Skip to main content

Unlocking the Potential of Genetic Resources for Improvement of Sesame (Sesamum indicum L.): The Current Scenario

  • Chapter
  • First Online:
Gene Pool Diversity and Crop Improvement

Abstract

Sesame (Sesamum indicum L.) economically valued worldwide for its seeds and seed oil has been designated as ‘queen of oilseeds’. Antioxidants such as lignans and their derivatives prevent oxidation of the oil and provide longer shelf life making sesame oil one of the most stable oils. Due to the presence of several bioactive compounds it has been often listed among the world’s healthiest foods. However, the attempts to improve sesame crop remain scanty resulting in lack of superior genotypes having high yield potential and resistance to biotic and abiotic stresses. Further, traits such as indeterminate growth habit and capsule shattering are also responsible for its reduced yields making it less favorable for large-scale farming. Wild relatives of sesame are important reservoir of useful genes and need to be exploited for sesame improvement. These wild species exhibit crossability with the cultivated gene pool to varying extents and can be utilized for transferring the desirable traits using conventional breeding approaches assisted with modern techniques. Extensive research efforts are therefore desirable in several aspects such as identification of different gene pools of sesame genetic resources, phylogenetic relationships, assessment of genetic diversity in the cultivated gene pool, etc. Molecular approaches to develop genetic map, hybrid testing, identification of core collections, DNA fingerprinting are already underway. Biotechnological interventions required for the successful production of transgenic plants have also been initiated. Recently, most of the genes and biosynthetic pathways involved in oil and other useful components of sesame seeds have been unraveled. An integrated approach based on conventional and modern tools for identification and utilization of useful genes followed by their successful incorporation in the cultivated gene pool is desirable for large-scale cultivation of sesame, to meet the increasing demands of healthy food crops due to the ever increasing heath awareness world over.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Gharbia HA, Shahidi F, Shehata AAY, Youssef MM (1997) Effects of processing on oxidative stability of sesame oil extracted from intact and dehulled seed. J Am Oil Chem Soc 74:215–221

    Article  CAS  Google Scholar 

  • Adéoti K, Rival A, Dansi A, Santoni S, Brown S et al (2011) Genetic characterization of two traditional leafy vegetables (Sesamum radiatum Thonn. ex Hornem and Ceratotheca sesamoides Endl.) of Benin, using flow cytometry and amplified fragment length polymorphism (AFLP) markers. Afr J Biotechnol 10(65):14264–14275

    Google Scholar 

  • Adiver SS, Kumari (2010) Fungal diseases of oilseed crops and their management. In: Arya A, Perelló AE (eds) Management of fungal plant pathogens. CABI, pp 263–274

    Google Scholar 

  • Agne PSE, Rance F, Bidat E (2003) Sesame seed allergy. Rev Franc 43(8):507–516(10)

    Google Scholar 

  • Ahmad M, Khan MA, Zafar M, Sultana S (2010) Environment friendly renewable energy from sesame biodiesel energy sources. Energy Sources Part A 32:189–196

    Article  CAS  Google Scholar 

  • Akhila H, Beevy SS (2011) Morphological and seed protein characterization of the cultivated and the wild taxa of Sesamum L. (Pedaliaceae). Plant Syst Evol 293:65–70

    Article  Google Scholar 

  • Anyanga WO, Obongo YY (2001) Sesame (Sesamum indicum L.). In: Mukiibi JK (ed) Agriculture in Uganda, vol II. Crops, pp 97–102

    Google Scholar 

  • Ashri A (1987) Report on FAO/IAEA expert consultation on breeding improved sesame cultivars. FAO/AGP, Rome

    Google Scholar 

  • Ashri A (1988) Sesame breeding-objectives and approaches. In: Oil crops-sunflower, linseed and sesame. In: Proceedings of 4th oil crop network workshop, Njoro

    Google Scholar 

  • Ashri A (1995) Sesame research overview: current status, perspectives and priorities. In: Bennett MR, Wood IM (eds) Proceedings of the 1st Australian sesame workshop. NT Dept. Primary Industry and Fisheries, Darwin, pp 1–17

    Google Scholar 

  • Ashri A (2006) Sesame (Sesamum indicum L.) In: Singh RJ (ed) Genetic resources, chromosome engineering, and crop improvement oilseed crops, vol 4. CRC Press, pp 231–289

    Google Scholar 

  • Baskaran RKM, Mahadevan NR, Sathiyananddam VKR, Thangavelu S (1997) Approaches for prevention and control sesame pests. In: Sinha MP (ed) Recent advances in ecobiological research, vol 2. APH Publishing, New Delhi, pp 133–143

    Google Scholar 

  • Bedigian D (1981) Origin, diversity, exploration and collection of sesame. In: Sesame-status and improvement FAO plant production and protection, Paper 29, pp 164–169

    Google Scholar 

  • Bedigian D (1984) Sesamum indicum L. Crop origin, diversity, chemistry and ethnobotany, PhD, University of Illinois, Champaign-Urbana University Microfilms DA8502071 dissertation. Abs Int 45:3410-B

    Google Scholar 

  • Bedigian D, Harlan JR (1986) Evidence for cultivation of sesame in the ancient world. Econ Bot 40(2):137–154

    Article  Google Scholar 

  • Bedigian D (2003) Sesame in Africa: origin and dispersals. In: Neumann K, Butler A, Kahlheber S (eds) Food, fuel and fields—progress in African archaeobotany. Africa, pp 17–36

    Google Scholar 

  • Bedigian D (2004a) History and lore of sesame in southwest Asia. Econ Bot 58(3):329–353

    Article  Google Scholar 

  • Bedigian D (2004b) Slimy leaves and oily seeds: distribution and use of wild relatives of sesame in Africa. Econ Bot 58(Suppl):S3–S33

    Article  Google Scholar 

  • Bedigian D (2010) Cultivated sesame and wild relatives in the genus Sesamum L. In: Sesame the genus Sesamum, CRC Press, Boca Raton, pp 53–61

    Google Scholar 

  • Bedigian D (2014) A new combination for the Indian progenitor of sesame, Sesamum indicum (Pedaliaceae). Novon 23(1):5–13

    Article  Google Scholar 

  • Beroza M, Kinman ML (1955) Sesamin, sesamolin, and sesamol content of the oil of sesame seed as affected by strain, location grown, ageing, and frost damage. J Am Oil Chem Soc 32:348–350

    Article  CAS  Google Scholar 

  • Bhat KV, Babrekar PP, Lakhanpaul S (1999) Study of genetic diversity in Indian and exotic sesame (Sesamum indicum L.) germplasm using random amplified polymorphic DNA (RAPD) markers. Euphytica 110:21–33

    Article  CAS  Google Scholar 

  • Bhuyan J, Ramalingm RS, Sree-Rangaswamy SR (1997) Development of cytoplasmic-genic male sterile lines in sesame (Sesamum indicum L.) through genome substitution. Bull Pure Appl Sci B16:17–20

    Google Scholar 

  • Bhuyan J, Sarma MK (2003) Identification of heterotic crosses involving cytoplasmic-genic male sterile lines in sesame (Sesamum indicum L.). Sesame Safflower Newsl 18:7–11

    Google Scholar 

  • Bisht IS, Mahajan RK, Loknathan TR, Agrawal RC (1998) Diversity in Indian sesame collection and stratification of germplasm accessions in different diversity groups. Genet Res Crop Evol 45(4):325–335

    Article  Google Scholar 

  • Chae YA, Park SK, Anand IJ (1987) Selection in vitro for herbicide tolerant cell lines of Sesamum indicum 2: Selection of herbicide tolerant calli and plant regeneration. Korean J Plant Breed 19:75–80

    Google Scholar 

  • Chowdhury S (1945) Control of Cercospora blight of til. Indian J Agric Sci 15:110–142

    Google Scholar 

  • Chun JA, Jin UH, Lee JW, Yi YB, Hyung NI et al (2003) Isolation and characterization of a myo-inositol 1-phosphate synthase cDNA from developing sesame (Sesamum indicum L.) seeds: functional and differential expression, and salt-induced transcription during germination. Planta 216(5):874–880

    CAS  PubMed  Google Scholar 

  • Cerda A, Bingham FT, Hoffman GJ (1977) Interactive effect of salinity and phosphorus on sesame. Soil Sci Soc Am J 41:915–918

    Article  CAS  Google Scholar 

  • Ciferri R (1955) Preliminary list of noteworthy diseases of cultivated plants in continental eastern China. Plant Dis Report 39(10):785–792

    Google Scholar 

  • Das A, Pandey S, Dasgupta T (2013) Association of heterosis with combining ability and genetic divergence in sesame (Sesamum Indicum L.). Intern J Sci Tech Res 2(12):307–314

    Google Scholar 

  • Dasharath K, Sridevi O, Salimath PM, Ramesh T (2007) Production of interspecific hybrids in sesame through embryo rescue. Ind J Crop Sci 2(1):193–196

    Google Scholar 

  • Diaz AJP, Layrisse A, Pugh TM (1999) Analisis de la diversidad genetic en el ajan joli mediante electrophoresis de isoenzimes (abstract in english). Trop Agron 49:169–186

    Google Scholar 

  • Dixit A, Jin MH, Chung JW, Yu JW, Chung HK (2005) Development of polymorphic microsatellite markers in sesame (Sesamum indicum L.). Mol Ecol Notes 5(4):736–738

    Article  CAS  Google Scholar 

  • Duhoon SS, Jyotishi A, Deshmukh MR, Singh NB (2002) Optimization of sesame (Sesamum indicum L.) production through bio/natural inputs. J Oilseeds Res 19(1):73–78

    Google Scholar 

  • Egonyu JP, Kyamanywa S, Anyanga W, Ssekabembe CK (2005) Review of pests and diseases of sesame in Uganda. Afr Crop Sci Conf Proc 7:1411–1416

    Google Scholar 

  • Elbadri GA, Yassin AM (2010) Sesame’s protective role in crop nematode control. In: Bedigian D (ed) Sesame: the genus Sesamum, CRC Press, Boca Raton, pp 211–217

    Google Scholar 

  • El-Bramawy MASA, Abd Al-Wahid OA (2009) Evaluation of resistance of selected sesame (Sesamum indicum) genotypes to Fusarium wilt disease caused by Fusarium oxysporum f. sp. sesami. Tunis J Plant Prot 4:29–39

    Google Scholar 

  • Elewa IS, Mostafa MH, Sahab AF, Ziedan EH (2011) Direct effect of biocontrol agents on wilt and root-rot diseases of sesame. Arch Phytopathol Plant Prot 44(5):493–504

    Article  Google Scholar 

  • Elleuch M, Besbes S, Roiseux O, Blecker C, Attia H (2007) Quality characteristics of sesame seeds and by-products. Food Chem 103:641–650

    Article  CAS  Google Scholar 

  • Ercan AG, Taskin M, Turgut K (2004) Analysis of genetic diversity in Turkish sesame (Sesamum indicum L.) populations using RAPD markers. Genet Res Crop Evol 51(6):599–607

    Google Scholar 

  • Falusi OA, Salako EA, Funmi FM (2002) Inheritance of hairiness of stem and petiole in a selection from local (Nigeria) germplasm of sesame. Tropicultura 20(3):156–158

    Google Scholar 

  • FAOSTAT (2015) http://faostat3.fao.org/browse/Q/QC/E (Accessed 20 June 2015)

  • Fernandez P, Rienzo JD, Fernandez L, Hopp HE, Paniego N et al (2008) Transcriptomic identification of candidate genes involved in sunflower responses to chilling and salt stresses based on cDNA microarray analysis. BMC Plant Biol 8:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gangopadhyay G, Poddar R, Gupta S (1998) Micropropagation of sesame (Sesamum indicum L.) by in vitro multiple shoot production from nodal explants. Phytomorphology 48(1):83–90

    Google Scholar 

  • Gehlot HS, Purohit A, Shekhawat NS (2005) Metabolic changes and protein patterns associated with adaptation to salinity in Sesamum indicum cultivars. J Cell Mol Biol 4:31–39

    Google Scholar 

  • George L, Bapat VA, Rao PS (1987) In vitro multiplication of sesame (Sesamum indicum) through tissue culture. Ann Bot 60:17–21

    Google Scholar 

  • Ghafoorunissa (1996) Fats in Indian diets and their nutritional and health implications. Lipids 31 (Suppl): S287–S291

    Google Scholar 

  • Gupta MP, Rai HS, Jakhmola SS (2000) Assessment of avoidable losses in grain yield due to the incidence of leaf roller and capsule borer Antigastra catalaunalis Dup. in sesame varieties. Extended summaries. National seminar on oilseed and oils research and development needs in the millennium directorate of oilseeds research, Hyderabad, India, pp 226

    Google Scholar 

  • Gormley C, Bedigian D, Richard G (2015) Phylogeny of Pedaliaceae and Martyniaceae and the placement of Trapella in Plantaginaceae. Syst Bot 40(1):259–268

    Article  Google Scholar 

  • Haller HL, LaForge FB, Sullivan WN (1942) Some compounds related to sesamin: their structures and their synergistic effect with pyrethrum insecticides. J Org Chem 07(2):185–188

    Article  CAS  Google Scholar 

  • Harlan JR (1992) Crops and Ancient Man, 2nd edn. American Society for Agronomy, Madison

    Google Scholar 

  • Hasan AF, Furumoto T, Begum S, Fukui H (2001) Hydroxysesamone and 2,3-epoxysesamone from roots of Sesamum indicum. Phytochemistry 58:1225–1228

    Article  CAS  PubMed  Google Scholar 

  • Hetherington SE, He J, Smillie RM (1989) Photoinhibition at low temperature in chilling-sensitive and—resistant plants. Plant Physiol 90:1609–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiremath SC, Patil CG, Patil KB, Nagasampige MH (2007) Genetic diversity of seed lipid content and fatty acid composition in some species of Sesamum L. (Pedaliaceae). Afr J Biotechnol 6(5):539–543

    CAS  Google Scholar 

  • Hooker JD (1885) Pedaliaceae. In: Flora of British India, London 4:387

    Google Scholar 

  • IAEA (2001) Sesame improvement by induced mutations. Final reports of an FAO/IAEA co-ordinated research project organized by the Joint FAO/IAEA division of nuclear techniques in food and agriculture 1993–1998:1–180

    Google Scholar 

  • Ishitani M, Majumder AL, Bornhouser A, Michalowski CB, Jensen RG et al (1996) Co-ordinate transcriptional induction of myo-inositol metabolism during environmental stress. Plant J 9:537–548

    Article  CAS  PubMed  Google Scholar 

  • Isshiki S, Umezaki T (1997) Genetic variations of isozymes in cultivated sesame (Sesamum indicum L.). Euphytica 93(3):375–377

    Article  CAS  Google Scholar 

  • Jin UH, Chun JA, Han MO, Lee JW, Yi YB et al (2005) Sesame hairy root cultures for extra-cellular production of a recombinant fungal phytase. Process Biochem 40(12):3754–3762

    Article  CAS  Google Scholar 

  • Johnson LA, Suleiman TM, Lusas EW (1979) Sesame protein: a review and prospectus. J Am Oil Chem Soc 56:463–468

    Article  CAS  PubMed  Google Scholar 

  • Joshi AB, Narayanan ES, Vasudeva RS (1961) Sesamum. Indian Oilseeds Central Committee, Hyderabad, p 109

    Google Scholar 

  • Kamal-Eldin (2010) Chemical studies on the lignans and other minor constituents of sesame seed oil. In: Bedigian D (ed) Sesame: the genus Sesamum, CRC Press, Boca Raton, pp 79–91

    Google Scholar 

  • Kamal-Eldin A (1993) Seed oils of Sesamum indicum L. and some wild relatives: a compositional study of the fatty acids, acyl lipids, sterols, tocopherols and lignans, Ph.D. thesis submitted to Swedish University Agricultural Science

    Google Scholar 

  • Kamal-Eldin A, Appelqvist LA (1994) Variations in the composition of sterols, tocopherols and lignans in seed oils from 4 sesamum species. J Am Oil Chem Soc 71:149–156

    Article  CAS  Google Scholar 

  • Kang CW, Kim SY, Lee SW, Mathur PN, Hodgkin T et al (2006) Selection of a core collection of korean sesame germplasm by a stepwise clustering method. Breed Sci 56:85–91

    Article  Google Scholar 

  • Kang MH, Choi JS, Ha TY (2003) Chemical properties of sesames cultivated in Korea and China. Food Sci Biotechnol 12(6):621–624

    CAS  Google Scholar 

  • Katsuzaki H, Kawakishi S, Osawa T (1994) Sesaminol glucosides in sesame seeds. Phytochemistry 35(3):773–776

    Article  CAS  PubMed  Google Scholar 

  • Khati P, Pandey KN (2004) Seed mycoflora of sesame and their role in plant health. J Mycol Pathol 34:378–380

    Google Scholar 

  • Kim DH, Zur G, Danin-Poleg Y, Lee SW, Shim KB et al (2002) Genetic relationships of sesame germplasm collection as revealed by inter-simple sequence repeats. Plant Breed 121(3):259–262

    Article  CAS  Google Scholar 

  • Kim MJ, Go YS, Ahn SJ, Chung CH, Suh MC (2008) Functional complementation of a periila ω3 fatty acid desaturase under the seed-specific SeFAD2 promoter. J Plant Biol 51(3):174–179

    Article  CAS  Google Scholar 

  • Kita S, Matsumura Y, Morimoto S, Akimoto K, Furuya M et al (1995) Antihypertensive effect of sesamin. II. Protection against two-kidney, one-clip renal hypertension and cardiovascular hypertrophy. Biol Pharm Bull 18:1283–1285

    Article  CAS  PubMed  Google Scholar 

  • Koca H, Bor M, Ozdemir F, Turkan I (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60:344–351

    Article  CAS  Google Scholar 

  • Lee JI, Park YH, Park YS, Im BG (1985) Propagation of sesame (Sesamum indicum L.) through shoot tip culture. Korean J Breed 17(4):367–372

    Google Scholar 

  • Lee JI, Lee BH, Seong NS, Kang CW (1991) Studies on interspecific hybridization in sesame. I. Characteristics and cross affinity of wild sesame. Korean J Breed 22:356–360

    Google Scholar 

  • Lopez AM, Mazzani B (1964) Fruit length, number of seeds per fruit and seed size in seven sesame cultivars. Agronomia Trop Venezuela 14:133–135

    Google Scholar 

  • Mahajan RK, Bisht IS, Dhillon BS (2007) Establishment of a core collection of world sesame (Sesamum indicum L.) germplasm accessions. Sabrao J Breed Genet 39:53–64

    Google Scholar 

  • Mahfouz H, Kamel S, Belal A, Said M (2012) Pollinators visiting sesame (Sesamum indicum L.) seed crop with reference to foraging activity of some bee species. Cercetări Agronomice în Moldova 46(2):150

    Google Scholar 

  • Mary RJ, Jayabalan N (1997) Influence of growth regulators on somatic embryogenesis in sesame. Plant Cell Tiss Org 49(1):67–70

    Article  CAS  Google Scholar 

  • Mkamilo GS, Bedigian D (2007) Sesamum indicum L. In: van der Vossen HAM, Mkamilo GS (eds) Vegetable Oils 14. Wageningen, Plant Resources of Tropical Africa (PROTA), pp 153–158

    Google Scholar 

  • Mitsuma S, Ishigaki E, Sugiyama R, Asamizu T, Yamada K et al (2004) Activation of 000phenylpropanoid metabolism in sesame by over-expression of carrot calmodulin gene. Biol Pharm Bull 27(10):1621–1625

    Article  CAS  PubMed  Google Scholar 

  • Moazzami AA, Kamal-Eldin A (2006) Sesame seed is a rich source of dietary lignans. J Am Oil Chem Soc 83:719–723

    Article  CAS  Google Scholar 

  • Mondal N, Bhat KV, Srivastava PS (2010) Variation in fatty acid composition in Indian germplasm of sesame. J Am Oil Chem Soc 87:1263–1269

    Article  CAS  Google Scholar 

  • Morris JB (2002) Food, industrial, nutraceutical and pharmaceutical uses of sesame genetic resources. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria, pp 153–156

    Google Scholar 

  • Morris JB (2009) Characterization of Sesame (Sesamum indicum L.) Germplasm Regenerated in Georgia, USA. Genetic Res Crop Evol 56:925–936

    Article  Google Scholar 

  • Najeeb U, Mirza MY, Jilani G, Mubashir AK, Zhou WJ (2012) Sesame. In: Gupta SK (ed), Technological innovations in major world oil crops, vol 1. Springer, New York, pp 131–145

    Google Scholar 

  • Namiki M (1995) The chemistry and physiological functions of sesame. Food Rev Int 11:281–329

    Article  CAS  Google Scholar 

  • Narayanaswamy T, Surendra HS, Rathod S (2012) Fitting of statistical models for growth pattern of root and shoot morphological traits in sesame (Sesamum indicum L.). Environ Ecol 30(4):1362–1365

    Google Scholar 

  • Nassery H, Ogata G, Maas EV (1979) Sensitivity of sesame to various salts. Agron J 71(4):595–597

    Article  CAS  Google Scholar 

  • Nimmakayala P, Kaur P, Bashet AZ, Bates GT, Langham R, Reddy OUK (2005) Molecular characterization of Sesamum using SSRs and AFLPs. In: Plant and animal genomes XIII conference, San Diego, pp 15–19

    Google Scholar 

  • Nimmakayala P, Perumal R, Mulpuri S, Reddy UK (2011) Sesamum. In: Kole C (ed) Wild corp relatives: genomic and breeding resources oilseeds. Springer, Berlin, pp 261–273

    Chapter  Google Scholar 

  • Ogasawara T, Chiba K, Tada M (1993) Production in high-yield of a naphthoquinone by a hairy root culture of Sesamum indicum. Phytochemistry 33(5):1095–1098

    Article  CAS  Google Scholar 

  • Olmstead RG, Bremer B, Scott KM, Palmer JD (1993) A parsimony analysis of the Asteridae sensu lato based on rbcL sequences. Ann Mo Bot Gard 80:700–722

    Article  Google Scholar 

  • Ono E, Nakai M, Fukui Y, Tomimori N, Fukuchi-Mizutani M et al (2006) Formation of two methylenedioxy bridges by a Sesamum CYP81Q protein yielding a furofuran lignan, (+)-sesamin. Proc Natl Acad Sci USA 103:10116–10121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parani M, Singh KN, Rangasamy S, Ramalingam RS (1997) Identification of Sesamum alatum × Sesamum indicum hybrid using protein, isozyme and RAPD markers. Indian J Genet 57:381–388

    Google Scholar 

  • Pathak N, Rai AK, Saha S, Walia SK, Sen SK, Bhat KV (2014) Quantitative dissection of antioxidative bioactive components in cultivated and wild sesame germplasm reveals potentially exploitable wide genetic variability. J Crop Sci Biotechnol 17(3):127–139

    Google Scholar 

  • Pathak N, Bhaduri A, Bhat KV, Rai AK (2015) Tracking sesamin synthase gene expression through seed maturity in wild and cultivated sesame species—a domestication footprint. Plant Biol pp 1–8 (in press)

    Google Scholar 

  • PGR Portal (2015) www.nbpgr.ernet.in/pgrportal (Accessed 09 December 2015)

  • Phillips KM, Ruggio DM, Ashraf-Khorassani M (2005) Phytosterol composition of nuts and seeds commonly consumed in the United States. J Agric Food Chem 30:53(24):9436–45

    Google Scholar 

  • Prabakaran AJ (1992) Identification of male sterile sources through wide hybridization and induced mutagenesis in sesame (Sesamum indicum L.). Ph. D. Thesis, TNAU, Coimbatore

    Google Scholar 

  • Prasad PR, Reddy SR (1997) Diseases of sesame in two districts (Warangal and Karimnagar) of Andhra Pradesh. In: Reddy MS, Srivastava H, Purohit DK, Reddy SR (eds) Microbial biotechnology, Scientific Publishers, Jodhpur, pp 169–174

    Google Scholar 

  • Raghavan TS, Krishnamurthy KV (1947) Cytogenetical studies in Sesamum. Part 1.Cytology of the parents, Sesamum orientale Linn., and Sesamum prostratum Retz. and the cytology of the sterile hybrid between them and of the fertile amphidiploid. Proc Indian Acad Sci B 26(6):236–275

    Google Scholar 

  • Raikwar RS, Srivastva P (2013) Productivity enhancement of sesame (Sesamum indicum L.) through improved production technologies. Afr J Agric Res 8(47):6073–6078

    Google Scholar 

  • Rajab R, Rajan SS, Satheesh LS, Harish SR, Sunukumar SS et al (2009) Hypersensitive response of Sesamum prostratum Retz. elicitated by Fusarium oxysporum f. sesami (Schelt) Jacz Butler. Ind J Exp Biol 47(10):834–838

    CAS  Google Scholar 

  • Rajeswari S, Ramaswamy NM (2004) Effect of growth regulators on retention of floral pedicels and capsules in sesame. Sesame Safflower Newsl 19:1137–1617

    Google Scholar 

  • Rajeswari S, Thiruvengadam V, Ramaswamy NM (2010) Production of interspecific hybrids between Sesamum alatum Thonn and Sesamum indicum L. through ovule culture and screening for phyllody disease resistance. S Afr J Bot 76(2):252–258

    Article  Google Scholar 

  • Ram R, Catlin D, Romero J, Cowley C (1990) Sesame: new approaches for crop improvement. In: Janick J, Simon JE (eds) Advances in new crops. Timber Press, Portland, pp 225–228

    Google Scholar 

  • Ram SG, Sundaravelpandian K, Kumar M, Vinod KK, Bapu JK et al (2006) Pollen–pistil interaction in the inter-specific crosses of Sesamum sp. Euphytica 152:379–385

    Article  Google Scholar 

  • Ramanathan K (1950) A note on the interspecific hybridization in Sesamum. Madras Agric J 37:397–400

    Google Scholar 

  • Rao P, Prasuna K, Anuradha G, Srividya A, Vemireddy LR et al (2014) Molecular mapping of important agro-botanic traits in sesame. Electronic J Plant Breeding 5(3):475–488

    Google Scholar 

  • Salehi M, Izadpanah K (1992) Etiology and transmission of sesame phyllody in Iran. J Phytopathol 135:37–47

    Article  Google Scholar 

  • Salunkhe DK, Chavan JK, Adsule RN, Kadam SS (1991) Sesame. In: Röbbelen G, Downey RK, Ashri A (eds) World oilseeds-chemistry, technology, and utilization. Van Nostrand Reinhold, New York, pp 371–402

    Google Scholar 

  • Sarwar G, Haq MA (2006) Evaluation of sesame germplasm for genetic parameters and disease resistance. J Agric Res 44(2):89–96

    Google Scholar 

  • Schumutterer H, Kranz J (1965) On Cylindrosporium sesame (Huss.) causing brown spot disease of sesame. Phytopathologische Zeitshrift 254:193–201

    Article  Google Scholar 

  • Seo HY, Kim YJ, Park TI, Kim HS, Yun SJ et al (2007) High-frequency plant regeneration via adventitious shoot formation from deembryonated cotyledon explants of Sesamum indicum L. Vitro Cell Dev Biol Plant 43(3):209–214

    Article  CAS  Google Scholar 

  • Shahidi F, Tan Z (2010) Physiological effects of sesame bioactive and antioxidant compounds. In: Bedigian D (ed), Sesame-The genus Sesamum, CRC Press, Boca Raton, pp 139–153

    Google Scholar 

  • Singh PK, Akram M, Vajpeyi M, Srivastava RL, Kumar K et al (2007) Screening and development of resistant sesame varieties against phytoplasma. Bull Insectol 60:303–304

    Google Scholar 

  • Singh TVK, Satyanarayana J, Peshin R (2014) Crop loss assessment in India-past experiences and future strategies. In: Peshin R, Pimental D (eds) Integrated Pest Management. Springer, New York, pp 227–243

    Chapter  Google Scholar 

  • Srinivasan AR (1942) Contribution to the morphology Pedalium murex Linn. and Sesamum indicum D.C. In: Proceedings of Indian acadamic sciences 16(5):155–164

    Google Scholar 

  • Srinivasulu B, Narayanaswamy P (1992) Four-tier technique for screening Sesamum entries against phyllody disease. Oil Crops Newsl 9:38–40

    Google Scholar 

  • Subramanian M (1995) Pollen germination studies in Sesame. Ann Agric Res 16:225–226

    Google Scholar 

  • Sugano M, Inoue T, Koba K, Yoshida K, Hirose N et al (1990) Influence of sesame lignans on various lipid parameters in rats. Agric Biol Chem 54:2669–2673

    Article  CAS  Google Scholar 

  • Suh MC, Hyung N, Chung C (2010) Molecular biotechnology of sesame. In: Bedigian D (ed) Sesame-The genus Sesamum, CRC press, Boca Raton, pp 219–243

    Google Scholar 

  • Suh MC, Kim MJ, Hur CG, Bae JM, Park YI et al (2003) Comparative analysis of expressed sequence tags from Sesamum indicum and Arabidopsis thaliana developing seeds. Plant Mol Biol 52:1107–1123

    Article  PubMed  Google Scholar 

  • Sutica D, Dowson WJ (1962) Bacterial Leaf Spot of Sesamum in Yugoslavia. J Phytopathol 45:57–65

    Article  Google Scholar 

  • Tabatabaei SA, Naghibalghora SM (2014) The effect of salinity stress on germination characteristics and changes of biochemically of sesame seeds. Cercetări Agronomice în Moldova 47(158):61–68

    Google Scholar 

  • Tarihal R (2003) Study of fertilization barriers in crosses between Sesamum indicum and its wild relatives. Ind J Genet 63(2):132–136

    Google Scholar 

  • Taşkin KM, Ercan AG, Turgut K (1999) Agrobacterium tumefaciens mediated transformation of sesame (Sesamum indicum L.). Turk J Bot 23:291–295

    Google Scholar 

  • Taskin KM, Turgut K (1997) In vitro regeneration of sesame (S. indicum L.). Turk J Bot 21:15–18

    Google Scholar 

  • Uzun B, Lee D, Donini P, Çagirgan ML (2003) Identification of a molecular marker linked to the closed capsule mutant trait in sesame using AFLP. Plant Breed 122(1):95–97

    Article  CAS  Google Scholar 

  • Vavdiya PA, Dobariya KL, Babariya CA, Sapovadiya MV (2013) Heterosis for seed yield and its components in sesame (Sesamum indicum L.). Electron J Plant Breed 4(3):1246–1250

    Google Scholar 

  • Verma ML, Mehta N, Sangwan MS (2005) Fungal and bacterial diseases of sesame. In: Saharan GS, Mehta N, Sangwan MS (eds) Diseases of oilseed crops, Indus Publishing, New Delhi, pp 269–300

    Google Scholar 

  • Wei W, Li D, Wang L, Ding X, Zhang Y et al (2013) Morpho-anatomical and physiological responses to waterlogging of sesame (Sesamum indicum L.). Plant Sci 208:102–111

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Qi X, Wang L, Zhang Y, Hua W et al (2011) Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers. BMC Genom 12:451

    Article  CAS  Google Scholar 

  • Were BA, Gudu S, Onkware AO, Carlsson AS, Welander M (2006) In vitro regeneration of sesame (Sesamum indicum L.) from seedling cotyledon and hypocotyl explants. Plant Cell Tiss Org 85(2):235–239

    Google Scholar 

  • Williamson KS, Morris JB, Pye QN, Kamat CD, Hensley K et al (2008) A survey of sesamin and composition of tocopherol variability from seeds of eleven diverse sesame (Sesamum indicum L.) genotypes using HPLC-PAD-ECD. Phytochem Anal 19(4):311–322

    Article  CAS  PubMed  Google Scholar 

  • Yadav M, Chaudhary D, Sainger M, Jaiwal PK (2010) Agrobacterium tumefaciens-mediated genetic transformation of sesame (Sesamum indicum L.) Plant Cell Tiss Org 103(3):377–386

    Google Scholar 

  • Yasumoto S, Sugiura M, Komaki K, Katsuta M (2005) Change in sesamin and sesamolin contents of sesame (Sesamum indicum L.) seeds during maturation and their accurate evaluation of the contents. Japanese. J Crop Sci 74(2):165–171

    Article  CAS  Google Scholar 

  • Yokota T (2007) Sesamin, a lignan of sesame, down-regulates cyclin D1 protein expression in human tumor cells. Cancer Sci 98(9):1447–1453

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H (2007) Antioxidant distributions and triacylglycerol molecular species of sesame seeds (Sesamum indicum). J Am Oil Chem Soc 84:165–172

    Article  CAS  Google Scholar 

  • Yousif YH, Bingham FT, Yermanos DM (1972) Growth, mineral composition, and seed oil of sesame (Sesamum Indicum L.) as affected by NaCl. Soil Sci Soc Am J 36(3):450–453

    Google Scholar 

  • Uzun B, Cağirgan M (2006) Comparison of determinate and indeterminate lines of sesame for agronomic traits. Field Crops Res 96:13–18

    Google Scholar 

  • Zhang H, Miao H, Wei L, Li C, Zhao R et al (2013a) Genetic analysis and QTL mapping of seed coat color in sesame (Sesamum indicum L.). PLoS One 8(5):e63898

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Wang L, Xin H, Li D, Ma C et al (2013b) Construction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Plant Biol 13:141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Wang L, Xin H, Li D, Ma C et al (2013c) Construction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Plant Biol 13:141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Lakhanpaul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Singh, V., Kumar, S., Singh, A., Bhaduri, N.P., Bhat, K.V., Lakhanpaul, S. (2016). Unlocking the Potential of Genetic Resources for Improvement of Sesame (Sesamum indicum L.): The Current Scenario. In: Rajpal, V., Rao, S., Raina, S. (eds) Gene Pool Diversity and Crop Improvement. Sustainable Development and Biodiversity, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-27096-8_15

Download citation

Publish with us

Policies and ethics