Skip to main content

An Ancient Medicinal Plant at the Crossroads of Modern Horticulture and Genetics: Genetic Resources and Biotechnology of Sea Buckthorn (Hippophae L., Elaeagnaceae)

  • Chapter
  • First Online:
Gene Pool Diversity and Crop Improvement

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 10))

Abstract

Sea buckthorn (Hippophae L., Elaeagnaceae) has been exploited by humans for thousands of years on the Quinghai–Tibetan Plateau (QTP) and nearby areas. However, the considerable modern economic potential of this plant has started to receive full appreciation only recently. Expanding its traditional use in harsh climatic zones as important source of nutrients, vitamins, and as wood in treeless areas, today this plant is used also on large scales as landscape protection tools against corrosion of soil, and as a source of wide range of products in pharmaceutic, cosmetic, and nutritional supplement industries. This review aims to provide the latest insights from studies on the evolutionary history and biogeography of the genus, structure, and phylogeography of genetic diversity within its species. Understanding the genic and genomic interactions among populations and phylogenetically distant lineages within species of Hippophae should help to improve the efficiency of exploitation of genetic resources in this crop. Research efforts in the past century in breeding, systematics, cytogenetics, biochemistry, and genetics of Hippophae have created a solid background for advances in modern biotechnology of this crop. Recent studies reported application of next-generation sequencing (NGS) technologies and identification of thousands of genes in transcriptomes of sea buckthorn. Analyses of the transcriptomes provided better understanding of gene expression in biochemical pathways of unsaturated fatty acids, some other secondary metabolites, and regulation of gene complexes responsible for adaptation to different categories of abiotic stress. Further studies should focus on the creation of genetic maps of breeding populations; identification of quantitative trait loci, biochemical pathways of synthesis of bioactive secondary metabolites and correspondent genes, molecular mechanisms of tolerance and resistance to abiotic stress, diseases, and pests; and cloning of genes of agricultural importance. Advances in these research areas can lead to genetic engineering of plants with a combination of traits of high horticultural, medicinal, or nutrient value, adapted to specific environments of areas of their cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akkaya MS, Shoemaker RC, Specht JE, Bhagwat AA, Cregan PB (1995) Integration of simple sequence repeat DNA markers into a soybean linkage map. Crop Sci 35:1439–1445

    Article  CAS  Google Scholar 

  • Antanaviciute L, Fernandez-Fernandez F, Jansen J, Banchi E, Evans K, Viola R, Velasco R, Dunwell J, Troggio M, Sargent D (2012) Development of a dense SNP-based linkage map of an apple rootstock progeny using the Malus Infinium whole genome genotyping array. BMC Genom 13:203

    Article  CAS  Google Scholar 

  • APG III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Article  Google Scholar 

  • Aras A, Akkemik U, Kaya Z (2007) Hippophae rhamnoides L.: fruit and seed morphology and its taxonomic problems in Turkey. Pak J Bot 39:1907–1916

    Google Scholar 

  • Backlund A, Bremer K (1998) To be or not to be − principles of classification and monotypic plant families. Taxon 47:391–400

    Article  Google Scholar 

  • Barry CS, Giovannoni JJ (2006) Ripening in the tomato green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling. Proc Natl Acad Sci U.S.A. 103:923–7928

    Google Scholar 

  • Bartish GI, Jeppsson N, Bartish IV, Nybom H (2000b) Assessment of genetic diversity using RAPD analysis in a germplasm collection of sea buckthorn. Agric Food Sci Finland 9:279–289

    Google Scholar 

  • Bartish IV, Jeppsson N, Nybom H (1999) Population genetic structure in the dioecious pioneer plant species Hippophae rhamnoides investigated by random amplified polymorphic DNA (RAPD) markers. Mol Ecol 8:791–802

    Article  CAS  Google Scholar 

  • Bartish IV, Jeppsson N, Bartish GI, Lu R, Nybom H (2000a) Inter- and intraspecific genetic variation in Hippophae (Elaeagnaceae) investigated by RAPD markers. Plant Syst Evol 225:85–101

    Article  CAS  Google Scholar 

  • Bartish IV, Jeppsson N, Nybom H, Swenson U (2002) Phylogeny of Hippophae (Elaeagnaceae) inferred from parsimony analysis of chloroplast DNA and morphology. Syst Bot 27:41–54

    Google Scholar 

  • Bartish IV, Kadereit JW, Comes P (2006) Late Quaternary history of Hippophae rhamnoides L. (Elaeagnaceae) inferred from chalcone synthase intron (Chsi) sequences and chloroplast DNA variation. Mol Ecol 15:4065–4083

    Article  CAS  PubMed  Google Scholar 

  • Biltekin D (2010) Vegetation and climate of North Anatolian and North Aegean region since 7 Ma according to pollen analysis. Ph.D. thesis, Université Claude Bernard-Lyon I and Istanbul Technical University. http://tel.archives-ouvertes.fr/docs/00/72/08/92/PDF/TH2010_Biltekin_Demet.pdf

  • Birky CW, Maruyama T, Fuerst P (1983) An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts, and some results. Genetics 103:513–527

    PubMed  PubMed Central  Google Scholar 

  • Bobrov EG (1962) Review on genus Myricaria Desv. and its history. Botanicheskiy Zhurnal 52:924–936 (in Russian with English abstract)

    Google Scholar 

  • Chen G, Wang Y, Zhao C, Korpelainen H, Li C (2008) Genetic diversity of Hippophae rhamnoides populations at varying altitudes in the Wolong natural reserve of China as revealed by ISSR markers. Silvae Genet 57:29–36

    Google Scholar 

  • Chen W, Su X, Zhang H, Sun K, Ma R, Chen X (2010) High genetic differentiation of Hippophae rhamnoides ssp. yunnanensis (Elaeagnaceae), a plant endemic to the Qinghai-Tibet plateau. Biochem Genet 48:565–576

    Article  CAS  PubMed  Google Scholar 

  • Cheng K, Sun K, Wen HY, Jia DR, Liu JQ (2009) Maternal divergence and phylogeographical relationships between Hippophae gyantsensis and H. rhamnoides subsp. yunnanensis. Zhiwu Shengtai Xuebao 33:1–11 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Chowdhury MA, Jana S, Schroeder WR (2000) Phenotypic diversity in four woody species on the Canadian prairies. Can J Plant Sci 80:137–142

    Article  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Congiu L, Chicca M, Cella R, Rossi R, Bernacchia G (2000) The use of random amplified polymorphic DNA (RAPD) markers to identify strawberry varieties: a forensic application. Mol Ecol 9:229–232

    Article  CAS  PubMed  Google Scholar 

  • Dardick C, Callahan A, Horn R, Ruiz KB, Zhebentyayeva T, Hollender C, Whitaker M, Abbott A, Scorza R (2013) PpeTAC1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. Plant J 75:618–630

    Article  CAS  PubMed  Google Scholar 

  • Ercisli S, Orhan E, Yildirim N, Agar G (2008) Comparasion of sea buckthorn genotypes (Hippophaë rhamnoides L.) based on RAPD and FAME data. Turkish J Agric For 32:363–368

    CAS  Google Scholar 

  • Fatima T, Snyder CL, Schroeder WR, Cram D, Datla R, Wishart D, Weselake RJ, Krishna P (2012) Fatty acid composition of developing sea buckthorn (Hippophae rhamnoides L.) berry and the transcriptome of the mature seed. PLoS ONE 7:e34099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Fernandez F, Antanaviciute L, van Dyk MM, Tobutt KR, Evans KM, Rees DJG, Dunwell JM, Sargent DJ (2012) A genetic linkage map of an apple rootstock progeny anchored to the Malus genome sequence. Tree Genet Genomes 8:991–1002

    Article  Google Scholar 

  • Gams H (1943) Der Sanddorn (Hippophae rhamnoides L.) im Alpengebiet. Beihefte zum Botanischen Centralblatt, Abteilung B 2:68–96

    Google Scholar 

  • Ghangal R, Raghuvanshi S, Sharma PC (2012) Expressed sequence tag based identification and expression analysis of some cold inducible elements in sea buckthorn (Hippophae rhamnoides L.). Plant Physiol Biochem 51:123–128

    Article  CAS  PubMed  Google Scholar 

  • Ghangal R, Chaudhary S, Jain M, Purty RS, Sharma PC (2013) Optimization of de novo short read assembly of sea buckthorn (Hippophae rhamnoides L.) transcriptome. PLoS ONE 8:7

    Article  Google Scholar 

  • Glick BR, Pasternak J, Patten CL (2010) Molecular Biotechnology: Principles and Applications of Recombinant DNA. ASM Press, Washington, D.C.

    Google Scholar 

  • Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185

    Article  CAS  Google Scholar 

  • Gupta SM, Ahmed Z, Kumar N (2009) Isolation of cDNA fragment of glycerol-3-phosphate acyltransferase gene from sea buckthorn. Def Sci J 59:147–151

    Article  CAS  Google Scholar 

  • Gusberti M, Gessler C, Broggini GAL (2013) RNA-seq analysis reveals candidate genes for ontogenic resistance in Malus-Venturia pathosystem. PLoS ONE 8:e78457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain A, Ghangal R, Grover A, Raghuvanshi S, Sharma PC (2010) Development of EST-based new SSR markers in sea buckthorn. Physiol Mol Biol Plants 16:375–378

    Article  PubMed  PubMed Central  Google Scholar 

  • Jain A, Chaudhary S, Sharma PC (2014) Mining of microsatellites using next generation sequencing of sea buckthorn (Hippophae rhamnoides L.) transcriptome. Physiol Mol Biol Plants 20:115–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia DR, Liu TL, Wang LY, Zhou DW, Liu JQ (2011) Evolutionary history of an alpine shrub Hippophae tibetana (Elaeagnaceae): allopatric divergence and regional expansion. Biol J Linn Soc 102:37–50

    Article  Google Scholar 

  • Jia DR, Abbott RJ, Liu TL, Mao KS, Bartish IV, Liu JQ (2012) Out of the Qinghai-Tibet Plateau: evidence for the origin and dispersal of Eurasian temperate plants from a phylogeographic study of Hippophaë rhamnoides (Elaeagnaceae). New Phytol 194:1123–1133

    Article  PubMed  Google Scholar 

  • Jia DR (2013) Influence of climatic fluctuations in Neogene on evolution of ecologically diverse plant genus: an example of Hippophae L. (Elaeagnaceae). Ph.D. thesis, Charles University in Prague, Czech Republic. https://is.cuni.cz/webapps/zzp/detail/99009/?lang=en

  • Jeppsson N, Bartish IV, Persson HA (1999) DNA analysis as a tool in sea buckthorn breeding. In: Janick J (ed) Perspectives on new crops and new uses. ASHS Press, Alexandria, VA, pp 338–341

    Google Scholar 

  • Ho SYW, Phillips MJ (2009) Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst Biol 58:367–380

    Article  PubMed  Google Scholar 

  • Hokanson SC, Szewc-McFadden AK, Lamboy WF, McFerson JR (1998) Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus x domestica Borkh. core subset collection. Theor Appl Genet 97:671–683

    Article  CAS  Google Scholar 

  • Huang Q (1995) A review of sea buckthorn breeding in China. In: Proceedings of international workshop on Seabuckthorn. Beijing, China, pp 111–117

    Google Scholar 

  • Hyvönen J (1996) On phylogeny of Hippophae (Elaeagnaceae). Nordic J Bot 16:51–62

    Article  Google Scholar 

  • Kalia RK, Singh R, Rai MK, Mishra GP, Singh SR, Dhawan AK (2011) Biotechnological interventions in sea buckthorn (Hippophae L.): current status and future prospects. Trees Struct Funct 25:559–575

    Article  Google Scholar 

  • Kalinina IP, Panteleyeva YI (1987) Breeding of sea buckthorn in the Altai. In: Advances in agricultural science. Moscow, Russia (in Russian)

    Google Scholar 

  • Kanayama Y, Kato K, Stobdan T, Galitsyn GG, Kochetov AV, Kanahama K (2012) Research progress on the medicinal and nutritional properties of sea buckthorn (Hippophae rhamnoides)—a review. J Hortic Sci Biotech 87:203–210

    Article  CAS  Google Scholar 

  • Korekar G, Sharma RK, Kumar R, Meenu RK, Bisht NC, Srivastava RB, Ahuja PS, Stobdan T (2012) Identification and validation of sex-linked SCAR markers in dioecious Hippophae rhamnoides L. (Elaeagnaceae). Biotechnol Lett 34:973–978

    Article  CAS  PubMed  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  • Li H, Ruan CJ, Teixeira da Silva JA, Liu BQ (2010) Associations of SRAP markers with dried-shrink disease resistance in a germplasm collection of sea buckthorn (Hippophae L.). Genome 53:447–457

    Article  PubMed  Google Scholar 

  • Li TSC, Schroeder WR (1996) Sea buckthorn (Hippophae rhamnoides L.): a multipurpose plant. HortTechnology 6:370–380

    Google Scholar 

  • Li TSC (2003) See buckthorn (Hippophae rhamnoides L.): production and utilisation. National Research Council of Canada, Ottawa

    Google Scholar 

  • Lian YS, Chen XL (1993) Study on the germplasm resource of the genus Hippophae L. In: International symposium on sea buckthorn (Hippophae rhamnoides L.). Novosibirsk, Russia, pp 157161

    Google Scholar 

  • Lian YS, Chen XL, Sun K (1995) New discoveries of the genus Hippophae L. In: Proceedings of international workshop on seabuckthorn. China Science and Technology Press, Beijing, pp 60–66

    Google Scholar 

  • Lian YS, Chen XL, Lian H (1998) Systematic classification of the genus Hippophae L. Seabuckthorn Res 1:13–23

    Google Scholar 

  • Lian YS, Chen XL, Sun K, Ma R (2003a) A new subspecies of Hippophae (Elaeagnaceae) from China. Novon 13:200–202

    Article  Google Scholar 

  • Lian YS, Chen XL, Sun K, Ma R (2003b) Clarification of the systematic position of Hippophae goniocarpa (Elaeagnaceae). Bot J Linn Soc 142:425–430

    Article  Google Scholar 

  • Liu R, Yang J, Gao L (2007) ISSR analysis of Chinese sea buckthorn and Russian sea buckthorn. Acta Bot Boreal Occident Sin 27:671–677

    CAS  Google Scholar 

  • Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402

    Google Scholar 

  • Meng LH, Yang HL, Wu GL, Wang YJ (2008) Phylogeography of Hippophae neurocarpa (Elaeagnaceae) inferred from the chloroplast DNA trnL-F sequence variation. J Syst Evol 46:32–40

    Google Scholar 

  • Morgante M, Olivieri AM (1993) PCR-amplified microsatellite markers in plant genetics. Plant J 3:393–427

    Article  Google Scholar 

  • Nybom H, Bartish IV, Garkava-Gustavsson L, Persson H, Werlemark G, Esselink D (2003) Evaluating genetic resources in minor fruits. In: Janick J (ed) Genetics and breeding of tree fruits and nuts. International Society of Horticultural Science, Leuven, pp 81–94

    Google Scholar 

  • Persson HA, Nybom H (1998) Genetic sex determination and RAPD marker segregation in the dioecious species sea buckthorn (Hippophae rhamnoides L.). Hereditas 129:45–51

    Article  CAS  Google Scholar 

  • Petit RJ, Aguinagalde I, de Beaulieu JL, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Muller-Starck GM, Demesure-Musch B, Palme A, Martin JP, Rendell S, Vendramin GG (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565

    Article  CAS  PubMed  Google Scholar 

  • Raina SN, Jain S, Sehgal D, Kumar A, Dar TH, Bhat V, Pandey V, Vaishnavi S, Bhargav A, Singh V, Rani V, Tandon R, Tewari M, Mahmoudi A (2012) Diversity and relationships of multipurpose sea buckthorn (Hippophae L.) germplasm from the Indian Himalayas as assessed by AFLP and SAMPL markers. Genet Resour Crop Evol 59:1033–1053

    Article  Google Scholar 

  • Rousi A (1965) Observations on the cytology and variation of European and Asiatic populations of Hippophaë rhamnoides. Ann Bot Fenn 2:1–18

    Google Scholar 

  • Rousi A (1971) The genus Hippophaë L: a taxonomic study. Ann Bot Fenn 8:177–227

    Google Scholar 

  • Ruan CJ, Qin P, Zheng JW, He ZX (2004) Genetic relationships among some cultivars of sea buckthorn from China, Russia and Mongolia based on RAPD analysis. Sci Hortic 101:417–426

    Article  CAS  Google Scholar 

  • Ruan CJ, Li DQ (2005) AFLP fingerprinting analysis of some cultivated varieties of sea buckthorn (Hippophae rhamnoides). J Genet 84:311–316

    Article  CAS  PubMed  Google Scholar 

  • Ruan CJ (2006) Genetic relationships among sea buckthorn varieties from China, Russia and Mongolia using AFLP markers. J Hortic Sci Biotechnol 81:409–414

    Article  Google Scholar 

  • Ruan CJ, Li H, Mopper S (2009) Characterization and identification of ISSR markers associated with resistance to dried-shrink disease in sea buckthorn. Mol Breeding 24:255–268

    Article  CAS  Google Scholar 

  • Ruan C-J, Teixeira da Silva JA, Li Q, Li H, Zhang J (2010) Pathogenicity of dried-shrink disease and evaluation of resistance in a germplasm collection of sea buckthorn (Hippophae L.) from China and other countries. Sci Hortic 127:70–78

    Article  Google Scholar 

  • Ruan CJ, Rumpunen K, Nybom H (2013) Advances in improvement of quality and resistance in a multipurpose crop: sea buckthorn. Crit Rev Biotechnol 33:126–144

    Article  CAS  PubMed  Google Scholar 

  • Sauquet H, Ho SY, Gandolfo MA, Jordan GJ, Wilf P, Cantrill DJ, Bayly MJ, Bromham L, Brown GK, Carpenter RJ (2012) Testing the impact of calibration on molecular divergence times using a fossil-rich group: the case of Nothofagus (Fagales). Syst Biol 61:289–313

    Article  PubMed  Google Scholar 

  • Servettaz C (1908) Monographie der Elaeagnaceae. Beihefte zum Botanischen Centralblatt 25:1–420

    Google Scholar 

  • Shah AH, Ahmad SD, Khaliq I, Batool F, Hassan L, Pearce RS (2009) Evaluation of phylogenetic relationship among sea buckthorn (Hippophae rhamnoides L. ssp. turkestanica) wild ecotypes from Pakistan using amplified fragment length polymorphism (AFLP). Pak J Bot 41:2419–2426

    CAS  Google Scholar 

  • Sharma A, Zinta G, Rana S, Shirko P (2010) Molecular identification of sex in Hippophae rhamnoides L. using isozyme and RAPD markers. For Stud China 12:62–66

    Article  CAS  Google Scholar 

  • Sheng H, An L, Chen T, Xu S, Liu G, Zheng X, Pu L, Liu Y, Lian Y (2006) Analysis of the genetic diversity and relationships among and within species of Hippophae (Elaeagnaceae) based on RAPD markers. Plant Syst Evol 260:25–37

    Article  CAS  Google Scholar 

  • Simon-Gruita A, Tataru E, Constantin N, Duta Cornescu G, Pavlusenco Camelia E, Rati V, Rati L, Stoian V (2012) The assessment of the genetic diversity of sea buckthorn populations from Romania using RAPD markers. Rom Biotechnol Lett 17:7749–7756

    Google Scholar 

  • Singh R, Ahmed Z (2010) Sea buckthorn: a multipurpose medicinal plant. In: Singh VK, Govil JN (eds) Drug plants IV. Studium Press Ltd, Houston, pp 227–239

    Google Scholar 

  • Sorsa P (1971) Pollen morphological study of the genus Hippophaë L., including new taxa recognized by A Rousi. Ann Bot Fenn 8:228–236

    Google Scholar 

  • Srihari JM, Verma B, Kumar N, Chahota RK, Singh V, Rathour R, Singh SK, Sharma SK, Sharma TR (2013) Analysis of molecular genetic diversity and population structure in sea buckthorn (Hippophae spp L.) from north-western Himalayan region of India. J Med Plants Res 7:3183–3196

    Google Scholar 

  • Sun K, Chen X, Ma R, Li C, Wang Q, Ge S (2002) Molecular phylogenetics of Hippophae L. (Elaeagnaceae) based on the internal transcribed spacer (ITS) sequences of nrDNA. Plant Syst Evol 235:121–134

    Article  CAS  Google Scholar 

  • Sun K, Ma R, Chen X, Li C, Ge S (2003) Hybrid origin of the diploid species Hippophae goniocarpa evidenced by the internal transcribed spacers (ITS) of nuclear rDNA. Belg J Bot 136:91–96

    Google Scholar 

  • Sun K, Chen W, Ma R, Chen X, Li A, Ge S (2006) Genetic variation in Hippophae rhamnoides ssp. sinensis (Elaeagnaceae) revealed by RAPD markers. Biochem Genet 44:186–197

    Article  CAS  PubMed  Google Scholar 

  • Suryakumar G, Gupta A (2011) Medicinal and therapeutic potential of sea buckthorn (Hippophae rhamnoides L.). J Ethnopharmacol 138:268–278

    Article  PubMed  Google Scholar 

  • Swenson U, Bartish IV (2002) Taxonomic synopsis of Hippophae (Elaeagnaceae). Nordic J Bot 22:369–374

    Article  Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    Article  CAS  PubMed  Google Scholar 

  • Tian CJ, Lei YD, Shi H, Nan P, Chen JK, Zhong Y (2004a) Genetic diversity of sea buckthorn (Hippophae rhamnoides) populations in northeastern and northwestern China as revealed by ISSR markers. New Forest 27:229–237

    Article  Google Scholar 

  • Tian CJ, Nan P, Shi SH, Chen JK, Zhong Y (2004b) Molecular genetic variation in Chinese populations of three subspecies of Hippophae rhamnoides. Biochem Genet 42:259–267

    Article  CAS  PubMed  Google Scholar 

  • Trajkovski V, Jeppsson N (1999) Domestication of sea buckthorn. Bot Lithuanica suppl. 2:37–46

    Google Scholar 

  • Tsvelev NN (2002) On the genera Elaeagnus and Hippophae (Elaeagnaceae) in Russia and adjacent states. Botanicheskiy Zhurnal 87:74–86 (in Russian with English abstract)

    Google Scholar 

  • Tzedakis PC, Emerson BC, Hewitt GM (2013) Cryptic or mystic? Glacial tree refugia in northern Europe. Trends Ecol Evol 28:696–704

    Article  CAS  PubMed  Google Scholar 

  • Virk PS, Ford-Lloyd BV, Jackson MT, Pooni HS, Clemeno TP, Newbury HJ (1996) Predicting quantitative variation within rice germplasm using molecular markers. Heredity 76:296–304

    Article  Google Scholar 

  • Wang AL, Schluetz F, Liu JQ (2008a) Molecular evidence for double maternal origins of the diploid hybrid Hippophae goniocarpa (Elaeagnaceae). Bot J Linn Soc 156:111–118

    Article  Google Scholar 

  • Wang AL, Zhang Q, Wan DS, Yang YZ, Liu JQ (2008b) Nine microsatellite DNA primers for Hippophae rhamnoides ssp sinensis (Elaeagnaceae). Conserv Genet 9:969–971

    Article  CAS  Google Scholar 

  • Wang B, Lin L, Ni Q, Su CL (2011a) Hippophae rhamnoides Linn. for treatment of diabetes mellitus: a review. J Med Plants Res 5:2599–2607

    CAS  Google Scholar 

  • Wang H, Moore MJ, Soltis PS, Bell CD, Brockington SF, Alexandre R, Davis CC, Latvis M, Manchester SR, Soltis DE (2009) Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc Natl Acad Sci U.S.A. 106:3853–3858

    Google Scholar 

  • Wang H, Qiong LA, Sun K, Lu F, Wang Y, Song Z, Wu Q, Chen J, Zhang W (2010) Phylogeographic structure of Hippophae tibetana (Elaeagnaceae) highlights the highest microrefugia and the rapid uplift of the Qinghai-Tibetan Plateau. Mol Ecol 19:2964–2979

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Jiang H, Peng S, Korpelainen H (2011b) Genetic structure in fragmented populations of Hippophae rhamnoides ssp. sinensis in China investigated by ISSR and cpSSR markers. Plant Syst Evol 295:97–107

    Article  Google Scholar 

  • Warnock M, Miskin D (2009) Sea buckthorn (Hippophae rhamnoides L): a review and its potential as a crop in Scotland. In: Singh VK, Govil JN (eds) Standardization of herbal/ayurvedic formations. Studium Press Llc, Houston, pp 257–272

    Google Scholar 

  • Weising K, Nybom H, Wolff K, Meyer W (1994) DNA Fingerprinting in Plants and Fungi. CRC Press, Boca Raton

    Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci U.S.A. 84:9054–9058

    Google Scholar 

  • Xiao J, Li J, Grandillo S, Ahn SN, Yuan L, Tanksley SD, McCouch SR (1998) Identification of trait-improving Quantitative Trait Loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150:899–909

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu G, Li CY, Yao YN (2009) Proteomics analysis of drought stress-responsive proteins in Hippophae rhamnoides L. Plant Mol Biol Report 27:153–161

    Article  CAS  Google Scholar 

  • Yao YM, Tigerstedt PMA (1993) Isozyme studies of genetic diversity and evolution in Hippophae. Genet Resour Crop Evol 40:153–164

    Article  Google Scholar 

  • Yao YM, Tigerstedt PMA (1995) Geographical variation of growth rhytm, height, and hardiness, and their relations in Hippophaë rhamnoides. J Am Soc Hortic Sci 120:691–698

    Google Scholar 

  • Zhang SD, Soltis DE, Yang Y, Li DZ, Yi TS (2011) Multi-gene analysis provides a well-supported phylogeny of Rosales. Mol Phylogenet Evol 60:21–28

    Article  PubMed  Google Scholar 

  • Zhao C, Chen G, Wang Y, Korpelainen H, Li C (2007) Genetic variation of Hippophae rhamnoides populations at different altitudes in the Wolong Nature Reserve based on RAPDs. Chin J Appl Environ Biol 13:753–758

    Google Scholar 

  • Zubarev YA, Gunin A, Oderova EV (2014) Characteristics of Russian sea bukthorn (Hippophaë rhamnoides subsp. mongolica) varieties. In: Singh V (ed) Seabuckthorn (Hippophaë L.) a multipurpose wonder plant, vol IV: emerging trends in research and technologies. Daya Publishing House, Astral International Pvt. Ltd., New Dehli, pp 89–98

    Google Scholar 

Download references

Acknowledgements

Financial support for Ph.D. studies by Dongrui Jia and Alexey A. Borisyuk, field trips in 2012–2014 by Igor V. Bartish and Alexey A. Borisyuk, and research of Igor V. Bartish on Hippophae from Alexey L. Kudrin foundation “Strategy” is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor V. Bartish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bartish, I.V. (2016). An Ancient Medicinal Plant at the Crossroads of Modern Horticulture and Genetics: Genetic Resources and Biotechnology of Sea Buckthorn (Hippophae L., Elaeagnaceae). In: Rajpal, V., Rao, S., Raina, S. (eds) Gene Pool Diversity and Crop Improvement. Sustainable Development and Biodiversity, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-27096-8_14

Download citation

Publish with us

Policies and ethics