Skip to main content

Transported Probability Density Function Methods for Reynolds-Averaged and Large-Eddy Simulations

  • Chapter
Turbulent Combustion Modeling

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 95))

Abstract

Probability density function (PDF) methods provide an elegant and effective resolution to the closure problems that arise from averaging or filtering chemical source terms and other nonlinear terms in the equations that govern chemically reacting turbulent flows. PDF methods traditionally have been associated with studies of turbulence-chemistry interactions in laboratory-scale, atmospheric pressure, nonluminous, statistically-stationary nonpremixed turbulent flames; and Lagrangian particle-based Monte Carlo numerical algorithms have become the predominant method for solving modeled PDF transport equations. The emphasis in this chapter is on recent advances, new trends and perspectives in PDF methods. These include advances in particle-based algorithms, alternatives to particle-based algorithms (e.g., Eulerian field methods), treatment of combustion regimes beyond low-to-moderate-Damköhler-number nonpremixed systems (e.g., premixed flamelets), extensions to include radiation heat transfer and multiphase systems (e.g., soot and fuel sprays), and the use of PDF-based methods as the basis for modeling in large-eddy simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anand, M.S., Pope, S.B.: Calculations of premixed turbulent flames by PDF methods. Combust. Flame 67, 127–142 (1987)

    Article  Google Scholar 

  2. Anand, M.S., Pope, S.B., Mongia, H.C.: A PDF method for turbulent recirculating flows. Turbulent Reactive Flows, Lecture Notes in Engineering 40, 672–693 (1989)

    Google Scholar 

  3. Barlow, R.S.: Intern’l. Workshop on Measurement and Computation of Turbulent Nonpremixed Flames (2008). Combustion Research Facility, Sandia National Laboratories, Livermore, CA; http://www.ca.sandia.gov/TNF/

  4. Beishuizen, N.A., Roekaerts, D.: Numerical simulation of a turbulent spray flame using a hybrid Monte Carlo/finite volume method. In: D. Roekaerts, P. Coelho, B.J. Boersma, K. Claramunt (eds.) Computational Combustion 2007, ECCOMAS Thematic Conference (2007). Delft, The Netherlands, 18–20 July

    Google Scholar 

  5. Cabra, R., Myhrvold, T., Chen, J.Y., Dibble, R.W., Karpetis, A.N., Barlow, R.S.: Simulataneous laser Raman-Rayleigh-LIF measurements and numerical modeling results of a lifted turbulent H2/N2 jet flame in a vitiated coflow. Proc. Combust. Inst. 29, 1881–1888 (2002)

    Article  Google Scholar 

  6. Cao, R., Pope, S.B.: Numerical integration of stochastic differential equations: Weak second-order mid-point scheme for application in the composition PDF method. J. Comput. Phys. 185, 194–212 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cao, R.R., Pope, S.B., Masri, A.R.: Turbulent lifted flames in a vitiated coflow investigated using joint PDF calculations. Combust. Flame 142, 438–453 (2005)

    Article  Google Scholar 

  8. Cleary, M.J., Klimenko, A.Y.: A generalized multiple mapping conditioning approach for turbulent combustion. Flow Turbul. Combust. 82, 477–491 (2009)

    Article  MATH  Google Scholar 

  9. Cleary, M.J., Klimenko, A.Y., Janicka, J., Pfitzner, M.: A sparse-Lagrangian multiple mapping conditioning model for turbulent diffusion flames. Proc. Combust. Inst. 32, 1499–1507 (2009)

    Article  Google Scholar 

  10. Colucci, P.J., Jaberi, F.A., Givi, P., Pope, S.B.: Filtered density function for large eddy simulation of turbulent reacting flows. Phys. Fluids 10, 499–515 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Curl, R.L.: Dispersed phase mixing: I. Theory and effects of simple reactors. AIChE J. 9, 175–181 (1963)

    Article  Google Scholar 

  12. Delarue, B.J., Pope, S.B.: Application of PDF methods to compressible turbulent flows. Phys. Fluids 9, 2704–2715 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Delarue, B.J., Pope, S.B.: Calculations of subsonic and supersonic turbulent reacting mixing layers using probability density function methods. Phys. Fluids 10, 487–498 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dopazo, C., O’Brien, E.E.: An approach to the autoignition of a turbulent mixture. Acta Astronautica 1, 1239–1266 (1974)

    Article  MATH  Google Scholar 

  15. Dopazo, C., O’Brien, E.E.: Functional formulation of nonisothermal turbulent reactive flows. Phys. Fluids 17, 1968–1975 (1974)

    Article  Google Scholar 

  16. Dreeben, T.D., Pope, S.B.: Probability density function and Reynolds-stress modeling of near-wall turbulent flows. Phys. Fluids 9, 154–163 (1997)

    Article  MathSciNet  Google Scholar 

  17. Dreeben, T.D., Pope, S.B.: Wall-function treatment in PDF methods for turbulent flows. Phys. Fluids 9, 2692–2703 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Drozda, T.G., Sheikhi, M.R.H., Madnia, C.K., Givi, P.: Developments in formulation and application of the filtered density function. Flow Turbul. Combust. 78, 35–67 (2007)

    Article  MATH  Google Scholar 

  19. Fox, R.O.: The Fokker-Planck closure for turbulent molecular mixing: Passive scalars. Phys. Fluids A 4, 1230–1244 (1992)

    Article  MATH  Google Scholar 

  20. Fox, R.O.: Improved Fokker-Planck model for the joint scalar, scalar gradient PDF. Phys. Fluids 6, 334–348 (1994)

    Article  MATH  Google Scholar 

  21. Fox, R.O.: The Lagrangian spectral relaxation model of the scalar dissipation in homogeneous turbulence. Phys. Fluids 9, 2364–2386 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Fox, R.O.: Computational Models for Turbulent Reacting Flows. Cambridge University Press, Cambridge, UK (2003)

    Book  Google Scholar 

  23. Gao, F., O’Brien, E.E.: A large-eddy simulation scheme for turbulent reacting flows. Phys. Fluids A 5, 1282–1284 (1993)

    Article  MATH  Google Scholar 

  24. Ge, H.W., Gutheil, E.: Simulation of a turbulent spray flame using coupled PDF gas phase and spray flamelet modeling. Combust. Flame 153, 173–185 (2008)

    Article  Google Scholar 

  25. Haworth, D.C.: Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci. 36, 168–259 (2010)

    Article  Google Scholar 

  26. Haworth, D.C., Drake, M.C., Pope, S.B., Blint, R.J.: The importance of time-dependent flame structures in stretched laminar flamelet models for turbulent jet diffusion flames. Proc. Combust. Inst. 22, 589–597 (1988)

    Google Scholar 

  27. Haworth, D.C., El Tahry, S.H.: A PDF approach for multidimensional turbulent flow calculations with application to in-cylinder flows in reciprocating engines. AIAA J. 29, 208–218 (1991)

    Article  Google Scholar 

  28. Haworth, D.C., Pope, S.B.: A PDF modeling study of self-similar turbulent free shear flows. Phys. Fluids 30, 1026–1044 (1987)

    Article  Google Scholar 

  29. Hsu, A.T., Tsai, Y.L.P., Raju, M.S.: Probability density function approach for compressible turbulent reacting flows. AIAA J. 32, 1407–1415 (1994)

    Article  Google Scholar 

  30. Jaishree, J., Haworth, D.C.: Comparisons of Lagrangian and Eulerian PDF methods in simulations of nonpremixed turbulent jet flames with strong turbulence-chemistry interactions. In: Sixth U.S. National Combustion Meeting. Ann Arbor, MI (17–20 May 2009)

    Google Scholar 

  31. James, S., Anand, M.S., Pope, S.B.: The Lagrangian PDF transport method for simulations of gas turbine combustor flows. AIAA Paper no. 2002-4017 (2002) (2002)

    Google Scholar 

  32. James, S., Zhu, J., Anand, M.S.: Large eddy simulations of turbulent flames using the filtered density function model. Proc. Combust. Inst. 31, 1737–1745 (2007)

    Article  Google Scholar 

  33. Jones, W.P., Navarro-Martinez, S.: Large eddy simulation of autoignition with a subgrid probability density function method. Combust. Flame 150, 170–187 (2007)

    Article  Google Scholar 

  34. Klimenko, A.Y.: Matching the conditional variance as a criterion for selecting parameters in the simplest multiple mapping conditioning models. Phys. Fluids 16, 4754–4757 (2004)

    Article  Google Scholar 

  35. Klimenko, A.Y.: On simulating scalar transport by mixing between Lagrangian particles. Phys. Fluids 19, 031,702 (2007)

    Article  Google Scholar 

  36. Klimenko, A.Y., Pope, S.B.: The modeling of turbulent reactive flows based on multiple mapping conditioning. Phys. Fluids 15, 1907–1925 (2003)

    Article  MathSciNet  Google Scholar 

  37. Kung, E.H., Haworth, D.C.: Transported probability density function (tPDF) modeling for direct-injection internal combustion engines. SAE Int. J. Engines 1, 591–606 (2008)

    Google Scholar 

  38. Li, G., Modest, M.F.: Application of composition PDF methods in the investigation of turbulence-radiation interactions. J. Quant. Spec. Rad. Trans. 73, 461–472 (2002)

    Article  Google Scholar 

  39. Lindstedt, R.P., Louloudi, S.A.: Joint-scalar transported PDF modeling of soot formation and oxidation. Proc. Combust. Inst. 30, 775–783 (2005)

    Article  Google Scholar 

  40. Lindstedt, R.P., Vaos, E.M.: Transported PDF modeling of high-Reynolds-number premixed turbulent flames. Combust. Flame 145, 495–511 (2006)

    Article  Google Scholar 

  41. Lu, L., Pope, S.B.: An improved algorithm for in situ adaptive tabulation. J. Comput. Phys. 228, 361–386 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  42. Mazumder, S., Modest, M.F.: A PDF approach to modeling turbulence-radiation interactions in nonluminous flames. Int. J. Heat Mass Trans. 42, 971–991 (1999)

    Article  MATH  Google Scholar 

  43. McDermott, R., Pope, S.B.: A particle formulation for treating differential diffusion in filtered density function methods. J. Comput. Phys. 226, 947–993 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  44. McDermott, R., Pope, S.B.: The parabolic edge reconstruction method (PERM) for Lagrangian particle advection. J. Comput. Phys. 227, 5447–5491 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  45. Mehta, R.S., Haworth, D.C., Modest, M.F.: Composition PDF/photon Monte Carlo modeling of moderately sooting turbulent jet flames. Combust. Flame 157, 982–994 (2010)

    Article  Google Scholar 

  46. Mehta, R.S., Modest, M.F., Haworth, D.C.: Radiation characteristics and turbulence-radiation interactions in sooting turbulent jet flames. Combust. Theory Model. 14, 105–124 (2010)

    Article  MATH  Google Scholar 

  47. Meyer, D.W., Jenny, P.: A mixing model for turbulent flows based on parameterized scalar profiles. Phys. Fluids 18, 035,105 (2006)

    Article  MathSciNet  Google Scholar 

  48. Meyer, D.W., Jenny, P.: A mixing model providing joint statistics of scalar and scalar dissipation rate. Proc. Combust. Inst. 32, 1613–1620 (2009)

    Article  Google Scholar 

  49. Minier, J.P., Pozorski, J.: Wall-boundary conditions in probability density function methods and application to a turbulent channel flow. Phys. Fluids 11, 2632–2644 (1999)

    Article  MATH  Google Scholar 

  50. Muradoglu, M., Jenny, P., Pope, S.B., Caughey, D.A.: A consistent hybrid finite volume/particle method for the PDF equations of turbulent reactive flows. J. Comput. Phys. 154, 342–371 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  51. Muradoglu, M., Pope, S.B., Caughey, D.A.: The hybrid method for the PDF equations of turbulent reactive flows: Consistency conditions and correction algorithms. J. Comput. Phys. 172, 841–878 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  52. Pitsch, H.: Large-eddy simulation of turbulent combustion. Ann. Rev. Fluid Mech. 38, 453–482 (2006)

    Article  MathSciNet  Google Scholar 

  53. Pope, S.B.: The relationship between the probability approach and particle models for reaction in homogeneous turbulence. Combust. Flame 35, 41–45 (1979)

    Article  Google Scholar 

  54. Pope, S.B.: A Monte Carlo method for the PDF equations of turbulent reactive flow. Combust. Sci. Technol. 25, 159–174 (1981)

    Article  Google Scholar 

  55. Pope, S.B.: PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119–192 (1985)

    Article  MathSciNet  Google Scholar 

  56. Pope, S.B.: Computations of turbulent combustion: Progress and challenges. Proc. Combust. Inst. 23, 591–612 (1990)

    Google Scholar 

  57. Pope, S.B.: Mapping closures for turbulent mixing and reaction. Theoret. Comput. Fluid Dyn. 2, 255–270 (1991)

    Article  MATH  Google Scholar 

  58. Pope, S.B.: Particle method for turbulent flows: Integration of stochastic model equations. J. Comput. Phys. 117, 332–349 (1995)

    Article  MATH  Google Scholar 

  59. Pope, S.B.: Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust. Theory Model. 1, 41–63 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  60. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge, UK (2000)

    MATH  Google Scholar 

  61. Pope, S.B.: Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 6, 35 (2004). Available at http://www.iop.org/EJ/njp

    Article  Google Scholar 

  62. Pope, S.B.: Self-conditioned fields for large-eddy simulations of turbulent flows. J. Fluid Mech. 652, 139–169 (2010)

    Article  MATH  Google Scholar 

  63. Pope, S.B., Anand, M.S.: Flamelet and distributed combustion in premixed turbulent flames. Proc. Combust. Inst. 20, 403–410 (1984)

    Google Scholar 

  64. Raman, V., Pitsch, H.: A consistent LES/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry. Proc. Combust. Inst. 31, 1711–1719 (2007)

    Article  Google Scholar 

  65. Sabel’nikov, V., Soulard, O.: Rapidly decorrelating velocity-field model as a tool for solving one-point Fokker-Planck equations for probability density functions of turbulent reactive scalars. Phys. Rev. E 72, 016,301 (2005)

    Google Scholar 

  66. Sheikhi, M.R.H., Givi, P., Pope, S.B.: Velocity-scalar filtered mass density function for large eddy simulation of turbulent reacting flows. Phys. Fluids 19, 095,106 (2007)

    Article  Google Scholar 

  67. Sheikhi, M.R.H., Givi, P., Pope, S.B.: Frequency-velocity-scalar filtered mass density function for large eddy simulation of turbulent reacting flows. Phys. Fluids 21, 075,102 (2009)

    Article  Google Scholar 

  68. Spielman, L.A., Levenspiel, O.: A Monte Carlo treatment for reacting and coalescing dispersed phase systems. Chem. Eng. Sci. 20, 247–254 (1965)

    Article  Google Scholar 

  69. Subramaniam, S., Pope, S.B.: A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees. Combust. Flame 115, 487–514 (1998)

    Article  Google Scholar 

  70. Tang, Q., Zhao, W., Bockelie, M., Fox, R.O.: Multi-environment probability density function method for modelling turbulent combustion using realistic chemical kinetics. Combust. Theory Model. 11, 889–907 (2007)

    Article  MATH  Google Scholar 

  71. Vaithianathan, T., Ulitsky, M., Collins, L.R.: Comparison between a spectral and probability density function model for turbulent reacting flows. Proc. Combust. Inst. 29, 2139–2146 (2002)

    Article  Google Scholar 

  72. Valiño, L.: A field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow. Flow, Turbul. Combust. 60, 157–172 (1998)

    Article  MATH  Google Scholar 

  73. Valiño, L., Dopazo, C.: A binomial Langevin model for turbulent mixing. Phys. Fluids A 3, 3034–3037 (1991)

    Article  MATH  Google Scholar 

  74. Van Slooten, P.R., Jayesh, Pope, S.B.: Advances in PDF modeling for inhomogeneous turbulent flows. Phys. Fluids 10, 246–265 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  75. Villermaux, J., Devillon, J.C.: Représentation de la coalescence et de la redispersion des domaines de ségrégation dans un fluide par un modèle d’interaction phénoménologique. In: Proc. Second Intern’l. Symp. on Chemical Reaction Engineering, pp. 1–13. Elsevier, New York (1972)

    Google Scholar 

  76. Vogiatzaki, K., Kronenburg, A., Cleary, M.J., Kent, J.H.: Multiple mapping conditioning of turbulent jet diffusion flames. Proc. Combust. Inst. 32, 1679–1685 (2009)

    Article  Google Scholar 

  77. Waclawczyk, M., Pozorski, J., Minier, J.P.: Probability density function computation of turbulent flows with a new near-wall model. Phys. Fluids 16, 1410–1422 (2004)

    Article  Google Scholar 

  78. Wang, A., Modest, M.F.: Photon Monte Carlo simulation for radiative transfer in gaseous media represented by discrete particle fields. J. Heat Trans. 128, 1041–1049 (2006)

    Article  Google Scholar 

  79. Zhang, Y.Z., Haworth, D.C.: A general mass consistency algorithm for hybrid particle/finite-volume pdf methods. J. Comput. Phys. 194, 156–193 (2004)

    Article  MATH  Google Scholar 

  80. Zhang, Y.Z., Kung, E.H., Haworth, D.C.: A PDF method for multidimensional modeling of HCCI engine combustion: Effects of turbulence/chemistry interactions on ignition timing and emissions. Proc. Combust. Inst. 30, 2763–2771 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. Haworth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Haworth, D.C., Pope, S.B. (2011). Transported Probability Density Function Methods for Reynolds-Averaged and Large-Eddy Simulations. In: Echekki, T., Mastorakos, E. (eds) Turbulent Combustion Modeling. Fluid Mechanics and Its Applications, vol 95. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0412-1_6

Download citation

Publish with us

Policies and ethics