Skip to main content

HNSCC Biomarkers Derived from Key Processes of Cancerogenesis

  • Chapter
  • First Online:
Targeting Oral Cancer

Abstract

Head and neck squamous cell carcinoma (HNSCC) is one of the most frequent aggressive cancers in humans. Well-known risk factors include HPV infection, tobacco smoking, and alcohol consumption. HNSCC overall survival rate is one of the lowest among human malignancies. The poor prognosis of HNSCC often results from late-stage diagnosis, therapeutic resistance, high rates of recurrence, and frequent metastases to lymph nodes. To date, the TNM classification is still the best evaluation of disease progress; however, this method of staging does not pay attention to the molecular basis of tumorigenesis. An improvement in treatment efficacy and diagnostic capabilities will be realized through a better understanding of the pathogenesis and characteristics of HNSCC, a disease that has come to be characterized by confounding heterogeneity. This chapter is focused on molecular markers derived from key processes of cancerogenesis that are involved in metastasis, treatment resistance, avoidance of immune detection, inflammation, induction of angiogenesis, genome instability, dysregulation of cellular energetics, cell death, cancer stem cell biology, and rearrangement of tissues adjacent to the tumor. We will discuss biomarkers identified at different levels of cellular regulation (DNA, RNA, miRNA, and protein markers).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. doi:10.1016/j.cell.2011.02.013.

    Article  PubMed  Google Scholar 

  2. Erenpreisa J, Cragg MS. Three steps to the immortality of cancer cells: senescence, polyploidy and self-renewal. Cancer Cell Int. 2013;13:92. doi:10.1186/1475-2867-13-92.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Kalyankrishna S, Grandis JR. Epidermal growth factor receptor biology in head and neck cancer. J Clin Oncol. 2006;24(17):2666–72. doi:10.1200/jco2005.04.8306.

    Article  PubMed  Google Scholar 

  4. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2(2):127–37. doi:10.1038/35052073.

    Article  PubMed  Google Scholar 

  5. Pedrero JMG, Carracedo DG, Pinto CM, Zapatero AH, Rodrigo JP, Nieto CS, et al. Frequent genetic and biochemical alterations of the PI3-K/AKT/PTEN pathway in head and neck squamous cell carcinoma. Int J Cancer. 2005;114(2):242–8. doi:10.1002/ijc.20711.

    Article  PubMed  Google Scholar 

  6. Molinolo AA, Amornphimoltham P, Squarize CH, Castilho RM, Patel V, Gutkind JS. Dysregulated molecular networks in head and neck carcinogenesis. Oral Oncol. 2009;45(4–5):324–34. doi:10.1016/j.oraloncology.2008.07.011.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Chang SE, Bhatia P, Johnson NW, Morgan PR, McCormick F, Young B, et al. RAS mutations in united-kingdom examples of oral malignancies are infrequent. Int J Cancer. 1991;48(3):409–12. doi:10.1002/ijc.2910480318.

    Article  PubMed  Google Scholar 

  8. White RA, Malkoski SP, Wang XJ. TGF beta signaling in head and neck squamous cell carcinoma. Oncogene. 2010;29(40):5437–46. doi:10.1038/onc.2010.306.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Saranath D, Chang SE, Bhoite LT, Panchal RG, Kerr IB, Mehta AR, et al. High-frequency mutation in codons 12 and 61 of h-RAS oncogene in chewing tobacco-related human oral-carcinoma in India. Br J Cancer. 1991;63(4):573–8. doi:10.1038/bjc.1991.133.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Lu SL, Herrington H, Reh D, Weber S, Bornstein S, Wang D, et al. Loss of transforming growth factor-beta type II receptor promotes metastatic head-and-neck squamous cell carcinoma. Genes Dev. 2006;20(10):1331–42. doi:10.1101/gad.1413306.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Grandis JR, Tweardy DJ. Elevated levels of transforming growth-factor-alpha and epidermal growth-factor receptor messenger-rna are early markers of carcinogenesis in head and neck-cancer. Cancer Res. 1993;53(15):3579–84.

    PubMed  Google Scholar 

  12. Grandis JR, Melhem MF, Gooding WE, Day R, Holst VA, Wagener MM, et al. Levels of TGF-alpha and EGFR protein in head and neck squamous cell carcinoma and patient survival. J Natl Cancer Inst. 1998;90(11):824–32. doi:10.1093/jnci/90.11.824.

    Article  Google Scholar 

  13. Ang KK, Berkey BA, Tu XY, Zhang HZ, Katz R, Hammond EH, et al. Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. Cancer Res. 2002;62(24):7350–6.

    PubMed  Google Scholar 

  14. Grandis JR, Tweardy DJ, Melhem MF. Asynchronous modulation of transforming growth factor alpha and epidermal growth factor receptor protein expression in progression of premalignant lesions to head and neck squamous cell carcinoma. Clin Cancer Res. 1998;4(1):13–20.

    Google Scholar 

  15. Polanska H, Raudenska M, Gumulec J, Sztalmachova M, Adam V, Kizek R, et al. Clinical significance of head and neck squamous cell cancer biomarkers. Oral Oncol. 2014;50(3):168–77. doi:10.1016/j.oraloncology.2013.12.008.

    Article  PubMed  Google Scholar 

  16. Loeffler-Ragy J, Witsch-Baumgartner M, Tzankov A, Hilbe W, Schwentner I, Sprinzl GM, et al. Low incidence of mutations in EGFR kinase domain in Caucasian patients with head and neck squamous cell carcinoma. Eur J Cancer. 2006;42(1):109–11. doi:10.1016/j.ejca.2005.08.034.

    Article  Google Scholar 

  17. Schwentner I, Witsch-Baumgartner M, Sprinzi GM, Krugmann J, Tzarl A, Jank S, et al. Identification of the rare EGFR mutation p.G796S as somatic and germline mutation in white patients with squamous cell carcinoma of the head and neck. Head Neck. 2008;30(8):1040–4. doi:10.1002/hed.20831.

    Article  PubMed  Google Scholar 

  18. Cassell A, Grandis JR. Investigational EGFR-targeted therapy in head and neck squamous cell carcinoma. Expert Opin Investig Drugs. 2010;19(6):709–22. doi:10.1517/13543781003769844.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Heinrich PC, Behrmann I, Muller-Newen G, Schaper F, Graeve L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J. 1998;334:297–314.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Sriuranpong V, Park JI, Amornphimoltham P, Patel V, Nelkin BD, Gutkind JS. Epidermal growth factor receptor-independent constitutive activation of STAT3 in head and neck squamous cell carcinoma is mediated by the autocrine/paracrine stimulation of the interleukin 6/gp130 cytokine system. Cancer Res. 2003;63(11):2948–56.

    PubMed  Google Scholar 

  21. Thomas SM, Bhola NE, Zhang Q, Contrucci SC, Wentzel AL, Freilino ML, et al. Cross-talk between G protein-coupled receptor and epidermal growth factor receptor signaling pathways contributes to growth and invasion of head and neck squamous cell carcinoma. Cancer Res. 2006;66(24):11831–9. doi:10.1158/0008-5472.can-06-2876.

    Article  PubMed  Google Scholar 

  22. von Manstein V, Yang CM, Richter D, Delis N, Vafaizadeh V, Groner B. Resistance of cancer cells to targeted therapies through the activation of compensating signaling loops. Curr Signal Transduct Ther. 2013;8(3):193–202.

    Article  Google Scholar 

  23. Logue JS, Morrison DK. Complexity in the signaling network: insights from the use of targeted inhibitors in cancer therapy. Genes Dev. 2012;26(7):641–50. doi:10.1101/gad.186965.112.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Limesand KH, Chibly AM, Fribley A. Impact of targeting insulin-like growth factor signaling in head and neck cancers. Growth Horm IGF Res. 2013;23(5):135–40. doi:10.1016/j.ghir.2013.06.001.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Switzer CH, Cheng RY, Vitek TM, Christensen DJ, Wink DA, Vitek MP. Targeting SET/I(2)PP2A oncoprotein functions as a multi-pathway strategy for cancer therapy. Oncogene. 2011;30(22):2504–13. doi:10.1038/onc.2010.622.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Patel V, Hood BL, Molinolo A, Lee NH, Conrads TP, Braisted JC, et al. Proteomic analysis of laser-captured paraffin-embedded tissues: a molecular portrait of head and neck cancer progression. Clin Cancer Res. 2008;14(4):1002–14. doi:10.1158/1078-0432.ccr-07-1497.

    Article  PubMed  Google Scholar 

  27. Leopoldino AM, Squarize CH, Garcia CB, Almeida LO, Pestana CR, Sobral LM, et al. SET protein accumulates in HNSCC and contributes to cell survival: antioxidant defense, Akt phosphorylation and AVOs acidification. Oral Oncol. 2012;48(11):1106–13. doi:10.1016/j.oraloncology.2012.05.014.

    Article  PubMed  Google Scholar 

  28. ten Klooster JP, von Leeuwen I, Scheres N, Anthony EC, Hordijk PL. Rac1-induced cell migration requires membrane recruitment of the nuclear oncogene SET. Embo J. 2007;26(2):336–45. doi:10.1038/sj.emboj.7601518.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Seo SB, McNamara P, Heo S, Turner A, Lane WS, Chakravarti D. Regulation of histone acetylation and transcription by INHAT, a human cellular complex containing the set oncoprotein. Cell. 2001;104(1):119–30. doi:10.1016/s0092-8674(01)00196-9.

    Article  PubMed  Google Scholar 

  30. Sobral LM, Sousa LO, Coletta RD, Cabral H, Greene LJ, Tajara EH, et al. Stable SET knockdown in head and neck squamous cell carcinoma promotes cell invasion and the mesenchymal-like phenotype in vitro, as well as necrosis, cisplatin sensitivity and lymph node metastasis in xenograft tumor models. Mol Cancer. 2014;13:32. doi:10.1186/1476-4598-13-32.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Ouchida AT, Uyemura VT, Leopoldino AM, Curti C. Potential SET protein involvement in autophagy in cancer. Faseb J. 2013;27.

    Google Scholar 

  32. Xi Y, Garshott DM, Brownell AL, Yoo GH, Lin HS, Freeburg TL, et al. Cantharidins induce ER stress and a terminal unfolded protein response in OSCC. J Dent Res. 2015;94(2):320–9. doi:10.1177/0022034514559376.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Masuda M, Suzui M, Yasumatu R, Nakashima T, Kuratomi Y, Azuma K, et al. Constitutive activation of signal transducers and activators of transcription 3 correlates with cyclin D1 overexpression and may provide a novel prognostic marker in head and neck squamous cell carcinoma. Cancer Res. 2002;62(12):3351–5.

    PubMed  Google Scholar 

  34. Kijima T, Niwa H, Steinman RA, Drenning SD, Gooding WE, Wentzel AL, et al. STAT3 activation abrogates growth factor dependence and contributes to head and neck squamous cell carcinoma tumor growth in vivo. Cell Growth Differ. 2002;13(8):355–62.

    PubMed  Google Scholar 

  35. Grandis JR, Drenning SD, Zeng Q, Watkins SC, Melhem MF, Endo S, et al. Constitutive activation of Stat3 signaling abrogates apoptosis in squamous cell carcinogenesis in vivo. Proc Natl Acad Sci U S A. 2000;97(8):4227–32. doi:10.1073/pnas.97.8.4227.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Huang S. Regulation of metastases by signal transducer and activator of transcription 3 signaling pathway: clinical implications. Clin Cancer Res. 2007;13(5):1362–6. doi:10.1158/1078-0432.ccr-06-2313.

    Article  PubMed  Google Scholar 

  37. Kannappan R, Yadav VR, Aggarwal BB. gamma-Tocotrienol but not gamma-tocopherol blocks STAT3 cell signaling pathway through induction of protein-tyrosine phosphatase SHP-1 and sensitizes tumor cells to chemotherapeutic agents. J Biol Chem. 2010;285(43):33520–8. doi:10.1074/jbc.M110.158378.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Sato J, Goto J, Murata T, Kitamori S, Yamazaki Y, Satoh A, et al. Changes in saliva interleukin-6 levels in patients with oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;110(3):330–6. doi:10.1016/j.tripleo.2010.03.040.

    Article  PubMed  Google Scholar 

  39. Chen Z, Malhotra PS, Thomas GR, Ondrey PG, Duffey DC, Smith CW, et al. Expression of proinflammatory and proangiogenic cytokines in patients with head and neck cancer. Clin Cancer Res. 1999;5(6):1369–79.

    PubMed  Google Scholar 

  40. Sato J, Ohuchi M, Abe K, Satoh T, Abe T, Yamazaki Y, et al. Correlation between salivary interleukin-6 levels and early locoregional recurrence in patients with oral squamous cell carcinoma: preliminary study. Head Neck. 2013;35(6):889–94. doi:10.1002/hed.23056.

    Article  PubMed  Google Scholar 

  41. Duffy SA, Taylor JMG, Terrell JE, Islam M, Li Y, Fowler KE, et al. Interleukin-6 predicts recurrence and survival among head and neck cancer patients. Cancer. 2008;113(4):750–7. doi:10.1002/cncr.23615.

    Article  PubMed  Google Scholar 

  42. Brailo V, Vucicevic-Boras V, Cekic-Arambasin A, Alajbeg IZ, Milenovic A, Lukac J. The significance of salivary interleukin 6 and tumor necrosis factor alpha in patients with oral leukoplakia. Oral Oncol. 2006;42(4):370–3. doi:10.1016/j.oraloncology.2005.09.001.

    Article  PubMed  Google Scholar 

  43. Rhodus NL, Ho V, Miller CS, Myers S, Ondrey F. NF-kappaB dependent cytokine levels in saliva of patients with oral preneoplastic lesions and oral squamous cell carcinoma. Cancer Detect Prev. 2005;29(1):42–5. doi:10.1016/j.cdp.2004.10.003.

    Article  PubMed  Google Scholar 

  44. St John MAR, Li Y, Zhou XF, Denny P, Ho CM, Montemagno C, et al. Interleukin 6 and interleukin 8 as potential biomarkers for oral cavity and oropharyngeal squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 2004;130(8):929–35. doi:10.1001/archotol.130.8.929.

    Article  PubMed  Google Scholar 

  45. Chang KP, Kao HK, Wu CC, Fang KH, Chang YL, Huang YC, et al. Pretreatment interleukin-6 serum levels Are associated with patient survival for oral cavity squamous cell carcinoma. Otolaryngol Head Neck Surg. 2013;148(5):786–91. doi:10.1177/0194599813478573.

    Article  PubMed  Google Scholar 

  46. Zushi SI, Shinomura Y, Kiyohara T, Miyazaki Y, Kondo S, Sugimachi M, et al. Stat3 mediates the survival signal in oncogenic ras-transfected intestinal epithelial cells. Int J Cancer. 1998;78(3):326–30. doi:10.1002/(sici)1097-0215(19981029)78:3<326::aid-ijc12>3.0.co;2-4.

    Article  PubMed  Google Scholar 

  47. Lee TL, Yeh J, Van Waes C, Chen Z. Epigenetic modification of SOCS-1 differentially regulates STAT3 activation in response to interleukin-6 receptor and epidermal growth factor receptor signaling through JAK and/or MEK in head and neck squamous cell carcinomas. Mol Cancer Ther. 2006;5(1):8–19. doi:10.1158/1535-7163.mct-05-0069.

    Article  PubMed  Google Scholar 

  48. Allen MB, Zhang H, Ai L, Vural EA, Fan C. Promoter hypermethylation of SOCS1 gene, a negative regulator of EGFR-signaling pathway, significantly reduces the survival in patients with HNSCC. Lab Invest. 2014;94:314A–5.

    Article  Google Scholar 

  49. Weber A, Hengge UR, Bardenheuer W, Tischoff I, Sommerer F, Markwarth A, et al. SOCS-3 is frequently methylated in head and neck squamous cell carcinoma and its precursor lesions and causes growth inhibition. Oncogene. 2005;24(44):6699–708. doi:10.1038/sj.onc.1208818.

    Article  PubMed  Google Scholar 

  50. Rossa Jr C, Sommer G, Spolidorio LC, Rosenzweig SA, Watson DK, Kirkwood KL. Loss of expression and function of SOCS3 is an early event in HNSCC: altered subcellular localization as a possible mechanism involved in proliferation, migration and invasion. PLoS One. 2012;7(9):e45197. doi:10.1371/journal.pone.0045197.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Collado M, Serrano M. Senescence in tumours: evidence from mice and humans. Nat Rev Cancer. 2010;10(1):51–7. doi:10.1038/nrc2772.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Lowe SW, Cepero E, Evan G. Intrinsic tumour suppression. Nature. 2004;432(7015):307–15. doi:10.1038/nature03098.

    Article  PubMed  Google Scholar 

  53. Curry JM, Tuluc M, Whitaker-Menezes D, Ames JA, Anantharaman A, Butera A, et al. Cancer metabolism, stemness and tumor recurrence: MCT1 and MCT4 are functional biomarkers of metabolic symbiosis in head and neck cancer. Cell Cycle. 2013;12(9):1371–84. doi:10.4161/cc.24092.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Couture C, Raybaud-Diogene H, Tetu B, Bairati I, Murry D, Allard J, et al. p53 and Ki-67 as markers of radioresistance in head and neck carcinoma. Cancer. 2002;94(3):713–22. doi:10.1002/cncr.10232.

    Article  PubMed  Google Scholar 

  55. Masood R, Hochstim C, Cervenka B, Zu S, Baniwal SK, Patel V, et al. A novel orthotopic mouse model of head and neck cancer and lymph node metastasis. Oncogenesis. 2013;2:e68. doi:10.1038/oncsis.2013.33.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Chung CH, Gillison ML. Human papillomavirus in head and neck cancer: its role in pathogenesis and clinical implications. Clin Cancer Res. 2009;15(22):6758–62. doi:10.1158/1078-0432.ccr-09-0784.

    Article  PubMed  Google Scholar 

  57. Vega-Pena A, Illades-Aguiar B, Flores-Alfaro E, Lopez-Bayghen E, Reyes-Maldonado E, Alarcon-Romero LD. Correlation between Ki-67 and telomerase expression with in situ hybridization for high-risk human papillomavirus. Arch Biol Sci. 2013;65(1):81–90. doi:10.2298/abs1301081p.

    Article  Google Scholar 

  58. Lajer CB, Garns E, Friis-Hansen L, Norrild B, Therkildsen MH, Glud M, et al. The role of miRNAs in human papilloma virus (HPV)-associated cancers: bridging between HPV-related head and neck cancer and cervical cancer. Br J Cancer. 2012;106(9):1526–34. doi:10.1038/bjc.2012.109.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Westra WH, Taube JM, Poeta ML, Begum S, Sidransky D, Koch WM. Inverse relationship between human papillomavirus-16 infection and disruptive p53 gene mutations in squamous cell carcinoma of the head and neck. Clin Cancer Res. 2008;14(2):366–9. doi:10.1158/1078-0432.ccr-07-1402.

    Article  PubMed  Google Scholar 

  60. Gillison ML, Shah KV. Human papillomavirus-associated head and neck squamous cell carcinoma: mounting evidence for an etiologic role for human papillomavirus in a subset of head and neck cancers. Curr Opin Oncol. 2001;13(3):183–8. doi:10.1097/00001622-200105000-00009.

    Article  PubMed  Google Scholar 

  61. Dong SM, Sun DI, Benoit NE, Kuzmin I, Lerman MI, Sidransky D. Epigenetic inactivation of RASSF1A in head and neck cancer. Clin Cancer Res. 2003;9(10):3635–40.

    PubMed  Google Scholar 

  62. Koutsimpelas D, Pongsapich W, Heinrich U, Mann S, Mann WJ, Brieger J. Promoter methylation of MGMT, MLH1 and RASSF1A tumor suppressor genes in head and neck squamous cell carcinoma: pharmacological genome demethylation reduces proliferation of head and neck squamous carcinoma cells. Oncol Rep. 2012;27(4):1135–41. doi:10.3892/or.2012.1624.

    PubMed Central  PubMed  Google Scholar 

  63. Yi B, Tan SX, Tang CE, Huang WG, Cheng AL, Li C, et al. Inactivation of 14-3-3 sigma by promoter methylation correlates with metastasis in nasopharyngeal carcinoma. J Cell Biochem. 2009;106(5):858–66. doi:10.1002/jcb.22051.

    Article  PubMed  Google Scholar 

  64. Jayasurya R, Sathyan KM, Lakshminarayanan K, Abraham T, Nalinakumari KR, Abraham EK, et al. Phenotypic alterations in Rb pathway have more prognostic influence than p53 pathway proteins in oral carcinoma. Mod Pathol. 2005;18(8):1056–66. doi:10.1038/modpathol.3800387.

    Article  PubMed  Google Scholar 

  65. Zolochevska O, Figueiredo ML. Expression of cell cycle regulator cdk2ap1 suppresses tumor cell phenotype by non-cell-autonomous mechanisms. Oral Oncol. 2009;45(9):E106–12. doi:10.1016/j.oraloncology.2009.05.001.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Matsuo K, Shintani S, Tsuji T, Nagata E, Lerman M, McBride J, et al. p12(DOC-1), a growth suppressor, associates with DNA polymerase alpha/primase. Faseb J. 2000;14(10):1318–24. doi:10.1096/fj.14.10.1318.

    Article  PubMed  Google Scholar 

  67. Kohno Y, Patel V, Kim Y, Tsuji T, Chin BR, Sun M, et al. Apoptosis, proliferation and p12(doc-1) profiles in normal, dysplastic and malignant squamous epithelium of the Syrian hamster cheek pouch model. Oral Oncol. 2002;38(3):274–80. doi:10.1016/s1368-8375(01)00055-0.

    Article  PubMed  Google Scholar 

  68. Figueiredo ML, Kim Y, St John MAR, Wong DTW. P12(CDK2-AP1) gene therapy strategy inhibits tumor growth in an in vivo mouse model of head and neck cancer. Clin Cancer Res. 2005;11(10):3939–48. doi:10.1158/1078-0432.ccr-04-2085.

    Article  PubMed  Google Scholar 

  69. Todd R, McBride J, Tsuji T, Donoff RB, Nagai M, Chou MY, et al. Deleted in oral cancer-1 (DOC-1), a novel oral tumor-suppressor gene. Faseb J. 1995;9(13):1362–70.

    PubMed  Google Scholar 

  70. Shintani S, Mihara M, Terakado N, Nakahara Y, Matsumura T, Kohno Y, et al. Reduction of p12(DOC-1) expression is a negative prognostic indicator in patients with surgically resected oral squamous cell carcinoma. Clin Cancer Res. 2001;7(9):2776–82.

    PubMed  Google Scholar 

  71. Bierie B, Moses HL. TGF beta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer. 2006;6(7):506–20. doi:10.1038/nrc1926.

    Article  PubMed  Google Scholar 

  72. Chaudhury A, Howe PH. The tale of transforming growth factor-beta (TGF beta) signaling: a soigne enigma. IUBMB Life. 2009;61(10):929–39. doi:10.1002/iub.239.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Lu SL, Reh D, Li AG, Woods J, Corless CL, Kulesz-Martin M, et al. Overexpression of transforming growth factor beta 1 in head and neck epithelia results in inflammation, angiogenesis, and epithelial hyperproliferation. Cancer Res. 2004;64(13):4405–10. doi:10.1158/0008-5472.can-04-1032.

    Article  PubMed  Google Scholar 

  74. Engel ME, Datta PK, Moses HL. Signal transduction by transforming growth factor-beta: a cooperative paradigm with extensive negative regulation. J Cell Biochem. 1998;30–31:111–22.

    Article  Google Scholar 

  75. Bian Y, Terse A, Du J, Hall B, Molinolo A, Zhang P, et al. Progressive tumor formation in mice with conditional deletion of TGF-beta signaling in head and neck epithelia is associated with activation of the PI3K/Akt pathway. Cancer Res. 2009;69(14):5918–26. doi:10.1158/0008-5472.can-08-4623.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Papadimitrakopoulou VA, Oh Y, El-Naggar A, Izzo J, Clayman G, Mao L. Presence of multiple incontiguous deleted regions at the long arm of chromosome 18 in head and neck cancer. Clin Cancer Res. 1998;4(3):539–44.

    PubMed  Google Scholar 

  77. Kim SK, Fan YH, Papadimitrakopoulou V, Clayman G, Hittelman WN, Hong WK, et al. DPC4, a candidate tumor suppressor gene, is altered infrequently in head and neck squamous cell carcinoma. Cancer Res. 1996;56(11):2519–21.

    PubMed  Google Scholar 

  78. Takebayashi S, Ogawa T, Jung KY, Muallem A, Mineta H, Fisher SG, et al. Identification of new minimally lost regions on 18q in head and neck squamous cell carcinoma. Cancer Res. 2000;60(13):3397–403.

    PubMed  Google Scholar 

  79. Bornstein S, White R, Malkoski S, Oka M, Han GW, Cleaver T, et al. Smad4 loss in mice causes spontaneous head and neck cancer with increased genomic instability and inflammation. J Clin Invest. 2009;119(11):3408–19. doi:10.1172/jci38854.

    PubMed Central  PubMed  Google Scholar 

  80. Wang D, Song HJ, Evans JA, Lang JC, Schuller DE, Weghorst CM. Mutation and downregulation of the transforming growth factor beta type II receptor gene in primary squamous cell carcinomas of the head and neck. Carcinogenesis. 1997;18(11):2285–90. doi:10.1093/carcin/18.11.2285.

    Article  PubMed  Google Scholar 

  81. Muro-Cacho CA, Anderson M, Cordero J, Munoz-Antonia T. Expression of transforming growth factor beta type II receptors in head and neck squamous cell carcinoma. Clin Cancer Res. 1999;5(6):1243–8.

    PubMed  Google Scholar 

  82. Garrigueantar L, Munozantonia T, Antonia SJ, Gesmonde J, Vellucci VF, Reiss M. Missense mutations of the transforming growth-factor-beta type-II receptor in human head and neck squamous carcinoma-cells. Cancer Res. 1995;55(18):3982–7.

    Google Scholar 

  83. Fukai Y, Fukuchi M, Masuda N, Osawa H, Kato H, Nakajima T, et al. Reduced expression of transforming growth factor-beta receptors is an unfavorable prognostic factor in human esophageal squamous cell carcinoma. Int J Cancer. 2003;104(2):161–6. doi:10.1002/ijc.10929.

    Article  PubMed  Google Scholar 

  84. Chu TH, Yang CC, Liu CJ, Lui MT, Lin SC, Chang KW. miR-211 promotes the progression of head and neck carcinomas by targeting TGF beta RII. Cancer Lett. 2013;337(1):115–24. doi:10.1016/j.canlet.2013.05.032.

    Article  PubMed  Google Scholar 

  85. Kang SH, Bang YJ, Im YH, Yang HK, Lee DA, Lee HY, et al. Transcriptional repression of the transforming growth factor-beta type I receptor gene by DNA methylation results in the development of TGF-beta resistance in human gastric cancer. Oncogene. 1999;18(51):7280–6. doi:10.1038/sj.onc.1203146.

    Article  PubMed  Google Scholar 

  86. Chen TP, Yan W, Wells RG, Rimm DL, McNiff J, Leffell D, et al. Novel inactivating mutations of transforming growth factor-beta type I receptor gene in head-and-neck cancer metastases. Int J Cancer. 2001;93(5):653–61. doi:10.1002/ijc.1381.

    Article  PubMed  Google Scholar 

  87. Korc M. Smad4: gatekeeper gene in head and neck squamous cell carcinoma. J Clin Invest. 2009;119(11):3208–12. doi:10.1172/jci41230.

    PubMed Central  PubMed  Google Scholar 

  88. Qiu W, Schonleben F, Li XJ, Su GH. Disruption of transforming growth factor beta-Smad signaling pathway in head and neck squamous cell carcinoma as evidenced by mutations of SMAD2 and SMAD4. Cancer Lett. 2007;245(1–2):163–70. doi:10.1016/j.canlet.2006.01.003.

    Article  PubMed Central  PubMed  Google Scholar 

  89. Kleeff J, Ishiwata T, Maruyama H, Friess H, Truong P, Buchler MW, et al. The TGF-beta signaling inhibitor Smad7 enhances tumorigenicity in pancreatic cancer. Oncogene. 1999;18(39):5363–72. doi:10.1038/sj.onc.1202909.

    Article  PubMed  Google Scholar 

  90. Yu EA, Weaver DR. Disrupting the circadian clock: gene-specific effects on aging, cancer, and other phenotypes. Aging US. 2011;3(5):479–93.

    Google Scholar 

  91. Yang X, Wood PA, Ansell CM, Quiton DFT, Oh E-Y, Du-Quiton J, et al. The circadian clock gene PER1 suppresses cancer cell proliferation and tumor growth at specific times of day. Chronobiol Int. 2009;26(7):1323–39. doi:10.3109/07420520903431301.

    Article  PubMed  Google Scholar 

  92. Fu LN, Pelicano H, Liu JS, Huang P, Lee CC. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell. 2002;111(1):41–50. doi:10.1016/s0092-8674(02)00961-3.

    Article  PubMed  Google Scholar 

  93. Chen ST, Choo KB, Hou MF, Yeh KT, Kuo SJ, Chang JG. Deregulated expression of the PER1, PER2 and PER3 genes in breast cancers. Carcinogenesis. 2005;26(7):1241–6. doi:10.1093/carcin/bgi075.

    Article  PubMed  Google Scholar 

  94. Cadenas C, van de Sandt L, Edlund K, Lohr M, Hellwig B, Marchan R, et al. Loss of circadian clock gene expression is associated with tumor progression in breast cancer. Cell Cycle. 2014;13(20):3282–91. doi:10.4161/15384101.2014.954454.

    Article  PubMed Central  PubMed  Google Scholar 

  95. Hu M-L, Yeh K-T, Lin P-M, Hsu C-M, Hsiao H-H, Liu Y-C, et al. Deregulated expression of circadian clock genes in gastric cancer. BMC Gastroenterol. 2014;14:67. doi:10.1186/1471-230x-14-67.

    Article  PubMed Central  PubMed  Google Scholar 

  96. Chen Z, Liu P, Li C, Yong L, Chen I, Liang W, et al. Deregulated Expression of the Clock Genes in Gliomas. Technol Cancer Res Treat. 2013;12(1):91–7. doi:10.7785/tcrt.2012.500250.

    Google Scholar 

  97. Hsu C-M, Lin P-M, Lai C-C, Lin H-C, Lin S-F, Yang M-Y. PER1 and CLOCK: potential circulating biomarkers for head and neck squamous cell carcinoma. Head Neck. 2014;36(7):1018–26. doi:10.1002/hed.23402.

    Article  PubMed  Google Scholar 

  98. Hsu CM, Lin SF, Lu CT, Lin PM, Yang MY. Altered expression of circadian clock genes in head and neck squamous cell carcinoma. Tumor Biol. 2012;33(1):149–55. doi:10.1007/s13277-011-0258-2.

    Article  Google Scholar 

  99. Morrison H, Sherman LS, Legg J, Banine F, Isacke G, Haipek CA, et al. The NF2 tumor suppressor gene product, merlin, mediates contact inhibition of growth through interactions with CD44. Genes Dev. 2001;15(8):968–80. doi:10.1101/gad.189601.

    Article  PubMed Central  PubMed  Google Scholar 

  100. Giovannini M, Robanus-Maandag E, van der Valk M, Niwa-Kawakita M, Abramowski V, Goutebroze L, et al. Conditional biallelic Nf2 mutation in the mouse promotes manifestations of human neurofibromatosis type 2. Genes Dev. 2000;14(13):1617–30.

    PubMed Central  PubMed  Google Scholar 

  101. McClatchey AI, Saotome I, Mercer K, Crowley D, Gusella JF, Bronson RT, et al. Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. Genes Dev. 1998;12(8):1121–33. doi:10.1101/gad.12.8.1121.

    Article  PubMed Central  PubMed  Google Scholar 

  102. Poli-Frederico RC, Bergamo NA, Reis PP, Kowalski LP, Zielenska M, Squire JA, et al. Chromosome 22q a frequent site of allele loss in head and neck carcinoma. Head Neck. 2000;22(6):585–90. doi:10.1002/1097-0347(200009)22:6<585::aid-hed7>3.0.co;2-4.

    Article  PubMed  Google Scholar 

  103. Tian X, Azpurua J, Hine C, Vaidya A, Myakishev-Rempel M, Ablaeva J, et al. High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature. 2013;499(7458):346–9. doi:10.1038/nature12234. U122.

    Article  PubMed Central  PubMed  Google Scholar 

  104. Tanabe KK, Nishi T, Saya H. Novel variants of CD44 arising from alternative splicing – changes in the CD44 alternative splicing pattern of MCF-7 breast-carcinoma cells treated with hyaluronidase. Mol Carcinog. 1993;7(4):212–20. doi:10.1002/mc.2940070403.

    Article  PubMed  Google Scholar 

  105. Harada H, Takahashi M. CD44-dependent intracellular and extracellular catabolism of hyaluronic acid by hyaluronidase-1 and-2. J Biol Chem. 2007;282(8):5597–607. doi:10.1074/jbc.M608358200.

    Article  PubMed  Google Scholar 

  106. Franzmann EJ, Reategui EP, Carraway KL, Hamilton KL, Weed DT, Goodwin WJ. Salivary soluble CD44: a potential molecular marker for head and neck cancer. Cancer Epidemiol Biomarkers Prev. 2005;14(3):735–9. doi:10.1158/1055-9965.epi-04-0546.

    Article  PubMed  Google Scholar 

  107. Franzmann EJ, Reategui EP, Pereira LHM, Pedroso F, Joseph D, Allen GO, et al. Salivary protein and solCD44 levels as a potential screening tool for early detection of head and neck squamous cell carcinoma. Head Neck. 2012;34(5):687–95. doi:10.1002/hed.21810.

    Article  PubMed Central  PubMed  Google Scholar 

  108. Franzmann EJ, Schroeder GL, Goodwin WJ, Weed DT, Fisher P, Lokeshwar VB. Expression of tumor markers hyaluronic acid and hyaluronidase (HYAL1) in head and neck tumors. Int J Cancer. 2003;106(3):438–45. doi:10.1002/ijc.11252.

    Article  PubMed  Google Scholar 

  109. Kothapalli D, Zhao L, Hawthorne EA, Cheng Y, Lee E, Pure E, et al. Hyaluronan and CD44 antagonize mitogen-dependent cyclin D1 expression in mesenchymal cells. J Cell Biol. 2007;176(4):535–44. doi:10.1083/jcb.200611058.

    Article  PubMed Central  PubMed  Google Scholar 

  110. Pure E, Assoian RK. Rheostatic signaling by CD44 and hyaluronan. Cell Signal. 2009;21(5):651–5. doi:10.1016/j.cellsig.2009.01.024.

    Article  PubMed Central  PubMed  Google Scholar 

  111. Kim CH, Koh YW, Han JH, Kim JW, Lee JS, Baek SJ, et al. C-MET expression as an indicator of survival outcome in patients with oral tongue carcinoma. Head Neck. 2010;32(12):1655–64. doi:10.1002/hed.21383.

    Article  PubMed  Google Scholar 

  112. Chen CH, Chien CY, Huang CC, Hwang CF, Chuang HC, Fang FM, et al. Expression of FLJ10540 is correlated with aggressiveness of oral cavity squamous cell carcinoma by stimulating cell migration and invasion through increased FOXM1 and MMP-2 activity. Oncogene. 2009;28(30):2723–37. doi:10.1038/onc.2009.128.

    Article  PubMed  Google Scholar 

  113. Huang SF, Cheng SD, Chuang WY, Chen IH, Liao CT, Wang HM, et al. Cyclin D1 overexpression and poor clinical outcomes in Taiwanese oral cavity squamous cell carcinoma. World J Surg Oncol. 2012;10:40. doi:10.1186/1477-7819-10-40.

    Article  PubMed Central  PubMed  Google Scholar 

  114. Hanken H, Grobe A, Cachovan G, Smeets R, Simon R, Sauter G, et al. CCND1 amplification and cyclin D1 immunohistochemical expression in head and neck squamous cell carcinomas. Clin Oral Investig. 2014;18(1):269–76. doi:10.1007/s00784-013-0967-6.

    Article  PubMed  Google Scholar 

  115. Koontongkaew S, Chareonkitkajorn L, Chanvitan A, Leelakriangsak M, Amornphimoltham P. Alterations of p53, pRb, cyclin D-1 and cdk4 in human oral and pharyngeal squamous cell carcinomas. Oral Oncol. 2000;36(4):334–9. doi:10.1016/s1368-8375(99)00093-7.

    Article  PubMed  Google Scholar 

  116. Uzawa N, Sonoda L, Myo K, Takahashi KI, Miyamoto R, Amagasa T. Fluorescence in situ hybridization for detecting genomic alterations of cyclin D1 and p16 in oral squamous cell carcinomas. Cancer. 2007;110(10):2230–9. doi:10.1002/cncr.23030.

    Article  PubMed  Google Scholar 

  117. Miyamoto R, Uzawa N, Nagaoka S, Hirata Y, Amagasa T. Prognostic significance of cyclin D1 amplification and overexpression in oral squamous cell carcinomas. Oral Oncol. 2003;39(6):610–8. doi:10.1016/s1368-8375(03)00048-4.

    Article  PubMed  Google Scholar 

  118. Rickman DS, Millon R, De Reynies A, Thomas E, Wasylyk C, Muller D, et al. Prediction of future metastasis and molecular characterization of head and neck squamous-cell carcinoma based on transcriptome and genome analysis by microarrays. Oncogene. 2008;27(51):6607–22. doi:10.1038/onc.2008.251.

    Article  PubMed  Google Scholar 

  119. Lee KD, Lee HH, Joo HB, Lee HS, Yu TH, Chang HK, et al. Expression of MAGE A 1–6 mRNA in sputa of head and neck cancer patients – a preliminary report. Anticancer Res. 2006;26(2B):1513–8.

    PubMed  Google Scholar 

  120. Kumar B, Cordell KG, Lee JS, Worden FP, Prince ME, Tran HH, et al. EGFR, p16, HPV titer, Bcl-xL and p53, sex, and smoking as indicators of response to therapy and survival in oropharyngeal cancer. J Clin Oncol. 2008;26(19):3128–37. doi:10.1200/jco.2007.12.7662.

    Article  PubMed Central  PubMed  Google Scholar 

  121. Suda T, Hama T, Kondo S, Yuza Y, Yoshikawa M, Urashima M, et al. Copy number amplification of the PIK3CA gene is associated with poor prognosis in non-lymph node metastatic head and neck squamous cell carcinoma. BMC Cancer. 2012;12:416. doi:10.1186/1471-2407-12-416.

    Article  PubMed Central  PubMed  Google Scholar 

  122. Fenic I, Steger K, Gruber C, Arens C, Woenckhaus J. Analysis of PIK3CA and Akt/protein kinase B in head and neck squamous cell carcinoma. Oncol Rep. 2007;18(1):253–9.

    PubMed  Google Scholar 

  123. van Houten VMM, Tabor MP, van den Brekel MWM, Kummer JA, Denkers F, Dijkstra J, et al. Mutated p53 as a molecular marker for the diagnosis of head and neck cancer. J Pathol. 2002;198(4):476–86. doi:10.1002/path.1242.

    Article  PubMed  Google Scholar 

  124. van Houten VMM, Leemans CR, Kummer JA, Dijkstra J, Kuik DJ, van den Brekel MWM, et al. Molecular diagnosis of surgical margins and local recurrence in head and neck cancer patients: a prospective study. Clin Cancer Res. 2004;10(11):3614–20. doi:10.1158/1078-0432.ccr-03-0631.

    Article  PubMed  Google Scholar 

  125. Lee JI, Soria JC, Hassan KA, El-Naggar AK, Tang X, Liu DD, et al. Loss of PTEN expression as a prognostic marker for tongue cancer. Arch Otolaryngol Head Neck Surg. 2001;127(12):1441–5.

    Article  PubMed  Google Scholar 

  126. Forastiere A, Koch W, Trotti A, Sidransky D. Medical progress – head and neck cancer. N Engl J Med. 2001;345(26):1890–900. doi:10.1056/NEJMra001375.

    Article  PubMed  Google Scholar 

  127. Nevins JR. E2F – a link between the rb tumor suppressor protein and viral oncoproteins. Science. 1992;258(5081):424–9.

    Article  PubMed  Google Scholar 

  128. Pande P, Mathur M, Shukla NK, Ralhan R. pRb and p16 protein alterations in human oral tumorigenesis. Oral Oncol. 1998;34(5):396–403.

    Article  PubMed  Google Scholar 

  129. Anagnostopoulos I, Hummel M. Epstein-Barr virus in tumours. Histopathology. 1996;29(4):297–315. doi:10.1111/j.1365-2559.1996.tb01414.x.

    Article  PubMed  Google Scholar 

  130. Lin JC, Wang WY, Liang WM, Chou HY, Jan JS, Jiang RS, et al. Long-term prognostic effects of plasma Epstein-Barr virus DNA by minor groove binder-probe real-time quantitative PCR on nasopharyngeal carcinoma patients receiving concurrent chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2007;68(5):1342–8. doi:10.1016/j.ijrobp.2007.02.012.

    Article  PubMed  Google Scholar 

  131. Moody CA, Laimins LA. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer. 2010;10(8):550–60. doi:10.1038/nrc2886.

    Article  PubMed  Google Scholar 

  132. Hussain SP, Harris CC. Inflammation and cancer: an ancient link with novel potentials. Int J Cancer. 2007;121(11):2373–80. doi:10.1002/ijc.23173.

    Article  PubMed  Google Scholar 

  133. Wang F, Arun P, Friedman J, Chen Z, Van Waes C. Current and potential inflammation targeted therapies in head and neck cancer. Curr Opin Pharmacol. 2009;9(4):389–95. doi:10.1016/j.coph.2009.06.005.

    Article  PubMed Central  PubMed  Google Scholar 

  134. Le Bitoux MA, Stamenkovic I. Tumor-host interactions: the role of inflammation. Histochem Cell Biol. 2008;130(6):1079–90. doi:10.1007/s00418-008-0527-3.

    Article  PubMed  Google Scholar 

  135. Ruttkay-Nedecky B, Nejdl L, Gumulec J, Zitka O, Masarik M, Eckschlager T, et al. The role of metallothionein in oxidative stress. Int J Mol Sci. 2013;14(3):6044–66. doi:10.3390/ijms14036044.

    Article  PubMed Central  PubMed  Google Scholar 

  136. Li XY, Chen HN, Epstein PN. Metallothionein protects islets from hypoxia and extends islet graft survival by scavenging most kinds of reactive oxygen species. J Biol Chem. 2004;279(1):765–71. doi:10.1074/jbc.M307907200.

    Article  PubMed  Google Scholar 

  137. Sato M, Bremner I. Oxygen free-radicals and metallothionein. Free Radic Biol Med. 1993;14(3):325–37. doi:10.1016/0891-5849(93)90029-t.

    Article  PubMed  Google Scholar 

  138. Ioachim E, Assimakopoulos D, Peschos D, Zissi A, Skevas A, Agnantis NJ. Immunohistochemical expression of metallothionein in benign premalignant and malignant epithelium of the larynx: correlation with p53 and proliferative cell nuclear antigen. Pathol Res Pract. 1999;195(12):809–14.

    Article  PubMed  Google Scholar 

  139. Sochor J, Hynek D, Krejcova L, Fabrik I, Krizkova S, Gumulec J, et al. Study of metallothionein role in spinocellular carcinoma tissues of head and neck tumours using Brdicka reaction. Int J Electrochem Sci. 2012;7(3):2136–52.

    Google Scholar 

  140. Krejcova L, Fabrik I, Hynek D, Krizkova S, Gumulec J, Ryvolova M, et al. Metallothionein electrochemically determined using Brdicka reaction as a promising blood marker of head and neck malignant tumours. Int J Electrochem Sci. 2012;7(3):1767–84.

    Google Scholar 

  141. Dutsch-Wicherek M, Lazar A, Tomaszewska R, Kazmierczak W, Wicherek L. Analysis of metallothionein and vimentin immunoreactivity in pharyngeal squamous cell carcinoma and its microenvironment. Cell Tissue Res. 2013;352(2):341–9. doi:10.1007/s00441-013-1566-1.

    Article  PubMed Central  PubMed  Google Scholar 

  142. Gumulec J, Raudenska M, Adam V, Kizek R, Masarik M. Metallothionein – immunohistochemical cancer biomarker: a meta-analysis. PLoS One. 2014;9(1):e85346. doi:10.1371/journal.pone.0085346.

    Article  PubMed Central  PubMed  Google Scholar 

  143. Hayes JD, McMahon M. NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci. 2009;34(4):176–88. doi:10.1016/j.tibs.2008.12.008.

    Article  PubMed  Google Scholar 

  144. Walter V, Yin XY, Wilkerson MD, Cabanski CR, Zhao N, Du Y, et al. Molecular subtypes in head and neck cancer exhibit distinct patterns of chromosomal gain and loss of canonical cancer genes. PLoS One. 2013;8(2):e56823. doi:10.1371/journal.pone.0056823.

    Article  PubMed Central  PubMed  Google Scholar 

  145. Stacy DR, Ely K, Massion PP, Yarbrough WG, Hallahan DE, Sekhar KR, et al. Increased expression of nuclear factor E2 P45-related factor 2 (NRF2) in head and neck squamous cell carcinomas. Head Neck. 2006;28(9):813–8. doi:10.1002/hed.20430.

    Article  PubMed  Google Scholar 

  146. Maeda S, Omata M. Inflammation and cancer: role of nuclear factor-kappaB activation. Cancer Sci. 2008;99(5):836–42. doi:10.1111/j.1349-7006.2008.00763.x.

    Article  PubMed  Google Scholar 

  147. Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell. 2010;39(4):493–506. doi:10.1016/j.molcel.2010.07.023.

    Article  PubMed Central  PubMed  Google Scholar 

  148. Alajez NM, Shi W, Wong D, Lenarduzzi M, Waldron J, Weinreb I, et al. Lin28b promotes head and neck cancer progression via modulation of the insulin-like growth factor survival pathway. Oncotarget. 2012;3(12):1641–52.

    Article  PubMed Central  PubMed  Google Scholar 

  149. Chen Z, Yan B, Van Waes C. The role of the NF-kappaB transcriptome and proteome as biomarkers in human head and neck squamous cell carcinomas. Biomark Med. 2008;2(4):409–26. doi:10.2217/17520363.2.4.409.

    Article  PubMed Central  PubMed  Google Scholar 

  150. Allen CT, Ricker JL, Chen Z, Van Waes C. Role of activated nuclear factor-kappaB in the pathogenesis and therapy of squamous cell carcinoma of the head and neck. Head Neck. 2007;29(10):959–71. doi:10.1002/hed.20615.

    Article  PubMed  Google Scholar 

  151. Zhang PL, Pellitteri PK, Law A, Gilroy PA, Wood GC, Kennedy TL, et al. Overexpression of phosphorylated nuclear factor-kappa B in tonsillar squamous cell carcinoma and high-grade dysplasia is associated with poor prognosis. Mod Pathol. 2005;18(7):924–32. doi:10.1038/modpathol.3800372.

    Article  PubMed  Google Scholar 

  152. Ondrey FG. Arachidonic acid metabolism: a primer for head and neck surgeons. Head Neck. 1998;20(4):334–49. doi:10.1002/(sici)1097-0347(199807)20:4<334::aid-hed9>3.0.co;2-#.

    Article  PubMed  Google Scholar 

  153. Tse GM, King AD, Yu AMC, Lam CCF, Chan AWH, Chen GG, et al. Correlation of biomarkers in head and neck squamous cell carcinoma. Otolaryngol Head Neck Surg. 2010;143(6):795–800. doi:10.1016/j.otohns.2010.08.028.

    Article  PubMed  Google Scholar 

  154. Camacho M, Leon X, Fernandez-Figueras MT, Quer M, Vila L. Prostaglandin E-2 pathway in head and neck squamous cell carcinoma. Head Neck. 2008;30(9):1175–81. doi:10.1002/hed.20850.

    Article  PubMed  Google Scholar 

  155. Mauro A, Lipari L, Leone A, Tortorici S, Burruano F, Provenzano S, et al. Expression of Cyclooxygenase-1 and Cyclooxygenase-2 in normal and pathological human oral mucosa. Folia Histochem Cytobiol. 2010;48(4):555–63. doi:10.2478/v10042-010-0066-3.

    PubMed  Google Scholar 

  156. Shureiqi I, Lippman SA. Lipoxygenase modulation to reverse carcinogenesis. Cancer Res. 2001;61(17):6307–12.

    PubMed  Google Scholar 

  157. Chan G, Boyle JO, Yang EK, Zhang F, Sacks PG, Shah JP, et al. Cyclooxygenase-2 expression is up-regulated in squamous cell carcinoma of the head and neck. Cancer Res. 1999;59(5):991–4.

    PubMed  Google Scholar 

  158. Sackett MK, Bairati I, Meyer F, Jobin E, Lussier S, Fortin A, et al. Prognostic significance of cyclooxygenase-2 overexpression in glottic cancer. Clin Cancer Res. 2008;14(1):67–73. doi:10.1158/1078-0432.ccr-07-2028.

    Article  PubMed  Google Scholar 

  159. Koontongkaew S. The tumor microenvironment contribution to development, growth, invasion and metastasis of head and neck squamous cell carcinomas. J Cancer. 2013;4(1):66–83. doi:10.7150/jca.5112.

    Article  PubMed Central  PubMed  Google Scholar 

  160. Cohen EG, Almahmeed T, Du BH, Golijanin D, Boyle JO, Soslow RA, et al. Microsomal prostaglandin E synthase-1 is overexpressed in head and neck squamous cell carcinoma. Clin Cancer Res. 2003;9(9):3425–30.

    PubMed  Google Scholar 

  161. Gallo O, Masini E, Bianchi B, Bruschini L, Paglierani M, Franchi A. Prognostic significance of cyclooxygenase-2 pathway and angiogenesis in head and neck squamous cell carcinoma. Hum Pathol. 2002;33(7):708–14. doi:10.1053/hupa.2002.125376.

    Article  PubMed  Google Scholar 

  162. D-s S, M-q Z, Xia M, Li L, Y-h J. The correlation between tumor-infiltrating Foxp3+ regulatory T cells and cyclooxygenase-2 expression and their association with recurrence in resected head and neck cancers. Med Oncol. 2012;29(2):707–13. doi:10.1007/s12032-011-9903-2.

    Article  Google Scholar 

  163. Koontongkaew S, Monthanapisut P, Saensuk T. Inhibition of arachidonic acid metabolism decreases tumor cell invasion and matrix metalloproteinase expression. Prostaglandins Other Lipid Mediat. 2010;93(3–4):100–8. doi:10.1016/j.prostaglandins.2010.07.002.

    Article  PubMed  Google Scholar 

  164. Wang Y-H, Wu M-W, Yang A-K, Zhang W-D, Sun J, Liu T-R, et al. COX-2 gene increases tongue cancer cell proliferation and invasion through VEGF-C pathway. Med Oncol. 2011;28:S360–6. doi:10.1007/s12032-010-9737-3.

    Article  PubMed  Google Scholar 

  165. Ghirelli C, Hagemann T. Targeting immunosuppression for cancer therapy. J Clin Invest. 2013;123(6):2355–7. doi:10.1172/jci69999.

    Article  PubMed Central  PubMed  Google Scholar 

  166. Kim R, Emi M, Tanabe K. Cancer cell immune escape and tumor progression by exploitation of anti-inflammatory and pro-inflammatory responses. Cancer Biol Ther. 2005;4(9):924–33.

    Article  PubMed  Google Scholar 

  167. Strome SE, Dong HD, Tamura H, Voss SG, Flies DB, Tamada K, et al. B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res. 2003;63(19):6501–5.

    PubMed  Google Scholar 

  168. Bergmann C, Strauss L, Wang Y, Szczepanski MJ, Lang S, Johnson JT, et al. T regulatory type 1 cells in squamous cell carcinoma of the head and neck: mechanisms of suppression and expansion in advanced disease. Clin Cancer Res. 2008;14(12):3706–15. doi:10.1158/1078-0432.ccr-07-5126.

    Article  PubMed Central  PubMed  Google Scholar 

  169. Young MRI, Wright MA, Lozano Y, Prechel MM, Benefield J, Leonetti JP, et al. Increased recurrence and metastasis in patients whose primary head and neck squamous cell carcinomas secreted granulocyte-macrophage colony-stimulating factor and contained CD34(+) natural suppressor cells. Int J Cancer. 1997;74(1):69–74. doi:10.1002/(sici)1097-0215(19970220)74:1<69::aid-ijc12>3.0.co;2-d.

    Article  PubMed  Google Scholar 

  170. Chikamatsu K, Sakakura K, Whiteside TL, Furuya N. Relationships between regulatory T cells and CD8+ effector populations in patients with squamous cell carcinoma of the head and neck. Head Neck. 2007;29(2):120–7. doi:10.1002/hed.20490.

    Article  PubMed  Google Scholar 

  171. Zheng SG, Wang JH, Gray JD, Soucier H, Horwitz DA. Natural and induced CD4(+)CD25(+) cells educate CD4(+)D25(−)cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10. J Immunol. 2004;172(9):5213–21.

    Article  PubMed  Google Scholar 

  172. Schaefer C, Kim GG, Albers A, Hoermann K, Myers EN, Whiteside TL. Characteristics of CD4+ CD25+ regulatory T cells in the peripheral circulation of patients with head and neck cancer. Br J Cancer. 2005;92(5):913–20. doi:10.1038/sj.bjc.6602407.

    Article  PubMed Central  PubMed  Google Scholar 

  173. Millrud CR, Kvarnhammar AM, Uddman R, Bjornsson S, Riesbeck K, Cardell LO. The activation pattern of blood leukocytes in head and neck squamous cell carcinoma is correlated to survival. PLoS One. 2012;7(12):e51120. doi:10.1371/journal.pone.0051120.

    Article  PubMed Central  PubMed  Google Scholar 

  174. Lodoen MB, Lanier LL. Viral modulation of NK cell immunity. Nat Rev Microbiol. 2005;3(1):59–69. doi:10.1038/nrmicro1066.

    Article  PubMed  Google Scholar 

  175. Wang S, Guo Z, Xia P, Liu T, Wang J, Li S, et al. Internalization of NK cells into tumor cells requires ezrin and leads to programmed cell-in-cell death. Cell Res. 2009;19(12):1350–62. doi:10.1038/cr.2009.114.

    Article  PubMed  Google Scholar 

  176. Lugini L, Matarrese P, Tinari A, Lozupone F, Federici C, Iessi E, et al. Cannibalism of live lymphocytes by human metastatic but not primary melanoma cells. Cancer Res. 2006;66(7):3629–38. doi:10.1158/0008-5472.can-05-3204.

    Article  PubMed  Google Scholar 

  177. Mhawech-Fauceglia P, Dulguerov P, Beck A, Bonet M, Allal AS. Value of ezrin, maspin and nm23-H1 protein expressions in predicting outcome of patients with head and neck squamous cell carcinoma treated with radical radiotherapy. J Clin Pathol. 2007;60(2):185–9. doi:10.1136/jcp.2006.036624.

    Article  PubMed Central  PubMed  Google Scholar 

  178. Xie L, Pries R, Kesselring R, Wulff S, Wollenberg B. Head and neck cancer triggers the internalization of TLR3 in natural killer cells. Int J Mol Med. 2007;20(4):493–9.

    PubMed  Google Scholar 

  179. Ferris RL, Whiteside TL, Ferrone S. Immune escape associated with functional defects in antigen-processing machinery in head and neck cancer. Clin Cancer Res. 2006;12(13):3890–5. doi:10.1158/1078-0432.ccr-05-2750.

    Article  PubMed  Google Scholar 

  180. Ogino T, Shigyo H, Ishii H, Katayama A, Miyokawa N, Harabuchi Y, et al. HLA class I antigen down-regulation in primary laryngeal squamous cell carcinoma lesions as a poor prognostic marker. Cancer Res. 2006;66(18):9281–9. doi:10.1158/0008-5472.can-06-0488.

    Article  PubMed  Google Scholar 

  181. Grandis JR, Falkner DM, Melhem MF, Gooding WE, Drenning SD, Morel PA. Human leukocyte antigen class I allelic and haplotype loss in squamous cell carcinoma of the head and neck: clinical and immunogenetic consequences. Clin Cancer Res. 2000;6(7):2794–802.

    PubMed  Google Scholar 

  182. Cho YA, Yoon HJ, Lee JI, Hong SP, Hong SD. Relationship between the expressions of PD-L1 and tumor-infiltrating lymphocytes in oral squamous cell carcinoma. Oral Oncol. 2011;47(12):1148–53. doi:10.1016/j.oraloncology.2011.08.007.

    Article  PubMed  Google Scholar 

  183. Kim JW, Wieckowski E, Taylor DD, Reichert TE, Watkins S, Whiteside TL. Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes. Clin Cancer Res. 2005;11(3):1010–20.

    PubMed  Google Scholar 

  184. Young MRI. Protective mechanisms of head and neck squamous cell carcinomas from immune assault. Head Neck. 2006;28(5):462–70. doi:10.1002/hed.20331.

    Article  PubMed  Google Scholar 

  185. Johnson SD, De Costa AM, Young MR. Effect of the premalignant and tumor microenvironment on immune cell cytokine production in head and neck cancer. Cancers (Basel). 2014;6(2):756–70. doi:10.3390/cancers6020756.

    Article  Google Scholar 

  186. Jewett A, Head C, Cacalano NA. Emerging mechanisms of immunosuppression in oral cancers. J Dent Res. 2006;85(12):1061–73.

    Article  PubMed  Google Scholar 

  187. Yang L, Pang Y, Moses HL. TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol. 2010;31(6):220–7. doi:10.1016/j.it.2010.04.002.

    Article  PubMed Central  PubMed  Google Scholar 

  188. Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol. 2009;182(8):4499–506. doi:10.4049/jimmunol.0802740.

    Article  PubMed Central  PubMed  Google Scholar 

  189. Wahl SM, Wen J, Moutsopoulos N. TGF-beta: a mobile purveyor of immune privilege. Immunol Rev. 2006;213:213–27. doi:10.1111/j.1600-065X.2006.00437.x.

    Article  PubMed  Google Scholar 

  190. Bronte V, Chappell DB, Apolloni E, Cabrelle K, Wang M, Hwu P, et al. Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8(+) T cell responses by dysregulating antigen-presenting cell maturation. J Immunol. 1999;162(10):5728–37.

    PubMed Central  PubMed  Google Scholar 

  191. Hambek M, Baghi M, Wagenblast J, Schmitt J, Baumann H, Knecht R. Inverse correlation between serum PGE2 and T classification in head and neck cancer. Head Neck. 2007;29(3):244–8. doi:10.1002/hed.20503.

    Article  PubMed  Google Scholar 

  192. Liss C, Fekete MJ, Hasina R, Lam CD, Lingen MW. Paracrine angiogenic loop between head-and-neck squamous-cell carcinomas and macrophages. Int J Cancer. 2001;93(6):781–5. doi:10.1002/ijc.1407.

    Article  PubMed  Google Scholar 

  193. Almand B, Resser JR, Lindman B, Nadaf S, Clark JI, Kwon ED, et al. Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res. 2000;6(5):1755–66.

    PubMed  Google Scholar 

  194. Gabrilovich DI, Chen HL, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med. 1996;2(10):1096–103. doi:10.1038/nm1096-1096.

    Article  PubMed  Google Scholar 

  195. Hartmann E, Wollenberg B, Rothenfusser S, Wagner M, Wellisch D, Mack B, et al. Identification and functional analysis of tumor-infiltrating plasmacytoid dendritic cells in head and neck cancer. Cancer Res. 2003;63(19):6478–87.

    PubMed  Google Scholar 

  196. Kaskas NM, Moore-Medlin T, McClure GB, Ekshyyan O, Vanchiere JA, Nathan CAO. Serum biomarkers in head and neck squamous cell cancer. JAMA Otolaryngol Head Neck Surg. 2014;140(1):5–11. doi:10.1001/jamaoto.2013.5688.

    Article  PubMed  Google Scholar 

  197. Trellakis S, Bruderek K, Dumitru CA, Gholaman H, Gu X, Bankfalvi A, et al. Polymorphonuclear granulocytes in human head and neck cancer: enhanced inflammatory activity, modulation by cancer cells and expansion in advanced disease. Int J Cancer. 2011;129(9):2183–93. doi:10.1002/ijc.25892.

    Article  PubMed  Google Scholar 

  198. Rak J, Yu JL, Klement G, Kerbel RS. Oncogenes and angiogenesis: signaling three-dimensional tumor growth. J Investig Dermatol Symp Proc. 2000;5(1):24–33. doi:10.1046/j.1087-0024.2000.00012.x.

    Article  PubMed  Google Scholar 

  199. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399(6733):271–5.

    Article  PubMed  Google Scholar 

  200. Asakawa T, Esumi M, Endo S, Kida A, Ikeda M. Tongue cancer patients have a high frequency of allelic loss at the von Hippel-Lindau gene and other loci on 3p. Cancer. 2008;112(3):527–34. doi:10.1002/cncr.23200.

    Article  PubMed  Google Scholar 

  201. Wykoff CC, Pugh CW, Maxwell PH, Harris AL, Ratcliffe PJ. Identification of novel hypoxia dependent and independent target genes of the von Hippel-Lindau (VHL) tumour suppressor by mRNA differential expression profiling. Oncogene. 2000;19(54):6297–305. doi:10.1038/sj.onc.1204012.

    Article  PubMed  Google Scholar 

  202. Le QT, Sutphin PD, Raychaudhuri S, Yu SCT, Terris DJ, Lin HS, et al. Identification of osteopontin as a prognostic plasma marker for head and neck squamous cell carcinomas. Clin Cancer Res. 2003;9(1):59–67.

    PubMed  Google Scholar 

  203. Devoll RE, Li W, Woods KV, Pinero GJ, Butler WT, Farach-Carson MC, et al. Osteopontin (OPN) distribution in premalignant and malignant lesions of oral epithelium and expression in cell lines derived from squamous cell carcinoma of the oral cavity. J Oral Pathol Med. 1999;28(3):97–101.

    Article  PubMed  Google Scholar 

  204. Hong DY, Lee BJ, Lee JC, Choi JS, Wang SG, Ro JH. Expression of VEGF, HGF, IL-6, IL-8, MMP-9, telomerase in peripheral blood of patients with head and neck squamous cell carcinoma. Clin Exp Otorhinolaryngol. 2009;2(4):186–92. doi:10.3342/ceo.2009.2.4.186.

    Article  PubMed Central  PubMed  Google Scholar 

  205. Jaiswal SG, Gadbail AR, Chaudhary MS, Jaiswal GR, Gawande M. Correlation of serum levels of vascular endothelial growth factor with TNM staging, histopathologic grading, and surgical therapy for oral squamous cell carcinoma. Quintessence Int. 2011;42(9):771–9.

    PubMed  Google Scholar 

  206. Smith BD, Smith GL, Carter D, Sasaki CT, Haffty BG. Prognostic significance of vascular endothelial growth factor protein levels in oral and oropharyngeal squamous cell carcinoma. J Clin Oncol. 2000;18(10):2046–52.

    PubMed  Google Scholar 

  207. Tse GM, Chan AWH, Yu KH, King AD, Wong KT, Chen GG, et al. Strong immunohistochemical expression of vascular endothelial growth factor predicts overall survival in head and neck squamous cell carcinoma. Ann Surg Oncol. 2007;14(12):3558–65. doi:10.1245/s10434-007-9632-0.

    Article  PubMed  Google Scholar 

  208. Brizel DM, Dodge RK, Clough RW, Dewhirst MW. Oxygenation of head and neck cancer: changes during radiotherapy and impact on treatment outcome. Radiother Oncol. 1999;53(2):113–7. doi:10.1016/s0167-8140(99)00102-4.

    Article  PubMed  Google Scholar 

  209. Kyzas PA, Cunha IW, Ioannidis JPA. Prognostic significance of vascular endothelial growth factor immunohistochemical expression in head and neck squamous cell carcinoma: a meta-analysis. Clin Cancer Res. 2005;11(4):1434–40. doi:10.1158/1078-0432.ccr-04-1870.

    Article  PubMed  Google Scholar 

  210. Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 2005;23(5):1011–27. doi:10.1200/jco.2005.06.081.

    Article  PubMed  Google Scholar 

  211. Jiang L, Zeng X, Yang H, Wang Z, Shen J, Bai J, et al. Oral cancer overexpressed 1 (ORAOV1): a regulator for the cell growth and tumor angiogenesis in oral squamous cell carcinoma. Int J Cancer. 2008;123(8):1779–86. doi:10.1002/ijc.23734.

    Article  PubMed  Google Scholar 

  212. Kashyap MK, Marimuthu A, Kishore CJH, Peri S, Keerthikumar S, Prasad TSK, et al. Genomewide mRNA profiling of esophageal squamous cell carcinoma for identification of cancer biomarkers. Cancer Biol Ther. 2009;8(1):36–46. doi:10.4161/cbt.8.1.7090.

    Article  PubMed  Google Scholar 

  213. Jin C, Jin Y, Gisselsson D, Wennerberg J, Wah TS, Stromback B, et al. Molecular cytogenetic characterization of the 11q13 amplicon in head and neck squamous cell carcinoma. Cytogenet Genome Res. 2006;115(2):99–106. doi:10.1159/000095228.

    Article  PubMed  Google Scholar 

  214. Czubayko F, Smith RV, Chung HC, Wellstein A. Tumor-growth and angiogenesis induced by a secreted binding-protein for fibroblast growth-factors. J Biol Chem. 1994;269(45):28243–8.

    PubMed  Google Scholar 

  215. Czubayko F, LiaudetCoopman EDE, Aigner A, Tuveson AT, Berchem GJ, Wellstein A. A secreted FGF-binding protein can serve as the angiogenic switch in human cancer. Nat Med. 1997;3(10):1137–40. doi:10.1038/nm1097-1137.

    Article  PubMed  Google Scholar 

  216. Li W, Wang C, Juhn SK, Ondrey FG, Lin J. Expression of fibroblast growth factor binding protein in head and neck cancer. Arch Otolaryngol Head Neck Surg. 2009;135(9):896–901.

    Article  PubMed Central  PubMed  Google Scholar 

  217. Hasina R, Whipple ME, Martin LE, Kuo WP, Ohno-Machado L, Lingen MW. Angiogenic heterogeneity in head and neck squamous cell carcinoma: biological and therapeutic implications. Lab Invest. 2008;88(4):342–53. doi:10.1038/labinvest.2008.6.

    Article  PubMed Central  PubMed  Google Scholar 

  218. Wang S, Liu Z, Wang L, Zhang X. NF-kappaB signaling pathway, inflammation and colorectal cancer. Cell Mol Immunol. 2009;6(5):327–34. doi:10.1038/cmi.2009.43.

    Article  PubMed Central  PubMed  Google Scholar 

  219. Watnick RS, Cheng YN, Rangarajan A, Ince TA, Weinberg RA. Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell. 2003;3(3):219–31. doi:10.1016/s1535-6108(03)00030-8.

    Article  PubMed  Google Scholar 

  220. Xu B, Liu P, Li J, Lu H. c-MYC depletion potentiates cisplatin-induced apoptosis in head and neck squamous cell carcinoma: involvement of TSP-1 up-regulation. Ann Oncol. 2010;21(3):670–2. doi:10.1093/annonc/mdp567.

    Article  PubMed  Google Scholar 

  221. Ebos JML, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell. 2009;15(3):232–9. doi:10.1016/j.ccr.2009.01.021.

    Article  PubMed Central  PubMed  Google Scholar 

  222. Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell. 2009;15(3):220–31. doi:10.1016/j.ccr.2009.01.027.

    Article  PubMed Central  PubMed  Google Scholar 

  223. Ebos JML, Lee CR, Christensen JG, Mutsaers AJ, Kerbel RS. Multiple circulating proangiogenic factors induced by sunitinib malate are tumor-independent and correlate with antitumor efficacy. Proc Natl Acad Sci U S A. 2007;104(43):17069–74. doi:10.1073/pnas.0708148104.

    Article  PubMed Central  PubMed  Google Scholar 

  224. Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer. 2008;8(8):592–603. doi:10.1038/nrc2442.

    Article  PubMed Central  PubMed  Google Scholar 

  225. Ab Mutalib NS, Yoke-Kqueen C, Rahman SA, Sidik SM, Singh ASM, Learn-Han L. Differential microRNA expression and identification of putative miRNA targets and pathways in head and neck cancers. Int J Mol Med. 2011;28(3):327–36. doi:10.3892/ijmm.2011.714.

    Google Scholar 

  226. Cervigne NK, Reis PP, Machado J, Sadikovic B, Bradley G, Galloni NN, et al. Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma. Hum Mol Genet. 2009;18(24):4818–29. doi:10.1093/hmg/ddp446.

    Article  PubMed  Google Scholar 

  227. Kozaki KI, Imoto I, Mogi S, Omura K, Inazawa J. Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res. 2008;68(7):2094–105. doi:10.1158/0008-5472.can-07-5194.

    Article  PubMed  Google Scholar 

  228. Liu XQ, Chen ZG, Yu JS, Xia J, Zhou XF. MicroRNA Profiling and Head and Neck Cancer. Comparative and Functional Genomics. 2009;2009: 837514. doi:10.1155/2009/837514.

    Google Scholar 

  229. Liu J, Lei DP, Jin T, Zhao XN, Li GJ, Pan XL. Altered expression of miR-21 and PTEN in human laryngeal and hypopharyngeal squamous cell carcinomas. Asian Pac J Cancer Prev. 2011;12(10):2653–7.

    PubMed  Google Scholar 

  230. Tu HF, Lin SC, Chang KW. MicroRNA aberrances in head and neck cancer: pathogenetic and clinical significance. Curr Opin Otolaryngol Head Neck Surg. 2013;21(2):104–11. doi:10.1097/MOO.0b013e32835e1d6e.

    Article  PubMed  Google Scholar 

  231. Chen LH, Tsai KL, Chen YW, Yu CC, Chang KW, Chiou SH, et al. MicroRNA as a novel modulator in head and neck squamous carcinoma. J Oncol. 2010;2010:135632. doi:10.1155/2010/135632.

    Article  PubMed Central  PubMed  Google Scholar 

  232. Shiiba M, Uzawa K, Tanzawa H. MicroRNAs in head and neck squamous cell carcinoma (HNSCC) and oral squamous cell carcinoma (OSCC). Cancers (Basel). 2010;2(2):653–69. doi:10.3390/cancers2020653.

    Article  Google Scholar 

  233. Avissar M, Christensen BC, Kelsey KT, Marsit CJ. MicroRNA expression ratio is predictive of head and neck squamous cell carcinoma. Clin Cancer Res. 2009;15(8):2850–5. doi:10.1158/1078-0432.ccr-08-3131.

    Article  PubMed Central  PubMed  Google Scholar 

  234. Huret JL, Ahmad M, Arsaban M, Bernheim A, Cigna J, Desangles F, et al. Atlas of genetics and cytogenetics in oncology and haematology in 2013. Nucleic Acids Res. 2013;41(D1):D920–4. doi:10.1093/nar/gks1082.

    Article  PubMed Central  PubMed  Google Scholar 

  235. Sparano A, Quesnelle KM, Kumar MS, Wang Y, Sylvester AJ, Feldman M, et al. Genome-wide profiling of oral squamous cell carcinoma by array-based comparative genomic hybridization. Laryngoscope. 2006;116(5):735–41. doi:10.1097/01.mlg.0000205141.54471.7f.

    Article  PubMed  Google Scholar 

  236. Scheckenbach K, Baldus SE, Balz V, Freund M, Pakropa P, Sproll C, et al. RAD51C – a new human cancer susceptibility gene for sporadic squamous cell carcinoma of the head and neck (HNSCC). Oral Oncol. 2014;50(3):196–9. doi:10.1016/j.oraloncology.2013.11.007.

    Article  PubMed Central  PubMed  Google Scholar 

  237. Yu HP, Zhang XY, Wang XL, Shi LY, Li YY, Li F, et al. DNA repair gene XRCC1 polymorphisms, smoking, and esophageal cancer risk. Cancer Detect Prev. 2004;28(3):194–9. doi:10.1016/j.cdp.2004.01.004.

    Article  PubMed  Google Scholar 

  238. Choudhury JH, Choudhury B, Kundu S, Ghosh SK. Combined effect of tobacco and DNA repair genes polymorphisms of XRCC1 and XRCC2 influence high risk of head and neck squamous cell carcinoma in northeast Indian population. Med Oncol. 2014;31(8):67. doi:10.1007/s12032-014-0067-8.

    Article  PubMed  Google Scholar 

  239. Vaezi A, Feldman CH, Niedernhofer LJ. ERCC1 and XRCC1 as biomarkers for lung and head and neck cancer. Pharmgenomics Pers Med. 2011;4:47–63. doi:10.2147/pgpm.s20317.

    PubMed Central  PubMed  Google Scholar 

  240. Dyson N, Howley PM, Munger K, Harlow E. The human papilloma virus-16 E7-oncoprotein is able to bind to the retinoblastoma gene-product. Science. 1989;243(4893):934–7. doi:10.1126/science.2537532.

    Article  PubMed  Google Scholar 

  241. Hoadley KA, Fan C, Wilkerson MD, Mose LE, Jefferys SR, Auman JT, et al. Multi-tumor analysis of TCGA data identifies expression commonalities across tumor types. Cancer Res. 2013;73(8):SY12–03. doi:10.1158/1538-7445.am2013-sy12-03.

  242. Hibi K, Trink B, Patturajan M, Westra WH, Caballero OL, Hill DE, et al. AIS is an oncogene amplified in squamous cell carcinoma. Proc Natl Acad Sci U S A. 2000;97(10):5462–7. doi:10.1073/pnas.97.10.5462.

    Article  PubMed Central  PubMed  Google Scholar 

  243. Yen C-C, Chen Y-J, Pan C-C, Lu K-H, Chen PC-H, Hsia J-Y, et al. Copy number changes of target genes in chromosome 3q25.3-qter of esophageal squamous cell carcinoma: TP63 is amplified in early carcinogenesis but down-regulated as disease progressed. World J Gastroenterol. 2005;11(9):1267–72.

    Article  PubMed Central  PubMed  Google Scholar 

  244. Park BJ, Chiosea SI, Grandis JR. Molecular changes in the multistage pathogenesis of head and neck cancer. Cancer Biomark. 2011;9(1–6):325–39. doi:10.3233/cbm-2011-0163.

    Google Scholar 

  245. Pearlstein RP, Benninger MS, Carey TE, Zarbo RJ, Torres FX, Rybicki BA, et al. Loss of 18q predicts poor survival of patients with squamous cell carcinoma of the head and neck. Genes Chromosomes Cancer. 1998;21(4):333–9. doi:10.1002/(sici)1098-2264(199804)21:4<333::aid-gcc7>3.0.co;2-#.

    Article  PubMed  Google Scholar 

  246. Kim MM, Califano JA. Molecular pathology of head-and-neck cancer. Int J Cancer. 2004;112(4):545–53. doi:10.1002/ijc.20379.

    Article  PubMed  Google Scholar 

  247. Tabor MP, Braakhuis BJM, van der Wal JE, van Diest PJ, Leemans CR, Brakenhoff RH, et al. Comparative molecular and histological grading of epithelial dysplasia of the oral cavity and the oropharynx. J Pathol. 2003;199(3):354–60. doi:10.1002/path.1285.

    Article  PubMed  Google Scholar 

  248. Califano J, vander Riet P, Westra W, Nawroz H, Clayman G, Piantadosi S, et al. Genetic progression model for head and neck cancer: Implications for field cancerization. Cancer Res. 1996;56(11):2488–92.

    PubMed  Google Scholar 

  249. Stadler ME, Patel MR, Couch ME, Hayes DN. Molecular biology of head and neck cancer: risks and pathways. Hematol Oncol Clin North Am. 2008;22(6):1099–124. doi:10.1016/j.hoc.2008.08.007.

    Article  PubMed Central  PubMed  Google Scholar 

  250. Jares P, Fernandez PL, Campo E, Nadal A, Bosch F, Aiza G, et al. PRAD-1 cyclin D1 gene amplification correlates with messenger-rna overexpression and tumor progression in human laryngeal carcinomas. Cancer Res. 1994;54(17):4813–7.

    PubMed  Google Scholar 

  251. Callender T, Elnaggar AK, Lee MS, Frankenthaler R, Luna HA, Batsakis JG. PRAD-1 (CCND1) cyclin D1 oncogene amplification in primary head and neck squamous-cell carcinoma. Cancer. 1994;74(1):152–8. doi:10.1002/1097-0142(19940701)74:1<152::aid-cncr2820740124>3.0.co;2-k.

    Article  PubMed  Google Scholar 

  252. Lin MT, Morrison CD, Jones S, Mohamed N, Bucher J, Plass C. Copy number gain and oncogenic activity of YWHAZ/14-3-3 zeta in head and neck squamous cell carcinoma. Int J Cancer. 2009;125(3):603–11. doi:10.1002/ijc.24346.

    Article  PubMed Central  PubMed  Google Scholar 

  253. Cairns P, Polascik TJ, Eby Y, Tokino K, Califano J, Merlo A, et al. Frequency of homozygous deletion at P16/CDKN2 in primary human tumors. Nat Genet. 1995;11(2):210–2. doi:10.1038/ng1095-210.

    Article  PubMed  Google Scholar 

  254. Secades P, Rodrigo JP, Hermsen M, Alvarez C, Suarez C, Chiara MD. Increase in gene dosage is a mechanism of HIF-1 alpha constitutive expression in head and neck squamous cell carcinomas. Genes Chromosomes Cancer. 2009;48(5):441–54. doi:10.1002/gcc.20652.

    Article  PubMed  Google Scholar 

  255. Bauer VL, Braselmann H, Henke M, Mattern D, Walch A, Unger K, et al. Chromosomal changes characterize head and neck cancer with poor prognosis. J Mol Med JMM. 2008;86(12):1353–65. doi:10.1007/s00109-008-0397-0.

    Article  Google Scholar 

  256. The Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517(7536):576–82. doi:10.1038/nature14129.

    Article  PubMed Central  Google Scholar 

  257. Lohavanichbutr P, Houck J, Fan W, Yueh B, Mendez E, Futran N, et al. Genome-wide gene expression profiles of HPV-positive and HPV-negative oropharyngeal cancer: potential implications for treatment choices. Arch Otolaryngol Head Neck Surg. 2009;135(2):180–8. doi:10.1001/archoto.2008.540.

    Article  PubMed Central  PubMed  Google Scholar 

  258. Chung CH, Parker JS, Karaca G, Wu JY, Funkhouser WK, Moore D, et al. Molecular classification of head and neck squamous cell carcinomas using patterns of gene expression. Cancer Cell. 2004;5(5):489–500. doi:10.1016/s1535-6108(04)00112-6.

    Article  PubMed  Google Scholar 

  259. Hussenet T, Dali S, Exinger J, Monga B, Jost B, Dembele D, et al. SOX2 is an oncogene activated by recurrent 3q26.3 amplifications in human lung squamous cell carcinomas. PLoS One. 2010;5(1):e8960. doi:10.1371/journal.pone.0008960rr.

    Article  PubMed Central  PubMed  Google Scholar 

  260. Kitamura H, Torigoe T, Hirohashi Y, Asanuma H, Inoue R, Nishida S, et al. Prognostic impact of the expression of ALDH1 and SOX2 in urothelial cancer of the upper urinary tract. Mod Pathol. 2013;26(1):117–24. doi:10.1038/modpathol.2012.139.

    Article  PubMed  Google Scholar 

  261. Roberson RS, Kussick SJ, Vallieres E, Chen SYJ, Wu DY. Escape from therapy-induced accelerated cellular senescence in p53-null lung cancer cells and in human lung cancers. Cancer Res. 2005;65(7):2795–803. doi:10.1158/0008-5472.can-04-1270.

    Article  PubMed  Google Scholar 

  262. Wang Q, Wu PC, Roberson RS, Luk BV, Ivanova I, Chu E, et al. Survivin and escaping in therapy-induced cellular senescence. Int J Cancer. 2011;128(7):1546–58. doi:10.1002/ijc.25482.

    Article  PubMed Central  PubMed  Google Scholar 

  263. Blasco MA. Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet. 2005;6(8):611–22. doi:10.1038/nrg1656.

    Article  PubMed  Google Scholar 

  264. Zhang SZ, Dong MM, Teng XJ, Chen TH, Zhang S. Quantitative assay of telomerase activity in head and neck squamous cell carcinoma. Lin Chuang Er Bi Yan Hou Ke Za Zhi. 2000;14(9):393–5.

    PubMed  Google Scholar 

  265. Zhong LP, Chen GF, Xu ZF, Zhang X, Ping FY, Zhao SF. Detection of telomerase activity in saliva from oral squamous cell carcinoma patients. Int J Oral Maxillofac Surg. 2005;34(5):566–70. doi:10.1016/j.ijom.2004.10.007.

    Article  PubMed  Google Scholar 

  266. Mao L, El-Naggar AK, Fan YH, Lee JS, Lippman SM, Kayser S, et al. Telomerase activity in head and neck squamous cell carcinoma and adjacent tissues. Cancer Res. 1996;56(24):5600–4.

    PubMed  Google Scholar 

  267. Liao CT, Chang JTC, Wang HM, Chen IH, Lin CY, Chen TM, et al. Telomerase as an independent prognostic factor in head and neck squamous cell carcinoma. Head Neck. 2004;26(6):504–12. doi:10.1002/hed.20007.

    Article  PubMed  Google Scholar 

  268. Yamazaki H, Mori T, Yazawa M, Maeshima AM, Matsumoto F, Yoshi-moto S, et al. Stem cell self-renewal factors Bmi1 and HMGA2 in head and neck squamous cell carcinoma: clues for diagnosis. Lab Invest. 2013;93(12):1331–8. doi:10.1038/labinvest.2013.120.

    Article  PubMed  Google Scholar 

  269. Chen C, Wei Y, Hummel M, Hoffmann TK, Gross M, Kaufmann AM, et al. Evidence for epithelial-mesenchymal transition in cancer stem cells of head and neck squamous cell carcinoma. PLoS One. 2011;6(1):e16466. doi:10.1371/journal.pone.0016466.

    Article  PubMed Central  PubMed  Google Scholar 

  270. Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A, et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci U S A. 2009;106(33):13820–5. doi:10.1073/pnas.0905718106.

    Article  PubMed Central  PubMed  Google Scholar 

  271. Zhang ZC, Sant’Ana M, Nor JE. The biology of head and neck cancer stem cells. Oral Oncol. 2012;48(1):1–9. doi:10.1016/j.oraloncology.2011.10.004.

    Article  PubMed Central  PubMed  Google Scholar 

  272. Zhang P, Zhang Y, Mao L, Zhang Z, Chen W. Side population in oral squamous cell carcinoma possesses tumor stem cell phenotypes. Cancer Lett. 2009;277(2):227–34. doi:10.1016/j.canlet.2008.12.015.

    Article  PubMed  Google Scholar 

  273. Chen Y-C, Chen Y-W, Hsu H-S, Tseng L-M, Huang P-I, Lu K-H, et al. Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochem Biophys Res Commun. 2009;385(3):307–13. doi:10.1016/j.bbrc.2009.05.048.

    Article  PubMed  Google Scholar 

  274. Clay MR, Tabor M, Owen JH, Carey TE, Bradford CR, Wolf GT, et al. Single-marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase. Head Neck. 2010;32(9):1195–201. doi:10.1002/hed.21315.

    Article  PubMed Central  PubMed  Google Scholar 

  275. Kokko LL, Hurme S, Maula SM, Alanen K, Grenman R, Kinnunen I, et al. Significance of site-specific prognosis of cancer stem cell marker CD44 in head and neck squamous-cell carcinoma. Oral Oncol. 2011;47(6):510–6. doi:10.1016/j.oraloncology.2011.03.026.

    Article  PubMed  Google Scholar 

  276. Wang SJ, Wong G, de Heer AM, Xia WL, Bourguignon LYW. CD44 variant isoforms in head and neck squamous cell carcinoma progression. Laryngoscope. 2009;119(8):1518–30. doi:10.1002/lary.20506.

    Article  PubMed Central  PubMed  Google Scholar 

  277. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A. 2007;104(3):973–8. doi:10.1073/pnas.0610117104.

    Article  PubMed Central  PubMed  Google Scholar 

  278. Yuce I, Bayram A, Cagli S, Canoz O, Bayram S, Guney E. The role of CD44 and matrix metalloproteinase-9 expression in predicting neck metastasis of supraglottic laryngeal carcinoma. Am J Otolaryngol. 2011;32(2):141–6. doi:10.1016/j.amjoto.2010.01.001.

    Article  PubMed  Google Scholar 

  279. Lin JT, Chang TH, Chang CS, Wang WH, Su BW, Lee KD, et al. Prognostic value of pretreatment CD44 mRNA in peripheral blood of patients with locally advanced head and neck cancer. Oral Oncol. 2010;46(5):E29–33. doi:10.1016/j.oraloncology.2010.02.011.

    Article  PubMed  Google Scholar 

  280. Lee SH, Koo BS, Kim JM, Huang S, Rho YS, Bae WJ, et al. Wnt/beta-catenin signalling maintains self-renewal and tumourigenicity of head and neck squamous cell carcinoma stem-like cells by activating Oct4. J Pathol. 2014;234(1):99–107. doi:10.1002/path.4383.

    Article  PubMed  Google Scholar 

  281. Wu YJ, Wu PY. CD133 as a marker for cancer stem cells: progresses and concerns. Stem Cells Dev. 2009;18(8):1127–34. doi:10.1089/scd.2008.0338.

    Article  PubMed  Google Scholar 

  282. Zhang Q, Shi S, Yen Y, Brown J, Ta JQ, Le AD. A subpopulation of CD133(+) cancer stem-like cells characterized in human oral squamous cell carcinoma confer resistance to chemotherapy. Cancer Lett. 2010;289(2):151–60. doi:10.1016/j.canlet.2009.08.010.

    Article  PubMed  Google Scholar 

  283. Chu P-Y, Hu F-W, Yu C-C, Tsai L-L, Yu C-H, Wu B-C, et al. Epithelial-mesenchymal transition transcription factor ZEB1/ZEB2 co-expression predicts poor prognosis and maintains tumor-initiating properties in head and neck cancer. Oral Oncol. 2013;49(1):34–41. doi:10.1016/j.oraloncology.2012.07.012.

    Article  PubMed  Google Scholar 

  284. Huang YC, Benaich N, Tape C, Kwok HF, Murphy G. Targeting the sheddase activity of ADAM17 by an anti-ADAM17 antibody D1(A12) inhibits head and neck squamous cell carcinoma cell proliferation and motility via blockage of bradykinin induced HERs transactivation. Int J Biol Sci. 2014;10(7):702–14. doi:10.7150/ijbs.9326.

    Article  PubMed Central  PubMed  Google Scholar 

  285. Kamarajan P, Shin JM, Qian X, Matte B, Zhu JY, Kapila YL. ADAM17-mediated CD44 cleavage promotes orasphere formation or stemness and tumorigenesis in HNSCC. Cancer Med. 2013;2(6):793–802. doi:10.1002/cam4.147.

    Article  PubMed Central  PubMed  Google Scholar 

  286. Chen YC, Chang CJ, Hsu HS, Chen YW, Tai LK, Tseng LM, et al. Inhibition of tumorigenicity and enhancement of radiochemosensitivity in head and neck squamous cell cancer-derived ALDH1-positive cells by knockdown of Bmi-1. Oral Oncol. 2010;46(3):158–65. doi:10.1016/j.oraloncology.2009.11.007.

    Article  PubMed  Google Scholar 

  287. Chen H, Zhou L, Wan G, Dou T, Tian J. BMI1 promotes the progression of laryngeal squamous cell carcinoma. Oral Oncol. 2011;47(6):472–81. doi:10.1016/j.oraloncology.2011.03.016.

    Article  PubMed  Google Scholar 

  288. Lo WL, Yu CC, Chiou GY, Chen YW, Huang PI, Chien CS, et al. MicroRNA-200c attenuates tumour growth and metastasis of presumptive head and neck squamous cell carcinoma stem cells. J Pathol. 2011;223(4):482–95. doi:10.1002/path.2826.

    Article  PubMed  Google Scholar 

  289. Sun S, Wang Z. Head neck squamous cell carcinoma c-Met(+) cells display cancer stem cell properties and are responsible for cisplatin-resistance and metastasis. Int J Cancer. 2011;129(10):2337–48. doi:10.1002/ijc.25927.

    Article  PubMed  Google Scholar 

  290. Wu MJ, Jan CI, Tsay YG, Yu YH, Huang CY, Lin SC, et al. Elimination of head and neck cancer initiating cells through targeting glucose regulated protein78 signaling. Mol Cancer. 2010;9:283. doi:10.1186/1476-4598-9-283.

    Article  PubMed Central  PubMed  Google Scholar 

  291. von Rahden BH, Kircher S, Lazariotou M, Reiber C, Stuermer L, Otto C, et al. LgR5 expression and cancer stem cell hypothesis: clue to define the true origin of esophageal adenocarcinomas with and without Barrett’s esophagus? J Exp Clin Cancer Res. 2011;30:23. doi:10.1186/1756-9966-30-23.

    Article  Google Scholar 

  292. Raz R, Lee CK, Cannizzaro LA, D’Eustachio P, Levy DE. Essential role of STAT3 for embryonic stem cell pluripotency. Proc Natl Acad Sci U S A. 1999;96(6):2846–51. doi:10.1073/pnas.96.6.2846.

    Article  PubMed Central  PubMed  Google Scholar 

  293. van Oosten AL, Costa Y, Smith A, Silva JCR. JAK/STAT3 signalling is sufficient and dominant over antagonistic cues for the establishment of naive pluripotency. Nat Commun. 2012;3:817. doi:10.1038/ncomms1822.

    Article  PubMed  Google Scholar 

  294. Lo J-F, Yu C-C, Chiou S-H, Huang C-Y, Jan C-I, Lin S-C, et al. The epithelial-mesenchymal transition mediator S100A4 maintains cancer-initiating cells in head and neck cancers. Cancer Res. 2011;71(5):1912–23. doi:10.1158/0008-5472.can-10-2350.

    Article  PubMed  Google Scholar 

  295. Zhang X, Su L, Pirani AA, Wu HY, Zhang HZ, Shin DM, et al. Understanding metastatic SCCHN cells from unique genotypes to phenotypes with the aid of an animal model and DNA microarray analysis. Clin Exp Metastasis. 2006;23(3–4):209–22. doi:10.1007/s10585-006-9031-0.

    Article  PubMed  Google Scholar 

  296. Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest. 2003;112(12):1776–84. doi:10.1172/jci200320530.

    Article  PubMed Central  PubMed  Google Scholar 

  297. Peinado HC, Portillo F, Cano A. Transcriptional regulation of cadherins during development and carcinogenesis. Int J Dev Biol. 2004;48(5–6):365–75. doi:10.1387/ijdb.041794hp.

    Article  PubMed  Google Scholar 

  298. Medici D, Hay ED, Olsen BR. Snail and slug promote epithelial-mesenchymal transition through beta-catenin-T-cell factor-4-dependent expression of transforming growth factor-beta 3. Mol Biol Cell. 2008;19(11):4875–87. doi:10.1091/mbc.E08-05-0506.

    Article  PubMed Central  PubMed  Google Scholar 

  299. Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY, Liu CJ, et al. Direct regulation of TWIST by HIF-1 alpha promotes metastasis. Nat Cell Biol. 2008;10(3):295–305. doi:10.1038/ncb1691.

    Article  PubMed  Google Scholar 

  300. Zhang JL, Cheng Q, Zhou Y, Wang Y, Chen XM. Slug is a key mediator of hypoxia induced cadherin switch in HNSCC: correlations with poor prognosis. Oral Oncol. 2013;49(11):1043–50. doi:10.1016/j.oraloncology.2013.08.003.

    Article  PubMed  Google Scholar 

  301. Yu CC, Lo WL, Chen YW, Huang PI, Hsu HS, Tseng LM, et al. Bmi-1 regulates snail expression and promotes metastasis ability in head and neck squamous cancer-derived ALDH1 positive cells. J Oncol. 2011;2011. doi:10.1155/2011/609259.

    Google Scholar 

  302. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA 10b in breast cancer. Nature. 2007;449(7163):682–8. doi:10.1038/nature06174. U2.

    Article  PubMed  Google Scholar 

  303. Tian Y, Luo A, Cai Y, Su Q, Ding F, Chen H, et al. MicroRNA-10b promotes migration and invasion through KLF4 in human esophageal cancer cell lines. J Biol Chem. 2010;285(11):7986–94. doi:10.1074/jbc.M109.062877.

    Article  PubMed Central  PubMed  Google Scholar 

  304. Chang KW, Liu CJ, Chu TH, Cheng HW, Hung PS, Hu WY, et al. Association between high miR-211 microRNA expression and the poor prognosis of oral carcinoma. J Dent Res. 2008;87(11):1063–8.

    Article  PubMed  Google Scholar 

  305. Yang CC, Hung PS, Wang PW, Liu CJ, Chu TH, Cheng HW, et al. miR-181 as a putative biomarker for lymph-node metastasis of oral squamous cell carcinoma. J Oral Pathol Med. 2011;40(5):397–404. doi:10.1111/j.1600-0714.2010.01003.x.

    Article  PubMed  Google Scholar 

  306. Liu C-J, Tsai M-M, Hung P-S, Kao S-Y, Liu T-Y, Wu K-J, et al. miR-31 ablates expression of the HIF regulatory factor FIH to activate the HIF pathway in head and neck carcinoma. Cancer Res. 2010;70(4):1635–44. doi:10.1158/0008-5472.can-09-2291.

    Article  PubMed  Google Scholar 

  307. Liu X, Jiang L, Wang A, Yu J, Shi F, Zhou X MicroRNA-138 suppresses invasion and promotes apoptosis in head and neck squamous cell carcinoma cell lines. Cancer Lett. 2009;286(2):217–22. doi:10.1016/j.canlet.2009.05.030.

    Article  PubMed Central  PubMed  Google Scholar 

  308. Jin Y, Chen D, Cabay RJ, Wang A, Crowe DL, Zhou X. Role of micro RNA-138 as a potential tumor suppressor in head and neck sqamous cell carcinoma. In: Jeon KW, editor. International review of cell and molecular biology, International review of cell and molecular biology, vol. 303. Amsterdam, Netherlands: Elsevier; 2013. p. 357–85. ISBN: 978-0-12-407697-6.

    Google Scholar 

  309. Jiang L, Liu X, Kolokythas A, Yu J, Wang A, Heidbreder CE, et al. Downregulation of the Rho GTPase signaling pathway is involved in the microRNA-138-mediated inhibition of cell migration and invasion in tongue squamous cell carcinoma. Int J Cancer. 2010;127(3):505–12. doi:10.1002/ijc.25320.

    Article  PubMed Central  PubMed  Google Scholar 

  310. Cai KM, Bao XL, Kong XH, Jinag W, Mao MR, Chu JS, et al. Hsa-miR-34c suppresses growth and invasion of human laryngeal carcinoma cells via targeting c-Met. Int J Mol Med. 2010;25(4):565–71. doi:10.3892/ijmm_00000378.

    Article  PubMed  Google Scholar 

  311. Benaich N, Woodhouse S, Goldie SJ, Mishra A, Quist SR, Watt FM. Rewiring of an epithelial differentiation factor, miR-203, to inhibit human squamous cell carcinoma metastasis. Cell Rep. 2014;9(1):104–17. doi:10.1016/j.celrep.2014.08.062.

    Article  PubMed Central  PubMed  Google Scholar 

  312. Yu XY, Jiang XR, Li HX, Guo LP, Jiang W, Lu SH. miR-203 inhibits the proliferation and self-renewal of esophageal cancer stem-like cells by suppressing stem renewal factor Bmi-1. Stem Cells Dev. 2014;23(6):576–85. doi:10.1089/scd.2013.0308.

    Article  PubMed  Google Scholar 

  313. Kano M, Seki N, Kikkawa N, Fujimura L, Hoshino I, Akutsu Y, et al. miR-145, miR-133a and miR-133b: tumor-suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. Int J Cancer. 2010;127(12):2804–14. doi:10.1002/ijc.25284.

    Article  PubMed  Google Scholar 

  314. Tamagawa S, Beder LB, Hotomi M, Gunduz M, Yata K, Grenman R, et al. Role of miR-200c/miR-141 in the regulation of epithelial-mesenchymal transition and migration in head and neck squamous cell carcinoma. Int J Mol Med. 2014;33(4):879–86. doi:10.3892/ijmm.2014.1625.

    PubMed  Google Scholar 

  315. Liu CJ, Lin SC, Yang CC, Cheng HW, Chang KW. Exploiting salivary miR-31 as a clinical biomarker of oral squamous cell carcinoma. Head and Neck-Journal for the Sciences and Specialties of the Head and Neck. 2012;34(2):219–24. doi:10.1002/hed.21713.

    Article  Google Scholar 

  316. Park NJ, Zhou H, Elashoff D, Henson BS, Kastratovic DA, Abemayor E, et al. Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res. 2009;15(17):5473–7. doi:10.1158/1078-0432.ccr-09-0736.

    Article  PubMed Central  PubMed  Google Scholar 

  317. Liu CJ, Kao SY, Tu HF, Tsai MM, Chang KW, Lin SC. Increase of microRNA miR-31 level in plasma could be a potential marker of oral cancer. Oral Dis. 2010;16(4):360–4. doi:10.1111/j.1601-0825.2009.01646.x.

    Article  PubMed  Google Scholar 

  318. Lu Y-C, Chen Y-J, Wang H-M, Tsai C-Y, Chen W-H, Huang Y-C, et al. Oncogenic function and early detection potential of miRNA-10b in oral cancer as identified by microRNA profiling. Cancer Prev Res. 2012;5(4):665–74. doi:10.1158/1940-6207.capr-11-0358.

    Article  Google Scholar 

  319. Lin S-C, Liu C-J, Lin J-A, Chiang W-F, Hung P-S, Chang K-W. miR-24 up-regulation in oral carcinoma: positive association from clinical and in vitro analysis. Oral Oncol. 2010;46(3):204–8. doi:10.1016/j.oraloncology.2009.12.005.

    Article  PubMed  Google Scholar 

  320. Wong T-S, Liu X-B, Wong BY-H, Ng RW-M, Yuen AP-W, Wei WI. Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. Clin Cancer Res. 2008;14(9):2588–92. doi:10.1158/1078-0432.ccr-07-0666.

    Article  PubMed  Google Scholar 

  321. Lim YC, Han JH, Kang HJ, Kim YS, Lee BH, Choi EC, et al. Overexpression of c-Met promotes invasion and metastasis of small oral tongue carcinoma. Oral Oncol. 2012;48(11):1114–9. doi:10.1016/j.oraloncology.2012.05.013.

    Article  PubMed  Google Scholar 

  322. Zhao D, Wang S-H, Feng Y, Hua C-G, Zhao J, Tang X-F. Intratumoral c-Met expression is associated with vascular endothelial growth factor C expression, lymphangiogenesis, and lymph node metastasis in oral squamous cell carcinoma: implications for use as a prognostic marker. Hum Pathol. 2011;42(10):1514–23. doi:10.1016/j.humpath.2010.03.012.

    Article  PubMed  Google Scholar 

  323. Chung CH, Parker JS, Ely K, Carter J, Yi Y, Murphy BA, et al. Gene expression profiles identify epithelial-to-mesenchymal transition and activation of nuclear factor-kappa B signaling as characteristics of a high-risk head and neck squamous cell carcinoma. Cancer Res. 2006;66(16):8210–8. doi:10.1158/0008-5472.can-06-1213.

    Article  PubMed  Google Scholar 

  324. Yan M, Xu Q, Zhang P, Zhou XJ, Zhang ZY, Chen WT. Correlation of NF-kappaB signal pathway with tumor metastasis of human head and neck squamous cell carcinoma. BMC Cancer. 2010;10:437. doi:10.1186/1471-2407-10-437.

    Article  PubMed Central  PubMed  Google Scholar 

  325. Hung KF, Lin SC, Liu CJ, Chang CS, Chang KW, Kao SY. The biphasic differential expression of the cellular membrane protein, caveolin-1, in oral carcinogenesis. J Oral Pathol Med. 2003;32(8):461–7. doi:10.1034/j.1600-0714.2003.00185.x.

    Article  PubMed  Google Scholar 

  326. Ueda M, Shimada T, Goto Y, Tei K, Nakai S, Hisa Y, et al. Expression of CC-chemokine receptor 7 (CCR7) and CXC-chemokine receptor 4 (CXCR4) in head and neck squamous cell carcinoma. Auris Nasus Larynx. 2010;37(4):488–95. doi:10.1016/j.anl.2009.11.012.

    Article  PubMed  Google Scholar 

  327. Ou DL, Chien HF, Chen CL, Lin TC, Lin LI. Role of Twist in head and neck carcinoma with lymph node metastasis. Anticancer Res. 2008;28(2B):1355–9.

    PubMed  Google Scholar 

  328. Shang ZJ, Liu K, Shao Z. Expression of chemokine receptor CCR7 is associated with cervical lymph node metastasis of oral squamous cell carcinoma. Oral Oncol. 2009;45(6):480–5. doi:10.1016/j.oraloncology.2008.06.005.

    Article  PubMed  Google Scholar 

  329. Li XG, Pan XL, Zhang H, Lei DP, Liu DY, Xu FL, et al. Overexpression of cFLIP in head and neck squamous cell carcinoma and its clinicopathologic correlations. J Cancer Res Clin Oncol. 2008;134(5):609–15. doi:10.1007/s00432-007-0325-7.

    Article  PubMed  Google Scholar 

  330. Lai JP, Chien J, Strome SE, Staub J, Montoya DP, Greene EL, et al. HSulf-1 modulates HGF-mediated tumor cell invasion and signaling in head and neck squamous carcinoma. Oncogene. 2004;23(7):1439–47. doi:10.1038/sj.onc.1207258.

    Article  PubMed  Google Scholar 

  331. Yamada S, Yanamoto S, Kawasaki G, Mizuno A, Nemoto TK. Overexpression of cortactin increases invasion potential in oral squamous cell carcinoma. Pathol Oncol Res. 2010;16(4):523–31. doi:10.1007/s12253-009-9245-y.

    Article  PubMed  Google Scholar 

  332. Rodrigo JP, Garcia-Carracedo D, Garcia LA, Menendez ST, Allonca E, Gonzalez MV, et al. Distinctive clinicopathological associations of amplification of the cortactin gene at 11q13 in head and neck squamous cell carcinomas. J Pathol. 2009;217(4):516–23. doi:10.1002/path.2462.

    Article  PubMed  Google Scholar 

  333. Hofman P, Butori C, Havet K, Hofman V, Selva E, Guevara N, et al. Prognostic significance of cortactin levels in head and neck squamous cell carcinoma: comparison with epidermal growth factor receptor status. Br J Cancer. 2008;98(5):956–64. doi:10.1038/sj.bjc.6604245.

    Article  PubMed Central  PubMed  Google Scholar 

  334. Gibcus JH, Mastik M, Menkema L, de Bock GH, Kluin PM, Schuuring E, et al. Cortactin expression predicts poor survival in laryngeal carcinoma. Br J Cancer. 2008;98(5):950–5. doi:10.1038/sj.bjc.6604246.

    Article  PubMed Central  PubMed  Google Scholar 

  335. Tan CT, Chu CY, Lu YC, Chang CC, Lin BR, Wu HH, et al. CXCL12/CXCR4 promotes laryngeal and hypopharyngeal squamous cell carcinoma metastasis through MMP-13-dependent invasion via the ERK1/2/AP-1 pathway. Carcinogenesis. 2008;29(8):1519–27. doi:10.1093/carcin/bgn108.

    Article  PubMed  Google Scholar 

  336. Xu M, Li WY, Xu YH, Chen XM. Expression of CXCR4 in oral squamous cell carcinoma: correlations with clinicopathology and pivotal role of proliferation. J Oral Pathol Med. 2010;39(1):63–8. doi:10.1111/j.1600-0714.2009.00801.x.

    Article  Google Scholar 

  337. Xu JK, Lu W, Zhang SL, Zhu CC, Ren TT, Zhu T, et al. Overexpression of DDR2 contributes to cell invasion and migration in head and neck squamous cell carcinoma. Cancer Biol Ther. 2014;15(5):612–22. doi:10.4161/cbt.28181.

    Article  PubMed Central  PubMed  Google Scholar 

  338. Patel V, Martin D, Malhotra R, Marsh CA, Doci CL, Veenstra TD, et al. DSG3 as a biomarker for the ultrasensitive detection of occult lymph node metastasis in oral cancer using nanostructured immunoarrays. Oral Oncol. 2013;49(2):93–101. doi:10.1016/j.oraloncology.2012.08.001.

    Article  PubMed Central  PubMed  Google Scholar 

  339. Uehara M, Sano K, Ikeda H, Nonaka M, Asahina I. Hypoxia-inducible factor 1 alpha in oral squamous cell carcinoma and its relation to prognosis. Oral Oncol. 2009;45(3):241–6. doi:10.1016/j.oraloncology.2008.05.007.

    Article  PubMed  Google Scholar 

  340. Kline ER, Muller S, Pan L, Tighiouart M, Chen Z, Marcus AI. Localization-specific LKB1 loss in head and neck squamous cell carcinoma metastasis. Head Neck. 2011;33(10):1501–12. doi:10.1002/hed.21638.

    Article  PubMed  Google Scholar 

  341. Albinger-Hegyi A, Stoeckli SJ, Schmid S, Storz M, Iotzova G, Probst-Hensch NM, et al. Lysyl oxidase expression is an independent marker of prognosis and a predictor of lymph node metastasis in oral and oropharyngeal squamous cell carcinoma (OSCC). Int J Cancer. 2010;126(11):2653–62. doi:10.1002/ijc.24948.

    PubMed  Google Scholar 

  342. Yang MH, Chang SY, Chiou SH, Liu CJ, Chi CW, Chen PM, et al. Overexpression of NBS1 induces epithelial-mesenchymal transition and co-expression of NBS1 and Snail predicts metastasis of head and neck cancer. Oncogene. 2007;26(10):1459–67. doi:10.1038/sj.onc.1209929.

    Article  PubMed  Google Scholar 

  343. Linkov F, Lisovich A, Yurkovetsky Z, Marrangoni A, Velikokhatnaya L, Nolen B, et al. Early detection of head and neck cancer: development of a novel screening tool using multiplexed immunobead-based biomarker profiling. Cancer Epidemiol Biomarkers Prev. 2007;16(1):102–7. doi:10.1158/1055-9965.epi-06-0602.

    Article  PubMed  Google Scholar 

  344. Wang WL, Chang WL, Yeh YC, Lee CT, Chang CY, Lin JT, et al. Concomitantly elevated serum matrix metalloproteinases 3 and 9 can predict survival of synchronous squamous cell carcinoma of the upper aero-digestive tract. Mol Carcinog. 2013;52(6):438–45. doi:10.1002/mc.21874.

    Article  PubMed  Google Scholar 

  345. Liu CJ, Chang KW, Lin SC, Cheng HW. Presurgical serum levels of matrix metalloproteinase-9 and vascular endothelial growth factor in oral squamous cell carcinoma. Oral Oncol. 2009;45(10):920–5. doi:10.1016/j.oraloncology.2009.04.007.

    Article  PubMed  Google Scholar 

  346. Kuropkat C, Plehn S, Herz U, Dunne AA, Renz H, Werner JA. Tumor marker potential of serum matrix metalloproteinases in patients with head and neck cancer. Anticancer Res. 2002;22(4):2221–7.

    PubMed  Google Scholar 

  347. Hsu DSS, Chang SY, Liu CJ, Tzeng CH, Wu KJ, Kao JY, et al. Identification of increased NBS1 expression as a prognostic marker of squamous cell carcinoma of the oral cavity. Cancer Sci. 2010;101(4):1029–37. doi:10.1111/j.1349-7006.2009.01471.x.

    Article  PubMed  Google Scholar 

  348. Huang C, Huang K, Wang C, Jiang ZD, Li XX, Wang HP, et al. Overexpression of mitogen-activated protein kinase kinase 4 and nuclear factor-kappaB in laryngeal squamous cell carcinoma: a potential indicator for poor prognosis. Oncol Rep. 2009;22(1):89–95.

    PubMed  Google Scholar 

  349. Joo YH, Jung CK, Kim MS, Sun DI. Relationship between vascular endothelial growth factor and Notch1 expression and lymphatic metastasis in tongue cancer. Otolaryngol Head Neck Surg. 2009;140(4):512–8. doi:10.1016/j.otohns.2008.12.057.

    Article  PubMed  Google Scholar 

  350. Patel V, Rosenfeldt HM, Lyons R, Servitja JM, Bustelo XR, Siroff M, et al. Persistent activation of Rac1 in squamous carcinomas of the head and neck: evidence for an EGFR/Vav2 signaling axis involved in cell invasion. Carcinogenesis. 2007;28(6):1145–52. doi:10.1093/carcin/bgm008.

    Article  PubMed  Google Scholar 

  351. Kang SM, Elf S, Lythgoe K, Hitosugi T, Taunton J, Zhou W, et al. p90 ribosomal S6 kinase 2 promotes invasion and metastasis of human head and neck squamous cell carcinoma cells. J Clin Invest. 2010;120(4):1165–77. doi:10.1172/jci40582.

    Article  PubMed Central  PubMed  Google Scholar 

  352. Muro-Cacho CA, Rosario-Ortiz K, Livingston S, Munoz-Antonia T. Defective transforming growth factor beta signaling pathway in head and neck squamous cell carcinoma as evidenced by the lack of expression of activated Smad2. Clin Cancer Res. 2001;7(6):1618–26.

    PubMed  Google Scholar 

  353. Xie W, Bharathy S, Kim D, Haffty BG, Rimm DL, Reiss M. Frequent alterations of Smad signaling in human head and neck squamous cell carcinomas: a tissue microarray analysis. Oncol Res. 2003;14(2):61–73.

    PubMed  Google Scholar 

  354. Kim YH, Kim SM, Kim YK, Hong SP, Kim MJ, Myoung H. Evaluation of survivin as a prognostic marker in oral squamous cell carcinoma. J Oral Pathol Med. 2010;39(5):368–75. doi:10.1111/j.1600-0714.2009.00844.x.

    PubMed  Google Scholar 

  355. Lin JZ, Guan Z, Wang CA, Feng L, Zheng YQ, Caicedo E, et al. Inhibitor of differentiation 1 contributes to head and neck squamous cell carcinoma survival via the NF-kappa B/survivin and phosphoinositide 3-kinase/Akt signaling pathways. Clin Cancer Res. 2010;16(1):77–87. doi:10.1158/1078-0432.ccr-08-2362.

    Article  PubMed Central  PubMed  Google Scholar 

  356. Szczepanski MJ, Czystowska M, Szajnik M, Harasymczuk M, Boyiadzis M, Kruk-Zagajewska A, et al. Triggering of toll-like receptor 4 expressed on human head and neck squamous cell carcinoma promotes tumor development and protects the tumor from immune attack. Cancer Res. 2009;69(7):3105–13. doi:10.1158/0008-5472.can-08-3838.

    Article  PubMed Central  PubMed  Google Scholar 

  357. O-charoenrat P, Rhys-Evans P, Eccles SA. Expression of vascular endothelial growth factor family members in head and neck squamous cell carcinoma correlates with lymph node metastasis. Cancer. 2001;92(3):556–68. doi:10.1002/1097-0142(20010801)92:3<556::aid-cncr1355>3.0.co;2-q.

    Article  PubMed  Google Scholar 

  358. Nohata N, Hanazawa T, Kinoshita T, Okamoto Y, Seki N. MicroRNAs function as tumor suppressors or oncogenes: aberrant expression of microRNAs in head and neck squamous cell carcinoma. Auris Nasus Larynx. 2013;40(2):143–9. doi:10.1016/j.anl.2012.07.001.

    Article  PubMed  Google Scholar 

  359. Lee TL, Yeh J, Friedman J, Yan B, Yang XP, Yeh NT, et al. A signal network involving coactivated NF-kappa B and STAT3 and altered p53 modulates BAX/BCL-XL expression and promotes cell survival of head and neck squamous cell carcinomas. Int J Cancer. 2008;122(9):1987–98. doi:10.1002/ijc.23324.

    Article  PubMed  Google Scholar 

  360. Sun Q, Sakaida T, Yue W, Gollin SM, Yu J. Chemosensitization of head and neck cancer cells by PUMA. Mol Cancer Ther. 2007;6(12):3180–8. doi:10.1158/1535-7163.mct-07-0265.

    Article  PubMed  Google Scholar 

  361. Pena JC, Thompson CB, Recant W, Vokes EE, Rudin CM. Bcl-xL and Bcl-2 expression in squamous cell carcinoma of the head and neck. Cancer. 1999;85(1):164–70.

    Article  PubMed  Google Scholar 

  362. Chen S, Fribley A, Wang CY. Potentiation of tumor necrosis factor-mediated apoptosis of oral squamous cell carcinoma cells by adenovirus-mediated gene transfer of NF-kappa B inhibitor. J Dent Res. 2002;81(2):98–102.

    Article  PubMed  Google Scholar 

  363. Yang F, Zeng QH, Yu GY, Li SL, Wang CY. Wnt/beta-catenin signaling inhibits death receptor-mediated apoptosis and promotes invasive growth of HNSCC. Cell Signal. 2006;18(5):679–87. doi:10.1016/j.cellsig.2005.06.015.

    Article  PubMed  Google Scholar 

  364. Li J, Huang H, Sun L, Yang M, Pan C, Chen W, et al. MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor. Clin Cancer Res. 2009;15(12):3998–4008. doi:10.1158/1078-0432.ccr-08-3053.

    Article  PubMed  Google Scholar 

  365. Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH, et al. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene. 2008;27(31):4373–9. doi:10.1038/onc.2008.72.

    Article  PubMed  Google Scholar 

  366. Hiyoshi Y, Kamohara H, Karashima R, Sato N, Imamura Y, Nagai Y, et al. MicroRNA-21 regulates the proliferation and invasion in esophageal squamous cell carcinoma. Clin Cancer Res. 2009;15(6):1915–22. doi:10.1158/1078-0432.ccr-08-2545.

    Article  PubMed  Google Scholar 

  367. Shi ZQ, Wang B, Chihanga T, Kennedy MA, Weber GF. Energy metabolism during anchorage-independence. Induction by osteopontin-c. PLoS One. 2014;9(8):e105675. doi:10.1371/journal.pone.0105675.

    Article  PubMed Central  PubMed  Google Scholar 

  368. Tan K, Goldstein D, Crowe P, Yang JL. Uncovering a key to the process of metastasis in human cancers: a review of critical regulators of anoikis. J Cancer Res Clin Oncol. 2013;139(11):1795–805. doi:10.1007/s00432-013-1482-5.

    Article  PubMed  Google Scholar 

  369. Xie TX, Zhou G, Zhao M, Sano D, Jasser SA, Brennan RG, et al. Serine substitution of proline at codon 151 of TP53 confers gain of function activity leading to anoikis resistance and tumor progression of head and neck cancer cells. Laryngoscope. 2013;123(6):1416–23. doi:10.1002/lary.23846.

    Article  PubMed Central  PubMed  Google Scholar 

  370. Campos MS, Neiva KG, Meyers KA, Krishnamurthy S, Nor JE. Endothelial derived factors inhibit anoikis of head and neck cancer stem cells. Oral Oncol. 2012;48(1):26–32. doi:10.1016/j.oraloncology.2011.09.010.

    Article  PubMed Central  PubMed  Google Scholar 

  371. Zang Y, Thomas SM, Chan ET, Kirk CJ, Freilino ML, DeLancey HM, et al. Carfilzomib and ONX 0912 inhibit cell survival and tumor growth of head and neck cancer and their activities are enhanced by suppression of Mcl-1 or autophagy. Clin Cancer Res. 2012;18(20):5639–49. doi:10.1158/1078-0432.ccr-12-1213.

    Article  PubMed Central  PubMed  Google Scholar 

  372. Buchheit CL, Weigel KJ, Schafer ZT. OPINION cancer cell survival during detachment from the ECM: multiple barriers to tumour progression. Nat Rev Cancer. 2014;14(9):632–41. doi:10.1038/nrc3789.

    Article  PubMed  Google Scholar 

  373. Skvortsov S, Dudas J, Eichberger P, Witsch-Baumgartner M, Loeffler-Ragg J, Pritz C, et al. Rac1 as a potential therapeutic target for chemo-radioresistant head and neck squamous cell carcinomas (HNSCC). Br J Cancer. 2014;110(11):2677–87. doi:10.1038/bjc.2014.221.

    Article  PubMed Central  PubMed  Google Scholar 

  374. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27–42. doi:10.1016/j.cell.2007.12.018.

    Article  PubMed Central  PubMed  Google Scholar 

  375. Vigneswaran N, Wu J, Song AR, Annapragada A, Zacharias W. Hypoxia-induced autophagic response is associated with aggressive phenotype and elevated incidence of metastasis in orthotopic immunocompetent murine models of head and neck squamous cell carcinomas (HNSCC). Exp Mol Pathol. 2011;90(2):215–25. doi:10.1016/j.yexmp.2010.11.011.

    Article  PubMed Central  PubMed  Google Scholar 

  376. Lozy F, Karantza V. Autophagy and cancer cell metabolism. Semin Cell Dev Biol. 2012;23(4):395–401. doi:10.1016/j.semcdb.2012.01.005.

    Article  PubMed Central  PubMed  Google Scholar 

  377. Li CY, Johnson DE. Bortezomib induces autophagy in head and neck squamous cell carcinoma cells via JNK activation. Cancer Lett. 2012;314(1):102–7. doi:10.1016/j.canlet.2011.09.020.

    Article  PubMed Central  PubMed  Google Scholar 

  378. Zhu WY, Wang XH, Zhou Y, Wang HM. C2-ceramide induces cell death and protective autophagy in head and neck squamous cell carcinoma cells. Int J Mol Sci. 2014;15(2):3336–55. doi:10.3390/ijms15023336.

    Article  PubMed Central  PubMed  Google Scholar 

  379. Schaaf MBE, Cojocari D, Keulers TG, Jutten B, Starmans MH, de Jong MC, et al. The autophagy associated gene, ULK1, promotes tolerance to chronic and acute hypoxia. Radiother Oncol. 2013;108(3):529–34. doi:10.1016/j.radonc.2013.06.015.

    Article  PubMed  Google Scholar 

  380. Russell RC, Tian Y, Yuan H, Park HW, Chang YY, Kim J, et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol. 2013;15(7):741–50. doi:10.1038/ncb2757.

    Article  PubMed Central  PubMed  Google Scholar 

  381. La Fleur L, Johansson A-C, Roberg K. A CD44(high)/EGFR(low) subpopulation within head and neck cancer cell lines shows an epithelial-mesenchymal transition phenotype and resistance to treatment. PLoS One. 2012;7(9):e44071. doi:10.1371/journal.pone.0044071.

    Article  PubMed Central  PubMed  Google Scholar 

  382. Ohnishi K, Ota I, Takahashi A, Yane K, Matsumoto H, Ohnishi T. Transfection of mutant p53 gene depresses X-ray- or CDDP-induced apoptosis in a human squamous cell carcinoma of the head and neck. Apoptosis. 2002;7(4):367–72. doi:10.1023/a:1016131614856.

    Article  PubMed  Google Scholar 

  383. Noutomi T, Chiba H, Itoh M, Toyota H, Mizuguchi J. Bcl-x(L) confers multi-drug resistance in several squamous cell carcinoma cell lines. Oral Oncol. 2002;38(1):41–8. doi:10.1016/s1368-8375(00)00098-1.

    Article  PubMed  Google Scholar 

  384. Gallo O, Chiarelli I, Boddi V, Bocciolini C, Bruschini L, Porfirio B. Cumulative prognostic value of p53 mutations and bcl-2 protein expression in head-and-neck cancer treated by radiotherapy. Int J Cancer. 1999;84(6):573–9. doi:10.1002/(sici)1097-0215(19991222)84:6<573::aid-ijc6>3.0.co;2-r.

    Article  PubMed  Google Scholar 

  385. Minn AJ, Rudin CM, Boise LH, Thompson CB. Expression of Bcl-x(l) can confer a multidrug-resistance phenotype. Blood. 1995;86(5):1903–10.

    PubMed  Google Scholar 

  386. Zhan QM, Alamo I, Yu K, Boise LH, Cherney B, Tosato G, et al. The apoptosis-associated gamma-ray response of BCL-X(L) depends on normal p53 function. Oncogene. 1996;13(10):2287–93.

    PubMed  Google Scholar 

  387. Michaud WA, Nichols AC, Mroz EA, Faquin WC, Clark JR, Begum S, et al. Bcl-2 blocks cisplatin-induced apoptosis and predicts poor outcome following chemoradiation treatment in advanced oropharyngeal squamous cell carcinoma. Clin Cancer Res. 2009;15(5):1645–54. doi:10.1158/1078-0432.ccr-08-2581.

    Article  PubMed Central  PubMed  Google Scholar 

  388. Hong L, Han Y, Zhang HW, Li MB, Gong TQ, Sun L, et al. The prognostic and chemotherapeutic value of miR-296 in esophageal squamous cell carcinoma. Ann Surg. 2010;251(6):1056–63. doi:10.1097/SLA.0b013e3181dd4ea9.

    Article  PubMed  Google Scholar 

  389. Toustrup K, Sorensen BS, Nordsmark M, Busk M, Wiuf C, Alsner J, et al. Development of a hypoxia gene expression classifier with predictive impact for hypoxic modification of radiotherapy in head and neck cancer. Cancer Res. 2011;71(17):5923–31. doi:10.1158/0008-5472.can-11-1182.

    Article  PubMed  Google Scholar 

  390. Gee HE, Camps C, Buffa FM, Patiar S, Winter SC, Betts G, et al. hsa-mir-210 is a marker of tumor hypoxia and a prognostic factor in head and neck cancer. Cancer. 2010;116(9):2148–58. doi:10.1002/cncr.25009.

    PubMed  Google Scholar 

  391. Zhang S, Mercado-Uribe I, Xing Z, Sun B, Kuang J, Liu J. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene. 2014;33(1):116–28. doi:10.1038/onc.2013.96.

    Article  PubMed  Google Scholar 

  392. Zhu GQ, Tang YL, Geng N, Zheng M, Jiang J, Li L, et al. HIF-alpha/MIF and NF-kappa B/IL-6 axes contribute to the recruitment of CD11b+ Gr-1+ myeloid cells in hypoxic microenvironment of HNSCC. Neoplasia. 2014;16(2):168–79. doi:10.1593/neo.132034.

    Article  PubMed Central  PubMed  Google Scholar 

  393. Chiu TJ, Chen CH, Chien CY, Li SH, Tsai HT, Chen YJ. High ERCC1 expression predicts cisplatin-based chemotherapy resistance and poor outcome in unresectable squamous cell carcinoma of head and neck in a betel-chewing area. J Transl Med. 2011;9:31. doi:10.1186/1479-5876-9-31.

    Article  PubMed Central  PubMed  Google Scholar 

  394. Bauman JE, Austin MC, Schmidt R, Kurland BF, Vaezi A, Hayes DN, et al. ERCC1 is a prognostic biomarker in locally advanced head and neck cancer: results from a randomised, phase II trial. Br J Cancer. 2013;109(8):2096–105. doi:10.1038/bjc.2013.576.

    Article  PubMed Central  PubMed  Google Scholar 

  395. Dudas J, Schartinger VH, Romani A, Schweigl G, Kordsmeyer K, Marta PI, et al. Cell cycle association and hypoxia regulation of excision repair cross complementation group 1 protein (ERCC1) in tumor cells of head and neck cancer. Tumor Biology. 2014;35(8):7807–19. doi:10.1007/s13277-014-2001-2.

    Article  PubMed Central  PubMed  Google Scholar 

  396. Patel MR, Zhao N, Ang MK, Stadler ME, Fritchie K, Weissler MC, et al. ERCC1 protein expression is associated with differential survival in oropharyngeal head and neck squamous cell carcinoma. Otolaryngol Head Neck Surg. 2013;149(4):587–95. doi:10.1177/0194599813496522.

    Article  PubMed  Google Scholar 

  397. De Castro G, Pasini FS, Siqueira SAC, Ferraz AR, Villar RC, Snitcovsky IML, et al. ERCC1 protein, mRNA expression and T19007C polymorphism as prognostic markers in head and neck squamous cell carcinoma patients treated with surgery and adjuvant cisplatin-based chemoradiation. Oncol Rep. 2011;25(3):693–9. doi:10.3892/or.2011.1133.

    Article  PubMed  Google Scholar 

  398. Togashi Y, Arao T, Kato H, Matsumoto K, Terashima M, Hayashi H, et al. Frequent amplification of ORAOV1 gene in esophageal squamous cell cancer promotes an aggressive phenotype via proline metabolism and ROS production. Oncotarget. 2014;5(10):2962–73.

    Article  PubMed Central  PubMed  Google Scholar 

  399. Sattler UGA, Meyer SS, Quennet V, Hoerner C, Knoerzer H, Fabian C, et al. Glycolytic metabolism and tumour response to fractionated irradiation. Radiother Oncol. 2010;94(1):102–9. doi:10.1016/j.radonc.2009.11.007.

    Article  PubMed  Google Scholar 

  400. Tonigold M, Rossmann A, Meinold M, Bette M, Marken M, Henkenius K, et al. A cisplatin-resistant head and neck cancer cell line with cytoplasmic p53(mut) exhibits ATP-binding cassette transporter upregulation and high glutathione levels. J Cancer Res Clin Oncol. 2014;140(10):1689–704. doi:10.1007/s00432-014-1727-y.

    Article  PubMed  Google Scholar 

  401. Liu W, Feng JQ, Shen XM, Wang HY, Liu Y, Zhou ZT. Two stem cell markers, ATP-binding cassette, G2 subfamily (ABCG2) and BMI-1, predict the transformation of oral leukoplakia to cancer. Cancer. 2012;118(6):1693–700. doi:10.1002/cncr.26483.

    Article  PubMed  Google Scholar 

  402. Grimm M, Krimmel M, Polligkeit J, Alexander D, Munz A, Kluba S, et al. ABCB5 expression and cancer stem cell hypothesis in oral squamous cell carcinoma. Eur J Cancer. 2012;48(17):3186–97. doi:10.1016/j.ejca.2012.05.027.

    Article  PubMed  Google Scholar 

  403. Feng JQ, Mi JG, Wu L, Ma LW, Shi LJ, Yang X, et al. Expression of podoplanin and ABCG2 in oral erythroplakia correlate with oral cancer development. Oral Oncol. 2012;48(9):848–52. doi:10.1016/j.oraloncology.2012.03.015.

    Article  PubMed  Google Scholar 

  404. Castells M, Thibault B, Delord J-P, Couderc B. Implication of tumor microenvironment in chemoresistance: tumor-associated stromal cells protect tumor cells from cell death. Int J Mol Sci. 2012;13(8):9545–71. doi:10.3390/ijms13089545.

    Article  PubMed Central  PubMed  Google Scholar 

  405. Tripathi P, Kamarajan P, Somashekar BS, MacKinnon N, Chinnaiyan AM, Kapila YL, et al. Delineating metabolic signatures of head and neck squamous cell carcinoma: phospholipase A(2), a potential therapeutic target. Int J Biochem Cell Biol. 2012;44(11):1852–61. doi:10.1016/j.biocel.2012.06.025.

    Article  PubMed Central  PubMed  Google Scholar 

  406. Sandulache VC, Ow TJ, Pickering CR, Frederick MJ, Zhou G, Fokt I, et al. Glucose, not glutamine, is the dominant energy source required for proliferation and survival of head and neck squamous carcinoma cells. Cancer. 2011;117(13):2926–38. doi:10.1002/cncr.25868.

    Article  PubMed Central  PubMed  Google Scholar 

  407. Li SJ, Yang XN, Wang P, Ran X. The effects of GLUT1 on the survival of head and neck squamous cell carcinoma. Cell Physiol Biochem. 2013;32(3):624–34. doi:10.1159/000354466.

    Article  PubMed  Google Scholar 

  408. Martinez-Outschoorn UE, Lin Z, Trimmer C, Flomenberg N, Wang C, Pavlides S, et al. Cancer cells metabolically “fertilize” the tumor microenvironment with hydrogen peroxide, driving the Warburg effect Implications for PET imaging of human tumors. Cell Cycle. 2011;10(15):2504–20. doi:10.4161/cc.10.15.16585.

    Article  PubMed Central  PubMed  Google Scholar 

  409. Kennedy KM, Dewhirst MW. Tumor metabolism of lactate: the influence and therapeutic potential for MCT and CD147 regulation. Future Oncol. 2010;6(1):127–48. doi:10.2217/fon.09.145.

    Article  PubMed Central  PubMed  Google Scholar 

  410. Feron O. Pyruvate into lactate and back: From the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother Oncol. 2009;92(3):329–33. doi:10.1016/j.radonc.2009.06.025.

    Article  PubMed  Google Scholar 

  411. Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest. 2008;118(12):3930–42. doi:10.1172/jci36843.

    PubMed Central  PubMed  Google Scholar 

  412. Walenta S, Salameh A, Lyng H, Evensen JF, Mitze M, Rofstad EK, et al. Correlation of high lactate levels in head and neck tumors with incidence of metastasis. Am J Pathol. 1997;150(2):409–15.

    PubMed Central  PubMed  Google Scholar 

  413. Brizel DM, Schroeder T, Scher RL, Walenta S, Clough RW, Dewhirst MW, et al. Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2001;51(2):349–53. doi:10.1016/s0360-3016(01)01630-3.

    Article  PubMed  Google Scholar 

  414. Halestrap AP, Price NT. The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J. 1999;343:281–99. doi:10.1042/0264-6021:3430281.

    Article  PubMed Central  PubMed  Google Scholar 

  415. Ganapathy V, Thangaraju M, Prasad PD. Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol Ther. 2009;121(1):29–40. doi:10.1016/j.pharmthera.2008.09.005.

    Article  PubMed  Google Scholar 

  416. Brooks GA. Cell-cell and intracellular lactate shuttles. J Physiol London. 2009;587(23):5591–600. doi:10.1113/jphysiol.2009.178350.

    Article  PubMed Central  PubMed  Google Scholar 

  417. Gladden LB. Lactate metabolism: a new paradigm for the third millennium. J Physiol London. 2004;558(1):5–30. doi:10.1113/jphysiol.2003.058701.

    Article  PubMed Central  PubMed  Google Scholar 

  418. Ullah MS, Davies AJ, Halestrap AP. The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1 alpha-dependent mechanism. J Biol Chem. 2006;281(14):9030–7. doi:10.1074/jbc.M511397200.

    Article  PubMed  Google Scholar 

  419. Curry JM, Sprandio J, Cognetti D, Luginbuhl A, Bar-ad V, Pribitkin E, et al. Tumor microenvironment in head and neck squamous cell carcinoma. Semin Oncol. 2014;41(2):217–34. doi:10.1053/j.seminoncol.2014.03.003.

    Article  PubMed  Google Scholar 

  420. Routray S, Sunkavali A, Bari KA. Carcinoma-associated fibroblasts, its implication in head and neck squamous cell carcinoma: a mini review. Oral Dis. 2014;20(3):246–53. doi:10.1111/odi.12107.

    Article  PubMed  Google Scholar 

  421. Lin SY, Dolfi SC, Amiri S, Li JD, Budak-Alpdogan T, Lee KC, et al. P53 regulates the migration of mesenchymal stromal cells in response to the tumor microenvironment through both CXCL12-dependent and -independent mechanisms. Int J Oncol. 2013;43(6):1817–23. doi:10.3892/ijo.2013.2109.

    PubMed Central  PubMed  Google Scholar 

  422. Marsh D, Suchak K, Moutasim KA, Vallath S, Hopper C, Jerjes W, et al. Stromal features are predictive of disease mortality in oral cancer patients. J Pathol. 2011;223(4):470–81. doi:10.1002/path.2830.

    Article  PubMed  Google Scholar 

  423. van Kempen LCL, de Visser KE, Coussens LM. Inflammation, proteases and cancer. Eur J Cancer. 2006;42(6):728–34. doi:10.1016/j.ejca.2006.01.004.

    Article  PubMed  Google Scholar 

  424. Erez N, Truitt M, Olson P, Hanahan D. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappa B-dependent manner. Cancer Cell. 2010;17(2):135–47. doi:10.1016/j.ccr.2009.12.041.

    Article  PubMed  Google Scholar 

  425. Wu MH, Hong HC, Hong TM, Chiang WF, Jin YT, Chen YL. Targeting galectin-1 in carcinoma-associated fibroblasts inhibits oral squamous cell carcinoma metastasis by downregulating MCP-1/CCL2 expression. Clin Cancer Res. 2011;17(6):1306–16. doi:10.1158/1078-0432.ccr-10-1824.

    Article  PubMed  Google Scholar 

  426. Rosenthal E, McCrory A, Talbert M, Young G, Murphy-Ullrich J, Gladson C. Elevated expression of TGF-beta 1 in head and neck cancer – associated fibroblasts. Mol Carcinog. 2004;40(2):116–21. doi:10.1002/mc.20024.

    Article  PubMed  Google Scholar 

  427. Alcolea S, Anton R, Camacho M, Soler M, Alfranca A, Aviles-Jurado F-X, et al. Interaction between head and neck squamous cell carcinoma cells and fibroblasts in the biosynthesis of PGE(2). J Lipid Res. 2012;53(4):630–42. doi:10.1194/jlr.M019695.

    Article  PubMed Central  PubMed  Google Scholar 

  428. Sirica AE. The role of cancer-associated myofibroblasts in intrahepatic cholangiocarcinoma. Nat Rev Gastroenterol Hepatol. 2012;9(1):44–54. doi:10.1038/nrgastro.2011.222.

    Article  Google Scholar 

  429. Shimoda M, Mellody KT, Orimo A. Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Semin Cell Dev Biol. 2010;21(1):19–25. doi:10.1016/j.semcdb.2009.10.002.

    Article  PubMed Central  PubMed  Google Scholar 

  430. Neiva KG, Zhang ZC, Miyazawa M, Warner KA, Karl E, Nor JE. Cross talk initiated by endothelial cells enhances migration and inhibits anoikis of squamous cell carcinoma cells through STAT3/Akt/ERK signaling. Neoplasia. 2009;11(6):583–93. doi:10.1593/neo.09266.

    Article  PubMed Central  PubMed  Google Scholar 

  431. Kaneko T, Zhang ZC, Mantellini MG, Karl E, Zeitlin B, Verhaegen M, et al. Bcl-2 orchestrates a cross-talk between endothelial and tumor cells that promotes tumor growth. Cancer Res. 2007;67(20):9685–93. doi:10.1158/0008-5472.can-07-1497.

    Article  PubMed  Google Scholar 

  432. Zeng QH, Li SL, Chepeha DB, Giordano TJ, Li J, Zhang HL, et al. Crosstalk between tumor and endothelial cells promotes tumor angiogenesis by MAPK activation of Notch signaling. Cancer Cell. 2005;8(1):13–23. doi:10.1016/j.ccr.2005.06.004.

    Article  PubMed  Google Scholar 

  433. Blair RJ, Meng H, Marchese MJ, Ren S, Schwartz LB, Tonnesen MG, et al. Human mast cells stimulate vascular tube formation. Tryptase is a novel, potent angiogenic factor. J Clin Invest. 1997;99(11):2691–700. doi:10.1172/jci119458.

    Article  PubMed Central  PubMed  Google Scholar 

  434. Iamaroon A, Pongsiriwet S, Jittidecharaks S, Pattanaporn K, Prapayasatok S, Wanachantararak S. Increase of mast cells and tumor angiogenesis in oral squamous cell carcinoma. J Oral Pathol Med. 2003;32(4):195–9.

    Article  PubMed  Google Scholar 

  435. Mohtasham N, Babakoohi S, Nejad JS, Montaser-Kouhsari L, Shakeri MT, Shojaee S, et al. Mast cell density and angiogenesis in oral dysplastic epithelium and low- and high-grade oral squamous cell carcinoma. Acta Odontol Scand. 2010;68(5):300–4. doi:10.3109/00016357.2010.494622.

    Article  PubMed  Google Scholar 

  436. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549–55. doi:10.1016/s1471-4906(02)02302-5. Pii s1471-4906(02)02302-5.

    Article  PubMed  Google Scholar 

  437. Mantovani A, Allavena P, Sica A. Tumour-associated macrophages as a prototypic type II polarised phagocyte population: role in tumour progression. Eur J Cancer. 2004;40(11):1660–7. doi:10.1016/j.ejca.2004.03.016.

    Article  PubMed  Google Scholar 

  438. Sica A, Bronte V. Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest. 2007;117(5):1155–66. doi:10.1172/jci31422.

    Article  PubMed Central  PubMed  Google Scholar 

  439. Cirri P, Chiarugi P. Cancer associated fibroblasts: the dark side of the coin. Am J Cancer Res. 2011;1(4):482–97.

    PubMed Central  PubMed  Google Scholar 

  440. Togo S, Polanska UM, Horimoto Y, Orimo A. Carcinoma-associated fibroblasts are a promising therapeutic target. Cancers (Basel). 2013;5(1):149–69. doi:10.3390/cancers5010149.

    Article  Google Scholar 

  441. Johansson A-C, Ansell A, Jerhammar F, Lindh MB, Grenman R, Munck-Wikland E, et al. Cancer-associated fibroblasts induce matrix metalloproteinase-mediated cetuximab resistance in head and neck squamous cell carcinoma cells. Mol Cancer Res. 2012;10(9):1158–68. doi:10.1158/1541-7786.mcr-12-0030.

    Article  PubMed  Google Scholar 

  442. Xing F, Saidou J, Watabe K. Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci (Landmark). 2010;15:166–79. doi:10.2741/3613.

    Article  Google Scholar 

  443. Leef G, Thomas SM. Molecular communication between tumor-associated fibroblasts and head and neck squamous cell carcinoma. Oral Oncol. 2013;49(5):381–6. doi:10.1016/j.oraloncology.2012.12.014.

    Article  PubMed Central  PubMed  Google Scholar 

  444. Wheeler SE, Shi H, Lin F, Dasari S, Bednash J, Thorne S, et al. Enhancement of head and neck squamous cell carcinoma proliferation, invasion, and metastasis by tumor-associated fibroblasts in preclinical models. Head Neck. 2014;36(3):385–92.

    Article  PubMed Central  PubMed  Google Scholar 

  445. Whiteside TL. Immunobiology of head and neck cancer. Cancer and Metastasis Rev. 2005;24(1):95–105. doi:10.1007/s10555-005-5050-6.

    Article  Google Scholar 

  446. Bronte V, Apolloni E, Cabrelle A, Ronca R, Serafini P, Zamboni P, et al. Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood. 2000;96(12):3838–46.

    PubMed Central  PubMed  Google Scholar 

  447. Kesselring R, Thiel A, Pries R, Trenkle T, Wollenberg B. Human Th17 cells can be induced through head and neck cancer and have a functional impact on HNSCC development. Br J Cancer. 2010;103(8):1245–54. doi:10.1038/sj.bjc.6605891.

    Article  PubMed Central  PubMed  Google Scholar 

  448. Kesselring R, Thiel A, Pries R, Wollenberg B. The number of CD161 positive Th17 cells are decreased in head and neck cancer patients. Cell Immunol. 2011;269(2):74–7. doi:10.1016/j.cellimm.2011.03.026.

    Article  PubMed  Google Scholar 

  449. Costa NL, Valadares MC, Souza PPC, Mendonca EF, Oliveira JC, Silva TA, et al. Tumor-associated macrophages and the profile of inflammatory cytokines in oral squamous cell carcinoma. Oral Oncol. 2013;49(3):216–23. doi:10.1016/j.oraloncology.2012.09.012.

    Article  PubMed  Google Scholar 

  450. Dumitru CA, Gholaman H, Trellakis S, Bruderek K, Dominas N, Gu X, et al. Tumor-derived macrophage migration inhibitory factor modulates the biology of head and neck cancer cells via neutrophil activation. Int J Cancer. 2011;129(4):859–69. doi:10.1002/ijc.25991.

    Article  PubMed  Google Scholar 

  451. Galdiero MR, Garlanda C, Jaillon S, Marone G, Mantovani A. Tumor associated macrophages and neutrophils in tumor progression. J Cell Physiol. 2013;228(7):1404–12. doi:10.1002/jcp.24260.

    Article  PubMed  Google Scholar 

  452. Mishalian I, Bayuh R, Levy L, Zolotarov L, Michaeli J, Fridlender ZG. Tumor-associated neutrophils (TAN) develop pro-tumorigenic properties during tumor progression. Cancer Immunol Immunother. 2013;62(11):1745–56. doi:10.1007/s00262-013-1476-9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by Ministry of Health of the Czech Republic IGA MZ NT14337-3/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Masarik PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Raudenska, M., Gumulec, J., Fribley, A.M., Masarik, M. (2016). HNSCC Biomarkers Derived from Key Processes of Cancerogenesis. In: M. Fribley, A. (eds) Targeting Oral Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-27647-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27647-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27645-8

  • Online ISBN: 978-3-319-27647-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics