect of haptic guidance and visual feedback on learning a complex tennis task. Exp Brain Res. 2013;231:277–91.

    Article  PubMed  Google Scholar 

  31. Marchal-Crespo L, Schneider J, Jaeger L, Riener R. Learning a locomotor task: with or without errors? J Neuroeng Rehabil. 2014;11:25.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Marchal-Crespo L, López-Olóriz J, Jaeger L, Riener R. Optimizing learning of a locomotor task: amplifying errors as needed. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf. 2014;2014:5304–7.

    Google Scholar 

  33. Marchal-Crespo L, Reinkensmeyer DJ. Review of control strategies for robotic movement training after neurologic injury. J Neural Eng Rehabil. 2008;6:20.

    Article  Google Scholar 

  34. Taheri H, Rowe JB, Gardner D, Chan V, Gray K, Bower C, Reinkensmeyer DJ, Wolbrecht ET. Design and preliminary evaluation of the FINGER rehabilitation robot: controlling challenge and quantifying finger individuation during musical computer game play. J Neuroeng Rehabil. 2014;11:10.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Spencer SJ. Movement training and post-stroke rehabilitation using a six degree of freedom upper-extremity robotic orthosis and virtual environment. Irvine: University of California; 2011.

    Google Scholar 

  36. Choi Y, Gordon J, Park H, Schweighofer N. Feasibility of the adaptive and automatic presentation of tasks (ADAPT) system for rehabilitation of upper extremity function post-stroke. J Neuroeng Rehabil. 2011;8:42.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Caurin GAP, Siqueira AAG, Andrade KO, Joaquim RC, Krebs HI. Adaptive strategy for multi-user robotic rehabilitation games. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf. 2011;2011:1395–8.

    Google Scholar 

  38. Metzger J-C, Lambercy O, Califfi A, Dinacci D, Petrillo C, Rossi P, Conti FM, Gassert R. Assessment-driven selection and adaptation of exercise difficulty in robot-assisted therapy: a pilot study with a hand rehabilitation robot. J Neuroeng Rehabil. 2014;11:154.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zimmerli L, Krewer C, Gassert R, Müller F, Riener R, Lünenburger L. Validation of a mechanism to balance exercise difficulty in robot-assisted upper-extremity rehabilitation after stroke. J Neuroeng Rehabil. 2012;9:6.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lohse KR, Lang CE, Boyd LA. Is more better? Using metadata to explore dose-response relationships in stroke rehabilitation. Stroke. 2014;45:2053–8.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Duarte JE. Effects of robotic challenge level on motor learning, rehabilitation, and motivation: the real-world challenge point framework. Irvine: University of California; 2014.

    Google Scholar 

  42. Inkpen P, Parker K, Kirby RL. Manual wheelchair skills capacity versus performance. Arch Phys Med Rehabil. 2012;93:1009–13.

    Article  PubMed  Google Scholar 

  43. Bailey RR, Klaesner JW, Lang CE. Quantifying real-world upper-limb activity in nondisabled adults and adults with chronic stroke. Neurorehabil Neural Repair. 2015.

    Google Scholar 

  44. Bandura A. Self-efficacy: the exercise of control. New York: US. Times Books; 1997.

    Google Scholar 

  45. Chiviacowsky S, Wulf G, Lewthwaite R. Self-controlled learning: the importance of protecting perceptions of competence. Front Psychol. 2012;3:458.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chiviacowsky S. Self-controlled practice: autonomy protects perceptions of competence and enhances motor learning. Psychol Sport Exerc. 2014;15:505–10.

    Article  Google Scholar 

  47. O’Leary A. Self-efficacy and health. Behav Res Ther. 1985;23:437–51.

    Article  PubMed  Google Scholar 

  48. McAuley E, Lox C, Duncan TE. Long-term maintenance of exercise, self-efficacy, and physiological change in older adults. J Gerontol. 1993;48:218–24.

    Article  Google Scholar 

  49. Robinson-Smith G, Johnston MV, Allen J. Self-care self-efficacy, quality of life, and depression after stroke. Arch Phys Med Rehabil. 2000;81:460–4.

    Article  CAS  PubMed  Google Scholar 

  50. Hampton NZ. Subjective well-being among people with spinal cord injuries: the role of self-efficacy, perceived social support, and perceived health. Rehabil Couns Bull. 2004;48:31–7.

    Article  Google Scholar 

  51. Middleton J, Tran Y, Craig A. Relationship between quality of life and self-efficacy in persons with spinal cord injuries. Arch Phys Med Rehabil. 2007;88:1643–8.

    Article  PubMed  Google Scholar 

  52. Hellström K, Lindmark B, Wahlberg B, Fugl-Meyer AR. Self-efficacy in relation to impairments and activities of daily living disability in elderly patients with stroke: a prospective investigation. J Rehabil Med. 2003;35:202–7.

    Article  PubMed  Google Scholar 

  53. Kwakkel G, Kollen BJ, Wagenaar RC. Long term effects of intensity of upper and lower limb training after stroke: a randomised trial. J Neurol Neurosurg Psychiatry. 2002;72:473–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Bandura A. Self-efficacy mechanism in human agency. Am Psychol Am Psychol Assoc. 1982;37:122.

    Google Scholar 

  55. Feltz DL, Lirgg CD. Self-efficacy beliefs of athletes, teams, and coaches. Handb Sport Psychol. 2001;2:340–61.

    Google Scholar 

  56. Schweighofer N, Han CE, Wolf SL, Arbib MA, Winstein CJ. A functional threshold for long-term use of hand and arm function can be determined: predictions from a computational model and supporting data from the Extremity Constraint-Induced Therapy Evaluation (EXCITE) trial. Phys Ther. 2009;89:1327–36.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bohannon RW. Strength deficits also predict gait performance in patients with stroke. Percept Mot Skills. 1991;73:146.

    Article  CAS  PubMed  Google Scholar 

  58. Bohannon RW, Hull D, Palmeri D. Muscle strength impairments and gait performance deficits in kidney transplantation candidates. Am J Kidney Dis. 1994;24:480–5.

    Article  CAS  PubMed  Google Scholar 

  59. Kim CM, Eng JJ. The relationship of lower-extremity muscle torque to locomotor performance in people with stroke. Phys Ther. 2003;83:49–57.

    PubMed  Google Scholar 

  60. Milot M-H, Nadeau S, Gravel D, Bourbonnais D. Effect of increases in plantar flexor and hip flexor muscle strength on the levels of effort during gait in individuals with hemiparesis. Clin Biomech (Bristol, Avon). 2008;23:415–23.

    Article  Google Scholar 

  61. Nadeau S, Gravel D, Arsenault AB, Bourbonnais D. A mechanical model to study the relationship between gait speed and muscular strength. IEEE Trans Rehabil Eng. 1996;4:386–94.

    Article  CAS  PubMed  Google Scholar 

  62. Richards CL, Malouin F, Wood-Dauphinee S, Williams JI, Bouchard JP, Brunet D. Task-specific physical therapy for optimization of gait recovery in acute stroke patients. Arch Phys Med Rehabil. 1993;74:612–20.

    Article  CAS  PubMed  Google Scholar 

  63. Bohannon RW. Walking after stroke: comfortable versus maximum safe speed. Int J Rehabil Res. 1992;15:246–8.

    Article  CAS  PubMed  Google Scholar 

  64. Jonkers I, Delp S, Patten C. Capacity to increase walking speed is limited by impaired hip and ankle power generation in lower functioning persons post-stroke. Gait Posture. 2009;29:129–37.

    Article  CAS  PubMed  Google Scholar 

  65. Jonsdottir J, Recalcati M, Rabuffetti M, Casiraghi A, Boccardi S, Ferrarin M. Functional resources to increase gait speed in people with stroke: strategies adopted compared to healthy controls. Gait Posture. 2009;29:355–9.

    Article  CAS  PubMed  Google Scholar 

  66. Turnbull GI, Charteris J, Wall JC. A comparison of the range of walking speeds between normal and hemiplegic subjects. Scand J Rehabil Med. 1995;27:175–82.

    CAS  PubMed  Google Scholar 

  67. Bohannon RW. Comfortable and maximum walking speed of adults aged 20–79 years: reference values and determinants. Age Ageing. 1997;26:15–9.

    Article  CAS  PubMed  Google Scholar 

  68. Kollen B, Kwakkel G, Lindeman E. Hemiplegic gait after stroke: is measurement of maximum speed required? Arch Phys Med Rehabil. 2006;87:358–63.

    Article  PubMed  Google Scholar 

  69. Capó-Lugo CE, Mullens CH, Brown DA. Maximum walking speeds obtained using treadmill and overground robot system in persons with post-stroke hemiplegia. J Neuroeng Rehabil. 2012;9:80.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mackintosh SF, Hill KD, Dodd KJ, Goldie PA, Culham EG. Balance score and a history of falls in hospital predict recurrent falls in the 6 months following stroke rehabilitation. Arch Phys Med Rehabil. 2006;87:1583–9.

    Article  PubMed  Google Scholar 

  71. Sackley CM. Falls, sway, and symmetry of weight-bearing after stroke. Int Disabil Stud. 1991;13:1–4.

    Article  CAS  PubMed  Google Scholar 

  72. Rapport LJ, Webster JS, Flemming KL, Lindberg JW, Godlewski MC, Brees JE, Abadee PS. Predictors of falls among right-hemisphere stroke patients in the rehabilitation setting. Arch Phys Med Rehabil. 1993;74:621–6.

    Article  CAS  PubMed  Google Scholar 

  73. Mayo NE, Korner-Bitensky N, Kaizer F. Relationship between response time and falls among stroke patients undergoing physical rehabilitation. Int J Rehabil Res. 1990;13:47–55.

    Article  CAS  PubMed  Google Scholar 

  74. Cheng PT, Liaw MY, Wong MK, Tang FT, Lee MY, Lin PS. The sit-to-stand movement in stroke patients and its correlation with falling. Arch Phys Med Rehabil. 1998;79:1043–6.

    Article  CAS  PubMed  Google Scholar 

  75. Forster A, Young J. Incidence and consequences of falls due to stroke: a systematic inquiry. BMJ. 1995;311:83–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hyndman D, Ashburn A, Stack E. Fall events among people with stroke living in the community: circumstances of falls and characteristics of fallers. Arch Phys Med Rehabil. 2002;83:165–70.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Brown PT, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Brown, D.A., Lee, T.D., Reinkensmeyer, D.J., Duarte, J.E. (2016). Designing Robots That Challenge to Optimize Motor Learning. In: Reinkensmeyer, D., Dietz, V. (eds) Neurorehabilitation Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-28603-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28603-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28601-3

  • Online ISBN: 978-3-319-28603-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics