Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

  • 1547 Accesses

Abstract

Turbulence, chemical kinetics, and thermal radiation individually are among the most challenging fundamental and practical problems of computational science and engineering. In chemically reacting turbulent flows, these are coupled in interesting and highly nonlinear ways, leading to entirely new classes of phenomena. Interactions between turbulence and chemical kinetics (turbulence–chemistry interaction: TCI) and between turbulence and thermal radiation (turbulence–radiation interaction: TRI) both have profound influences on local and global flame behavior. Numerical simulations that neglect radiation and TRI, or treat them in simplistic fashion, can fail to capture local and global flame ignition/extinction, and yield inaccurate predictions of heat transfer rates (by as much as several hundred percent), temperature (by as much as several hundred degrees Kelvin), and pollutant emissions (especially soot and NO x ). In this chapter an introduction is given to the tools used for state-of-the-art numerical calculation of turbulent reacting flows, including high-level models for fluid flow, chemical reactions, thermal radiation, and interactions of turbulence with chemistry as well as radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.A. Libby, F.A. Williams, Turbulent Reacting Flows (Academic Press, San Diego, 1994)

    MATH  Google Scholar 

  2. R.W. Bilger, Turbulent diffusion flames. Ann. Rev. Fluid Mech. 21, 101–135 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. R.W. Bilger, Future progress in turbulent combustion research. Prog. Energy Combust. Sci. 26, 367–380 (2000)

    Article  Google Scholar 

  4. N. Peters, Turbulent Combustion (Cambridge University Press, Cambridge, 2000)

    Book  MATH  Google Scholar 

  5. D. Veynante, L. Vervisch, Turbulent combustion modeling. Prog. Energy Combust. Sci. 28, 193–266 (2002)

    Article  Google Scholar 

  6. R.O. Fox, Computational Models for Turbulent Reacting Flows (Cambridge University Press, Cambridge, 2003)

    Book  Google Scholar 

  7. C.K. Westbrook, Y. Mizobuchi, T.J. Poinsot, P.J. Smith, J. Warnatz, Computational combustion. Proc. Combust. Inst. 30, 125–157 (2005)

    Article  Google Scholar 

  8. R.S. Cant, E. Mastorakos, An Introduction to Turbulent Reacting Flows (Imperial College Press, London, 2008)

    MATH  Google Scholar 

  9. T. Poinsot, D. Veynante, Theoretical and Numerical Combustion, 3rd edn. (R.T. Edwards, Inc., Philadelphia, 2011)

    Google Scholar 

  10. T. Echekki, E. Mastorakos (eds.), Turbulent Combustion Modeling – Advances, New Trends and Perspectives (Springer, New York, 2011)

    MATH  Google Scholar 

  11. L. Vervisch, D. Veynante, J.P.A.J. Van Beeck (eds.), Turbulent Combustion. von Karman Institute for Fluid Dynamics Lecture Series 2013–06, Rhode-Saint-Genèse (2013)

    Google Scholar 

  12. W. Jones, M.C. Paul, Combination of DOM with LES in a gas turbine combustor. Int. J. Eng. Sci. 43(5–6), 379–397 (2005)

    Article  MATH  Google Scholar 

  13. P. Schmitt, T. Poinsot, B. Schuermans, K.P. Geigle, Large-eddy simulation and experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high-pressure burner. J. Fluid Mech. 570, 17–46 (2007)

    Article  MATH  Google Scholar 

  14. S. Mazumder, M.F. Modest, A PDF approach to modeling turbulence–radiation interactions in nonluminous flames. Int. J. Heat Mass Transfer 42, 971–991 (1999)

    Article  MATH  Google Scholar 

  15. G. Li, M.F. Modest, Importance of turbulence–radiation interactions in turbulent diffusion jet flames. J. Heat Transfer 125, 831–838 (2003)

    Article  Google Scholar 

  16. Y. Ju, G. Masuya, P.D. Ronney, Effects of radiative emission and absorption on the propagation and extinction of premixed gas flames. Proc. Combust. Inst. 27, 2619–2626 (1998)

    Article  Google Scholar 

  17. J.H. Frank, R.S. Barlow, C. Lundquist, Radiation and nitric oxide formation in turbulent non-premixed jet flames. Proc. Combust. Inst. 28, 447–454 (2000)

    Article  Google Scholar 

  18. A.A. Townsend, The effects of radiative transfer on turbulent flow of a stratified fluid. J. Fluid Mech. 4, 361–375 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  19. G.M. Shved, R.A. Akmayev, Influence of radiative heat transfer on turbulence in planetary atmospheres. Atmos. Oceanic Phys. 34, 1286–1401 (1977)

    Google Scholar 

  20. T.-H. Song, R. Viskanta, Interaction of radiation with turbulence: application to a combustion system. J. Thermophys. Heat Transfer 1(1), 56–62 (1987)

    Article  Google Scholar 

  21. A. Soufiani, P. Mignon, J. Taine, Radiation–turbulence interaction in channel flows of infrared active gases, in Proceedings of the Ninth International Heat Transfer Conference, vol. 6 (Hemisphere, Washington, D.C., 1990), pp. 403–408

    Google Scholar 

  22. R.J. Hall, A. Vranos, Efficient calculations of gas radiation from turbulent flames. Int. J. Heat Mass Transfer 37, 2745 (1994)

    Article  MATH  Google Scholar 

  23. J.P. Gore, G.M. Faeth, Structure and spectral radiation properties of turbulent ethylene/air diffusion flames, in Proceedings of the Twenty-First Symposium (International) on Combustion, pp. 1521–1531 (1986)

    Google Scholar 

  24. J.P. Gore, S.M. Jeng, G.M. Faeth, Spectral and total radiation properties of turbulent carbon monoxide/air diffusion flames. J. Am. Inst. Aeronaut. Astronaut. 25(2), 339–345 (1987)

    Article  Google Scholar 

  25. J.P. Gore, S.M. Jeng, G.M. Faeth, Spectral and total radiation properties of turbulent hydrogen/air diffusion flames. J. Heat Transfer 109, 165–171 (1987)

    Article  Google Scholar 

  26. J.P. Gore, G.M. Faeth, Structure and spectral radiation properties of luminous acetylene/air diffusion flames. J. Heat Transfer 110, 173–181 (1988)

    Article  Google Scholar 

  27. M.E. Kounalakis, J.P. Gore, G.M. Faeth, Turbulence/radiation interactions in nonpremixed hydrogen/air flames, in Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Pittsburg, 1988), pp. 1281–1290

    Google Scholar 

  28. M.E. Kounalakis, J.P. Gore, G.M. Faeth, Mean and fluctuating radiation properties of nonpremixed turbulent carbon monoxide/air flames. J. Heat Transfer 111, 1021–1030 (1989)

    Article  Google Scholar 

  29. M.E. Kounalakis, Y.R. Sivathanu, G.M. Faeth, Infrared radiation statistics of nonluminous turbulent diffusion flames. J. Heat Transfer 113, 437–445 (1991)

    Article  Google Scholar 

  30. Y.R. Sivathanu, M.E. Kounalakis, G.M. Faeth, Soot and continuous radiation statistics of luminous turbulent diffusion flames, in Twenty-Third Symposium (International) on Combustion (The Combustion Institute, Pittsburg, 1990), pp. 1543–1550

    Google Scholar 

  31. G. Li, M.F. Modest, Application of composition PDF methods in the investigation of turbulence–radiation interactions. J. Quant. Spectrosc. Radiat. Transfer 73, 461–472 (2002)

    Article  Google Scholar 

  32. G. Li, M.F. Modest, Importance of turbulence–radiation interactions in turbulent diffusion jet flames. J. Heat Transfer 125, 831–838 (2003)

    Article  Google Scholar 

  33. G. Li, M.F. Modest, Numerical simulation of turbulence–radiation interactions in turbulent reacting flows, in Modelling and Simulation of Turbulent Heat Transfer, ed. by B. Sundeń, M. Faghri, Chap. 3 (WIT Press, Southampton, 2005), pp. 77–112

    Google Scholar 

  34. P.J. Coelho, Numerical simulation of the interaction between turbulence and radiation in reactive flows. Prog. Energy Combust. Sci. 33(4), 311–383 (2007)

    Article  Google Scholar 

  35. A. Leonard, Energy cascade in large eddy simulation of turbulent flow. Adv. Geophys. 18A, 237–248 (1974)

    Google Scholar 

  36. C. Meneveau, J. Katz, Scale-invariance and turbulence models for large-eddy simulation. Ann. Rev. Fluid Mech. 32, 1–32 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. S.B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, 2000)

    Book  MATH  Google Scholar 

  38. P. Sagaut, Large Eddy Simulation for Incompressible Flows (Springer, Berlin, 2001)

    Book  MATH  Google Scholar 

  39. S.B. Pope, Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 6(35) (2004). http://www.njp.org/

    Google Scholar 

  40. H. Pitsch, Large-eddy simulation of turbulent combustion. Ann. Rev. Fluid Mech. 38, 453–482 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. H. Pitsch, Improved pollutant predictions in large-eddy simulations of turbulent non-premixed combustion by considering scalar dissipation rate fluctuations. Proc. Combust. Inst. 29, 1971–1978 (2002)

    Article  Google Scholar 

  42. V. Raman, H. Pitsch, R.O. Fox, Hybrid large eddy simulation/Lagrangian filtered density function approach for simulating turbulent combustion. Combust. Flame 143, 56–58 (2005)

    Article  Google Scholar 

  43. M.R.H. Sheikhi, T.G. Drozda, P. Givi, F.A. Jaberi, S.B. Pope, Large eddy simulation of a turbulent nonpremixed piloted methane jet flame (Sandia Flame D). Proc. Combust. Inst. 30, 549–556 (2005)

    Article  Google Scholar 

  44. L. Selle, G. Lartigue, T. Poinsot, R. Koch, K.-U. Schildmacher, W. Krebs, B. Prade, P. Kaufmann, D. Veynante, Compressible large-eddy simulation of turbulent combustion in complex geometry on unstructured meshes. Combust. Flame 137, 489–505 (2004)

    Article  Google Scholar 

  45. P. Moin, S.V. Apte, Large-eddy simulation of realistic gas turbine combustors. AIAA Paper no. AIAA-2004-330 (2004)

    Google Scholar 

  46. S. James, J. Zhu, M.S. Anand, Large-eddy simulations of gas turbine combustors. AIAA Paper no. 2005-0552 (2005)

    Google Scholar 

  47. P. Flohr, CFD modeling for gas turbine combustors, in Turbulent Combustion, ed. by L. Vervisch, D. Veynante, J.P.A.J. Van Beeck. von Karman Institute for Fluid Dynamics Lecture Series 2005–02, Rhode-Saint-Genèse (2005)

    Google Scholar 

  48. I. Celik, I. Yavuz, A. Smirnov, Large-eddy simulations of in-cylinder turbulence for IC engines: a review. Int. J. Engine Res. 2, 119–148 (2001)

    Article  Google Scholar 

  49. D.C. Haworth, A review of turbulent combustion modeling for multidimensional in-cylinder CFD. SAE Trans. J. Engines 899–928 (2005)

    Google Scholar 

  50. S. Richard, O. Colin, O. Vermorel, A. Benkenida, A. Angelberger, D. Veynante, Towards large-eddy simulation of combustion in spark-ignition engines. Proc. Combust. Inst. 31, 3059–3066 (2007)

    Article  Google Scholar 

  51. S.B. Pope, PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119–192 (1985)

    Article  Google Scholar 

  52. D.C. Haworth, Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci. 36, 168–259 (2010)

    Article  Google Scholar 

  53. D.C. Haworth, S.B. Pope, Transported probability density function methods for Reynolds-averaged and large-eddy simulations, in Turbulent Combustion Modeling - Advances, New Trends and Perspectives, ed. by T. Echekki, E. Mastorakos (Springer, Berlin, 2011), pp. 119–142

    Chapter  Google Scholar 

  54. M. Mehl, W.J. Pitz, C.K. Westbrook, H.J. Curran, Kinetic modeling of gasoline surrogate components and mixtures under engine conditions. Proc. Combust. Inst. 33, 193–200 (2011)

    Article  Google Scholar 

  55. R.W. Bilger, S.B. Pope, K.N.C. Bray, J.F. Driscoll, Paradigms in turbulent combustion research. Proc. Combust. Inst. 30, 21–42 (2005)

    Article  Google Scholar 

  56. J. Warnatz, U. Maas, R.W. Dibble, Combustion (Springer, Berlin, 2001)

    Book  MATH  Google Scholar 

  57. T. Poinsot, D. Veynante, Theoretical and Numerical Combustion, 2nd edn. (R.T. Edwards, Inc., Toulouse, 2005)

    Google Scholar 

  58. V.R. Mohan, D.C. Haworth, Turbulence-chemistry interactions in a heavy-duty compression-ignition engine. Proc. Combust. Inst. 35, 3053–3060 (2015)

    Article  Google Scholar 

  59. M.F. Modest, Radiative Heat Transfer, 3rd edn. (Academic Press, New York, 2013)

    Google Scholar 

  60. A. Wang, M.F. Modest, D.C. Haworth, L. Wang, Monte Carlo simulation of radiative heat transfer and turbulence interactions in methane/air jet flames, in Radiative Transfer 2007 — The Fifth International Symposium on Radiative Transfer, ed. by M.P. Mengüç, N. Selçuk (Begell House, Bodrum, 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Modest, M.F., Haworth, D.C. (2016). Introduction. In: Radiative Heat Transfer in Turbulent Combustion Systems. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-27291-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27291-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27289-4

  • Online ISBN: 978-3-319-27291-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics