Skip to main content

Phospholipase A2 as a Molecular Determinant of Store-Operated Calcium Entry

  • Chapter
  • First Online:
Calcium Entry Pathways in Non-excitable Cells

Abstract

Activation of phospholipases A2 (PLA2) leads to the generation of biologically active lipid products that can affect numerous cellular events. Ca2+-independent PLA2 (iPLA2), also called group VI phospholipase A2, is one of the main types forming the superfamily of PLA2. Beside of its role in phospholipid remodeling, iPLA2 has been involved in intracellular Ca2+ homeostasis regulation. Several studies proposed iPLA2 as an essential molecular player of store operated Ca2+ entry (SOCE) in a large number of excitable and non-excitable cells. iPLA2 activation releases lysophosphatidyl products, which were suggested as agonists of store operated calcium channels (SOCC) and other TRP channels. Herein, we will review the important role of iPLA2 on the intracellular Ca2+ handling focusing on its role in SOCE regulation and its implication in physiological and/or pathological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AA:

Arachidonic acid

AdPLA2 :

Adipose-specific PLA2

ARC:

Arachidonic acid-regulated calcium channels

BEL:

Bromoenol lacotone

CaM:

Calmodulin

cPLA2 :

Cytosolic PLA2

DAG:

Diacylglycerol

ER:

Endoplasmic reticulum

iPLA2 :

Calcium-independent PLA2

LA:

Lysophasphatidyl acid

LyPLA2 :

Lysosomal PLA2

OAG:

1-oleoyl-2-acetyl-sn-glycerol

PAF-AH:

Platelet-activating factor acetylhydrolases

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

PS:

Phosphatidylserine

ROC:

Receptor operated channels

SMC:

Smooth muscle cell

sPLA2 :

Secretory PLA2

SOCC/SOCE:

Store operated Ca2+ channels/entry

References

  1. Burke JE, Dennis EA (2009) Phospholipase A2 biochemistry. Cardiovasc Drug Ther 23(1):49–59

    Article  CAS  Google Scholar 

  2. Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G (2011) Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev 111(10):6130–6185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Six DA, Dennis EA (2000) The expanding superfamily of phospholipase A 2 enzymes: classification and characterization. Biochim Biophys Acta 1488(1):1–19

    Article  CAS  PubMed  Google Scholar 

  4. Murakami M, Taketomi Y, Miki Y, Sato H, Hirabayashi T, Yamamoto K (2011) Recent progress in phospholipase A 2 research: from cells to animals to humans. Prog Lipid Res 50(2):152–192

    Article  CAS  PubMed  Google Scholar 

  5. Chakraborti S (2003) Phospholipase A 2 isoforms: a perspective. Cell Signal 15(7):637–665

    Article  CAS  PubMed  Google Scholar 

  6. Lambeau G, Gelb MH (2008) Biochemistry and physiology of mammalian secreted phospholipases A2. Annu Rev Biochem 77:495–520

    Article  CAS  PubMed  Google Scholar 

  7. Camejo G (2010) Lysophospholipids: effectors mediating the contribution of dyslipidemia to calcification associated with atherosclerosis. Atherosclerosis 211(1):36–37

    Article  CAS  PubMed  Google Scholar 

  8. Rodriguéz-Lee M, Bondjers G, Camejo G (2007) Fatty acid-induced atherogenic changes in extracellular matrix proteoglycans. Curr Opin Lipidol 18(5):546–553

    Article  PubMed  CAS  Google Scholar 

  9. Singer AG, Ghomashchi F, Le Calvez C, Bollinger J, Bezzine S, Rouault M, Gelb MH (2002) Interfacial kinetic and binding properties of the complete set of human and mouse groups I, II, V, X, and XII secreted phospholipases A2. J Biol Chem 277(50):48535–48549

    Article  CAS  PubMed  Google Scholar 

  10. Kramer RM, Sharp JD (1995) Recent insights into the structure, function and biology of cPLA2. Agents Actions Suppl 46:65–76

    CAS  PubMed  Google Scholar 

  11. Kramer RM, Sharp JD (1997) Structure, function and regulation of Ca2+-sensitive cytosolic phospholipase A2 (cPLA2). FEBS Lett 410(1):49–53

    Article  CAS  PubMed  Google Scholar 

  12. Kramer RM, Checani GC, Deykin A, Pritzker CR, Deykin D (1986) Solubilization and properties of Ca2+-dependent human platelet phospholipase A 2. Biochim Biophys Acta 878(3):394–403

    Article  CAS  PubMed  Google Scholar 

  13. Kramer RM, Roberts EF, Manetta J, Putnam JE (1991) The Ca2(+)-sensitive cytosolic phospholipase A2 is a 100-kDa protein in human monoblast U937 cells. J Biol Chem 266(8):5268–5272

    CAS  PubMed  Google Scholar 

  14. Clark JD, Lin LL, Kriz RW, Ramesha CS, Sultzman LA, Lin AY, Knopf JL (1991) A novel arachidonic acid-selective cytosolic PLA2 contains a Ca2+-dependent translocation domain with homology to PKC and GAP. Cell 65(6):1043–1051

    Article  CAS  PubMed  Google Scholar 

  15. Reynolds LJ, Hughes LL, Louis AI, Kramer RM, Dennis EA (1993) Metal ion and salt effects on the phospholipase A2, lysophospholipase, and transacylase activities of human cytosolic phospholipase A2. Biochim Biophys Acta 1167(3):272–280

    Article  CAS  PubMed  Google Scholar 

  16. Burke JE, Hsu YH, Deems RA, Li S, Woods VL, Dennis EA (2008) A phospholipid substrate molecule residing in the membrane surface mediates opening of the lid region in group IVA cytosolic phospholipase A2. J Biol Chem 283(45):31227–31236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Leslie CC (1997) Properties and regulation of cytosolic phospholipase A2. J Biol Chem 272(27):16709–16712

    Article  CAS  PubMed  Google Scholar 

  18. Kita Y, Ohto T, Uozumi N, Shimizu T (2006) Biochemical properties and pathophysiological roles of cytosolic phospholipase A2s. Biochim Biophys Acta 1761(11):1317–1322

    Article  CAS  PubMed  Google Scholar 

  19. Kudo I, Murakami M (2002) Phospholipase A2 enzymes. Prostaglandins Other Lipid Mediat 68–69:3–58

    Article  PubMed  Google Scholar 

  20. Mignen O, Shuttleworth TJ (2000) I(ARC), a novel arachidonate-regulated, noncapacitative Ca(2+) entry channel. J Biol Chem 275(13):9114–9119

    Article  CAS  PubMed  Google Scholar 

  21. Mignen O, Thompson JL, Shuttleworth TJ (2009) The molecular architecture of the arachidonate-regulated Ca2+-selective ARC channel is a pentameric assembly of Orai1 and Orai3 subunits. J Physiol 587(17):4181–4197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Khakpour H, Frishman WH (2009) Lipoprotein-associated phospholipase A2: an independent predictor of cardiovascular risk and a novel target for immunomodulation therapy. Cardiol Rev 17(5):222–229

    Article  PubMed  Google Scholar 

  23. Stephens JWW, Myers W (1898) The action of cobra poison on the blood: a contribution to the study of passive immunity. J Pathol Bacteriol 5(3):279–301

    Article  Google Scholar 

  24. Tjoelker LW, Eberhardt C, Unger J, Le Trong H, Zimmerman GA, McIntyre TM, Gray PW (1995) Plasma platelet-activating factor acetylhydrolase is a secreted phospholipase A2 with a catalytic triad. J Biol Chem 270(43):25481–25487

    Article  CAS  PubMed  Google Scholar 

  25. Tjoelker LW, Wilder C, Eberhardt C, Stafforinit DM, Dietsch G, Schimpf B, Gray PW (1995) Anti-inflammatory properties of a platelet-activating factor acetylhydrolase. Nature 374(6522):549–553

    Article  CAS  PubMed  Google Scholar 

  26. Chen CH (2004) Platelet-activating factor acetylhydrolase: is it good or bad for you? Curr Opin Lipidol 15(3):337–341

    Article  CAS  PubMed  Google Scholar 

  27. Packard CJ (2009) Lipoprotein-associated phospholipase A2 as a biomarker of coronary heart disease and a therapeutic target. Curr Opin Cardiol 24(4):358–363

    Article  PubMed  Google Scholar 

  28. Tsimikas S, Tsironis LD, Tselepis AD (2007) New insights into the role of lipoprotein (a)-associated lipoprotein-associated phospholipase A2 in atherosclerosis and cardiovascular disease. Arterioscler Thromb Vasc Biol 27(10):2094–2099

    Article  CAS  PubMed  Google Scholar 

  29. Wilensky RL, Macphee CH (2009) Lipoprotein-associated phospholipase A2 and atherosclerosis. Curr Opin Lipidol 20(5):415–420

    Article  CAS  PubMed  Google Scholar 

  30. Stafforini DM, Satoh K, Atkinson DL, Tjoelker LW, Eberhardt C, Yoshida H, Prescott SM (1996) Platelet-activating factor acetylhydrolase deficiency. A missense mutation near the active site of an anti-inflammatory phospholipase. J Clin Invest 97(12):2784–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Min JH, Wilder C, Aoki J, Arai H, Inoue K, Paul L, Gelb MH (2001) Platelet-activating factor acetylhydrolases: broad substrate specificity and lipoprotein binding does not modulate the catalytic properties of the plasma enzyme. Biochemistry 40(15):4539–4549

    Article  CAS  PubMed  Google Scholar 

  32. Hiraoka M, Abe A, Shayman JA (2002) Cloning and characterization of a lysosomal phospholipase A2, 1-O-acylceramide synthase. J Biol Chem 277(12):10090–10099

    Article  CAS  PubMed  Google Scholar 

  33. Hiraoka M, Abe A, Lu Y, Yang K, Han X, Gross RW, Shayman JA (2006) Lysosomal phospholipase A2 and phospholipidosis. Mol Cell Biol 26(16):6139–6148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Abe A, Poucher HK, Hiraoka M, Shayman JA (2004) Induction of lysosomal phospholipase A2 through the retinoid X receptor in THP-1 cells. J Lipid Res 45(4):667–673

    Article  CAS  PubMed  Google Scholar 

  35. Duncan RE, Sarkadi-Nagy E, Jaworski K, Ahmadian M, Sul HS (2008) Identification and functional characterization of adipose-specific phospholipase A2 (AdPLA). J Biol Chem 283(37):25428–25436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jaworski K, Ahmadian M, Duncan RE, Sarkadi-Nagy E, Varady KA, Hellerstein MK, Sul HS (2009) AdPLA ablation increases lipolysis and prevents obesity induced by high-fat feeding or leptin deficiency. Nat Med 15(2):159–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sanchez-Alavez M, Klein I, Brownell SE, Tabarean IV, Davis CN, Conti B, Bartfai T (2007) Night eating and obesity in the EP3R-deficient mouse. Proc Natl Acad Sci 104(8):3009–3014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cummings BS, McHowat J, Schnellmann RG (2002) Role of an endoplasmic reticulum Ca2+-independent phospholipase A2 in oxidant-induced renal cell death. J Pharmacol Exp Ther 283(3):492–498

    Google Scholar 

  39. Ackermann EJ, Kempner ES, Dennis EA (1994) Ca2+-independent cytosolic phospholipase A2 from macrophage-like P388D1 cells Isolation and characterization. J Biol Chem 269(12):9227–9233

    CAS  PubMed  Google Scholar 

  40. Schaloske RH, Dennis EA (2006) The phospholipase A2 superfamily and its group numbering system. Biochim Biophys Acta 1761(11):1246–1259

    Article  CAS  PubMed  Google Scholar 

  41. Winstead MV, Balsinde J, Dennis EA (2000) Calcium-independent phospholipase A2: structure and function. Biochim Biophys Acta 1488(1):28–39

    Article  CAS  PubMed  Google Scholar 

  42. Ma Z, Wang X, Nowatzke W, Ramanadham S, Turk J (1999) Human pancreatic islets express mRNA species encoding two distinct catalytically active isoforms of group VI phospholipase A2 (iPLA2) that arise from an exon-skipping mechanism of alternative splicing of the transcript from the iPLA2 gene on chromosome 22q13 1. J Biol Chem 274(14):9607–9616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sedgwick SG, Smerdon SJ (1999) The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem Sci 24(8):311–316

    Article  CAS  PubMed  Google Scholar 

  44. Tang J, Kriz RW, Wolfman N, Shaffer M, Seehra J, Jones SS (1997) A novel cytosolic calcium-independent phospholipase A2 contains eight ankyrin motifs. J Biol Chem 272(13):8567–8575

    Article  CAS  PubMed  Google Scholar 

  45. Balboa MA, Balsinde J, Jones SS, Dennis EA (1997) Identity between the Ca2+-independent phospholipase A2 enzymes from P388D1 macrophages and Chinese hamster ovary cells. J Biol Chem 272(13):8576–8580

    Article  CAS  PubMed  Google Scholar 

  46. Larsson PK, Claesson HE, Kennedy BP (1998) Multiple splice variants of the human calcium-independent phospholipase A2 and their effect on enzyme activity. J Biol Chem 273(1):207–214

    Article  CAS  PubMed  Google Scholar 

  47. Ma Z, Ramanadham S, Wohltmann M, Bohrer A, Hsu FF, Turk J (2001) Studies of insulin secretory responses and of arachidonic acid incorporation into phospholipids of stably transfected insulinoma cells that overexpress group VIA phospholipase A2 (iPLA2beta) indicate a signaling rather than a housekeeping role for iPLA2beta. J Biol Chem 276(16):13198–13208

    Article  CAS  PubMed  Google Scholar 

  48. Larsson Forsell PK, Kennedy BP, Claesson HE (1999) The human calcium-independent phospholipase A2 gene multiple enzymes with distinct properties from a single gene. Eur J Biochem 262(2):575–585

    Article  CAS  PubMed  Google Scholar 

  49. Akiba S, Sato T (2004) Cellular function of calcium-independent phospholipase A2. Biol Pharm Bull 27(8):1174–1178

    Article  CAS  PubMed  Google Scholar 

  50. Balsinde J, Balboa MA (2005) Cellular regulation and proposed biological functions of group VIA calcium-independent phospholipase A2 in activated cells. Cell Signal 17(9):1052–1062

    Article  CAS  PubMed  Google Scholar 

  51. Bolotina VM, Csutora P (2005) CIF and other mysteries of the store-operated Ca2+-entry pathway. Trends Biochem Sci 30(7):378–387

    Article  CAS  PubMed  Google Scholar 

  52. Turk J, Ramanadham S (2004) The expression and function of a group VIA calcium-independent phospholipase A2 (iPLA2β) in β-cells can. J Physiol Pharmacol 82(10):824–832

    Article  CAS  Google Scholar 

  53. Mancuso DJ, Jenkins CM, Gross RW (2000) The genomic organization, complete mRNA sequence, cloning, and expression of a novel human intracellular membrane-associated calcium-independent phospholipase A2. J Biol Chem 275(14):9937–9945

    Article  CAS  PubMed  Google Scholar 

  54. Murakami M, Masuda S, Ueda-Semmyo K, Yoda E, Kuwata H, Takanezawa Y, Kudo I (2005) Group VIB Ca2+-independent phospholipase A2γpromotes cellular membrane hydrolysis and prostaglandin production in a manner distinct from other intracellular phospholipases A2. J Biol Chem 280(14):14028–14041

    Article  CAS  PubMed  Google Scholar 

  55. Sharma J, Eickhoff CS, Hoft DF, Ford DA, Gross RW, McHowat J (2013) The absence of myocardial calcium-independent phospholipase A2γ results in impaired prostaglandin E2 production and decreased survival in mice with acute Trypanosoma cruzi Infection. Infect Immun 81(7):2278–2287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Moon SH, Jenkins CM, Kiebish MA, Sims HF, Mancuso DJ, Gross RW (2012) Genetic ablation of calcium-independent phospholipase A(2)γ (iPLA(2)γ) attenuates calcium-induced opening of the mitochondrial permeability transition pore and resultant cytochrome c release. J Biol Chem 287(35):29837–29850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Glynn P (1999) Neuropathy target esterase. Biochem J 344:625–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Glynn P (2005) Neuropathy target esterase and phospholipid deacylation. Biochim Biophys Acta 1736(2):87–93

    Article  CAS  PubMed  Google Scholar 

  59. Van Tienhoven M, Atkins J, Li Y, Glynn P (2002) Human neuropathy target esterase catalyzes hydrolysis of membrane lipids. J Biol Chem 277(23):20942–20948

    Article  PubMed  CAS  Google Scholar 

  60. Jenkins CM, Mancuso DJ, Yan W, Sims HF, Gibson B, Gross RW (2004) Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem 279(47):48968–48975

    Article  CAS  PubMed  Google Scholar 

  61. Ma Z, Ramanadham S, Kempe K, Chi XS, Ladenson J, Turk J (1997) Pancreatic islets express a Ca2+-independent phospholipase A2 enzyme that contains a repeated structural motif homologous to the integral membrane protein binding domain of ankyrin. J Biol Chem 272(17):11118–11127

    Article  CAS  PubMed  Google Scholar 

  62. Akiba S, Mizunaga S, Kume K, Hayama M, Sato T (1999) Involvement of group VI Ca2+-independent phospholipase A2 in protein kinase C-dependent arachidonic acid liberation in zymosan-stimulated macrophage-like P388D1 cells. J Biol Chem 274:19906–19912

    Article  CAS  PubMed  Google Scholar 

  63. Akiba S, Ohno S, Chiba M, Kume K, Hayama M, Sato T (2002) Protein kinase Cα-dependent increase in Ca2+-independent phospholipase A2 in membranes and arachidonic acid liberation in zymosan-stimulated macrophage-like P388D 1 cells. Biochem Pharmacol 63(11):1969–1977

    Article  CAS  PubMed  Google Scholar 

  64. Smani T, Patel T, Bolotina VM (2008) Complex regulation of store-operated Ca2+ entry pathway by PKC-ε in vascular SMCs. Am J Physiol Cell Physiol 294(6):C1499–C1508

    Article  CAS  PubMed  Google Scholar 

  65. Wolf MJ, Gross RW (1996) The calcium-dependent association and functional coupling of calmodulin with myocardial phospholipase A2. Implications for cardiac cycle-dependent alterations in phospholipolysis. J Biol Chem 271(35):20989–20992

    Article  CAS  PubMed  Google Scholar 

  66. Wolf MJ, Gross RW (1996) Expression, purification, and kinetic characterization of a recombinant 80-kDa intracellular calcium-independent phospholipase A2. J Biol Chem 271:30879–30885

    Article  CAS  PubMed  Google Scholar 

  67. Jenkins CM, Wolf MJ, Mancuso DJ, Gross RW (2001) Identification of the calmodulin-binding domain of recombinant calcium-independent phospholipase A2β. Implications for structure and function. J Biol Chem 276(10):7129–7135

    Article  CAS  PubMed  Google Scholar 

  68. Wolf MJ, Wang J, Turk J, Gross RW (1997) Depletion of intracellular calcium stores activates smooth muscle cell calcium-independent phospholipase A 2. A novel mechanism underlying arachidonic acid mobilization. J Biol Chem 272(3):1522–1526

    Article  CAS  PubMed  Google Scholar 

  69. Smani T, Zakharov SI, Csutora P, Leno E, Trepakova E, Bolotina VM (2004) A novel mechanism for the store-operated calcium influx pathway. Nat Cell Biol 6(2):113–120

    Article  CAS  PubMed  Google Scholar 

  70. Singaravelu K, Lohr C, Deitmer JW (2006) Regulation of store-operated calcium entry by calcium-independent phospholipase A2 in rat cerebellar astrocytes. J Neurosci 26(37):9579–9592

    Article  CAS  PubMed  Google Scholar 

  71. Balsinde J, Dennis EA (1996) Bromoenol lactone inhibits magnesium-dependent phosphatidate phosphohydrolase and blocks triacylglycerol biosynthesis in mouse P388D1 macrophages. J Biol Chem 271(50):31937–31941

    Article  CAS  PubMed  Google Scholar 

  72. Balboa MA, Balsinde J, Dennis EA (1998) Involvement of phosphatidate phosphohydrolase in arachidonic acid mobilization in human amnionic WISH cells. J Biol Chem 273(13):7684–7690

    Article  CAS  PubMed  Google Scholar 

  73. Johnson CA, Balboa MA, Balsinde J, Dennis EA (1999) Regulation of cyclooxygenase-2 expression by phosphatidate phosphohydrolase in human amnionic WISH cells. J Biol Chem 274(39):27689–27693

    Article  CAS  PubMed  Google Scholar 

  74. Smani T, Domínguez-Rodríguez A, Hmadcha A, Calderón-Sánchez E, Horrillo-Ledesma A, Ordóñez A (2007) Role of Ca2+-independent phospholipase A2 and store-operated pathway in urocortin-induced vasodilatation of rat coronary artery. Circ Res 101(11):1194–1203

    Article  CAS  PubMed  Google Scholar 

  75. Jenkins CM, Han X, Mancuso DJ, Gross RW (2002) Identification of calcium-independent phospholipase A2 (iPLA2)β, and not iPLA2γ, as the mediator of arginine vasopressin-induced arachidonic acid release in A-10 smooth muscle cells. Enantioselective mechanism-based discrimination of mammalian iPLA2s. J Biol Chem 277(36):32807–32814

    Article  CAS  PubMed  Google Scholar 

  76. Csutora P, Zarayskiy V, Peter K, Monje F, Smani T, Zakharov SI, Bolotina VM (2006) Activation mechanism for CRAC current and store-operated Ca2+ entry calcium influx factor and Ca2+-independent phospholipase A2β-mediated pathway. J Biol Chem 281(46):34926–34935

    Article  CAS  PubMed  Google Scholar 

  77. Nowatzke W, Ramanadham S, Ma Z, Hsu FF, Bohrer A, Turk J (1998) Mass spectrometric evidence that agents that cause loss of Ca2+ from intracellular compartments induce hydrolysis of arachidonic acid from pancreatic islet membrane phospholipids by a mechanism that does not require a rise in cytosolic Ca2+ concentration. Endocrinology 139(10):4073–4085

    CAS  PubMed  Google Scholar 

  78. Smani T, Zakharov SI, Leno E, Csutora P, Trepakova ES, Bolotina VM (2003) Ca2+-independent phospholipase A2 is a novel determinant of store-operated Ca2+ entry. J Biol Chem 278(14):11909–11915

    Article  CAS  PubMed  Google Scholar 

  79. Bolotina VM (2008) Orai, STIM1 and iPLA2β: a view from a different perspective. J Physiol 586(13):3035–3042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Parekh AB, Putney JW (2005) Store-operated calcium channels. Physiol Rev 85(2):757–810

    Article  CAS  PubMed  Google Scholar 

  81. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodeling. Nat Rev Mol Cell Biol 4(7):517–529

    Article  CAS  PubMed  Google Scholar 

  82. Rosado JA, Redondo PC, Sage SO, Pariente JA, Salido GM (2005) Store-operated Ca2+ entry: vesicle fusion or reversible trafficking and de novo conformational coupling? J Cell Physiol 205(2):262–269

    Article  CAS  PubMed  Google Scholar 

  83. Irvine RF (1990) ‘Quanta’ Ca2+ release and the control of Ca2+ entry by inositol phosphates a possible mechanism. FEBS Lett 263(1):5–9

    Article  CAS  PubMed  Google Scholar 

  84. Block BA, Imagawa T, Campbell KP, Franzini-Armstrong C (1988) Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J Cell Biol 107(6):2587–2600

    Article  CAS  PubMed  Google Scholar 

  85. Boulay G, Brown DM, Qin N, Jiang M, Dietrich A, Zhu MX, Birnbaumer L (1999) Modulation of Ca2+ entry by polypeptides of the inositol 1,4,5-trisphosphate receptor (IP3R) that bind transient receptor potential (TRP): evidence for roles of TRP and IP3R in store depletion-activated Ca2+ entry. Proc Natl Acad Sci 96(26):14955–14960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rosado J, Sage S (2000) Coupling between inositol 1, 4, 5-trisphosphate receptors and human transient receptor potential channel 1 when intracellular Ca2+ stores are depleted. Biochem J 350(3):631–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sugawara H, Kurosaki M, Takata M, Kurosaki T (1997) Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in signal transduction through the B-cell antigen receptor. EMBO J 16(11):3078–3088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Prakriya M, Lewis RS (2001) Potentiation and inhibition of Ca2+ release-activated Ca2+ channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP3 receptors. J Physiol 536(1):3–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bakowski D, Glitsch MD, Parekh AB (2001) An examination of the secretion-like coupling model for the activation of the Ca2+ release-activated Ca2+ current ICRAC in RBL1 cells. J Physiol 532(1):55–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441(7090):179–185

    Article  CAS  PubMed  Google Scholar 

  91. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169(3):435–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Cahalan MD (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437(7060):902–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Berna-Erro A, Redondo PC, Rosado JA (2012) Store-operated Ca2+ entry. Adv Exp Med Biol 740:349–382

    Article  CAS  PubMed  Google Scholar 

  94. Várnai P, Tóth B, Tóth DJ, Hunyady L, Balla T (2007) Visualization and manipulation of plasma membrane-endoplasmic reticulum contact sites indicates the presence of additional molecular components within the STIM1-Orai1 complex. J Biol Chem 282(40):29678–29690

    Article  PubMed  CAS  Google Scholar 

  95. Albarran L, Lopez JJ, Dionisio N, Smani T, Salido GM, Rosado JA (2013) Transient receptor potential ankyrin-1 (TRPA1) modulates store-operated Ca(2+) entry by regulation of STIM1-Orai1 association. Biochim Biophys Acta 1833(12):3025–3034

    Article  CAS  PubMed  Google Scholar 

  96. Jardin I, Lopez JJ, Salido GM, Rosado JA (2008) Orai1 mediates the interaction between STIM1 and hTRPC1 and regulates the mode of activation of hTRPC1-forming Ca2+ channels. J Biol Chem 283(37):25296–25304

    Article  CAS  PubMed  Google Scholar 

  97. Jardin I, Gomez L, Salido G, Rosado J (2009) Dynamic interaction of hTRPC6 with the Orai1-STIM1 complex or hTRPC3 mediates its role in capacitative or non-capacitative Ca2+ entry pathways. Biochem J 420:267–276

    Article  CAS  PubMed  Google Scholar 

  98. Domínguez-Rodríguez A, Díaz I, Rodríguez-Moyano M, Calderón-Sánchez E, Rosado JA, Ordóñez A, Smani T (2012) Urotensin-II signaling mechanism in rat coronary artery role of STIM1 and Orai1-dependent store operated calcium influx in vasoconstriction. Arterioscler Thromb Vasc Biol 32(5):1325–1332

    Article  PubMed  CAS  Google Scholar 

  99. Pandol SJ, Schoeffield-Payne MS (1990) Cyclic GMP mediates the agonist-stimulated increase in plasma membrane calcium entry in the pancreatic acinar cell. J Biol Chem 265(22):12846–12853

    CAS  PubMed  Google Scholar 

  100. Rosado J, Graves D, Sage S (2000) Tyrosine kinases activate store-mediated Ca2+ entry in human platelets through the reorganization of the actin cytoskeleton. Biochem J 351(2):429–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bird GS, Putney JW (1993) Inhibition of thapsigargin-induced calcium entry by microinjected guanine nucleotide analogues. Evidence for the involvement of a small G-protein in capacitative calcium entry. J Biol Chem 268(29):21486–21488

    CAS  PubMed  Google Scholar 

  102. Csutora P, Peter K, Kilic H, Park KM, Zarayskiy V, Gwozdz T, Bolotina VM (2008) Novel role for STIM1 as a trigger for calcium influx factor production. J Biol Chem 283(21):14524–14531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bose DD, Rahimian R, Thomas DW (2005) Activation of ryanodine receptors induces calcium influx in a neuroblastoma cell line lacking calcium influx factor activity. Biochem J 386(2):291–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zarayskiy VV, Monje F, Peter K, Csutora P, Khodorov B, Bolotina VM (2007) Store-operated Orai1 and IP3 receptor-operated TRPC1 channel: separation of the siamese twins. Channels 1(4):246–252

    Article  PubMed  Google Scholar 

  105. Singaravelu K, Lohr C, Deitmer JW (2008) Calcium-independent phospholipase A2 mediates store-operated calcium entry in rat cerebellar granule cells. Cerebellum 7(3):467–481

    Article  CAS  PubMed  Google Scholar 

  106. Ross K, Whitaker M, Reynolds NJ (2007) Agonist-induced calcium entry correlates with STIM1 translocation. J Cell Physiol 211(3):569–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Boittin FX, Petermann O, Hirn C, Mittaud P, Dorchies OM, Roulet E, Ruegg UT (2006) Ca2+-independent phospholipase A2 enhances store-operated Ca2+ entry in dystrophic skeletal muscle fibers. J Cell Sci 119(18):3733–3742

    Article  CAS  PubMed  Google Scholar 

  108. Martínez J, Moreno JJ (2005) Role of Ca2+-independent phospholipase A2 and cytochrome P-450 in store-operated calcium entry in 3T6 fibroblasts. Biochem Pharmacol 70(5):733–739

    Article  PubMed  CAS  Google Scholar 

  109. Vanden Abeele F, Lemonnier L, Thébault S, Lepage G, Parys JB, Shuba Y, Skryma R, Prevarskaya N (2004) Two types of store-operated Ca2+ channels with different activation modes and molecular origin in LNCaP human prostate cancer epithelial cells. J Biol Chem 279(29):30326–30337

    Article  CAS  PubMed  Google Scholar 

  110. Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kinet JP (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312(5777):1220–1223

    Article  CAS  PubMed  Google Scholar 

  111. Trepakova ES, Csutora P, Hunton DL, Marchase RB, Cohen RA, Bolotina VM (2000) Calcium influx factor directly activates store-operated cation channels in vascular smooth muscle cells. J Biol Chem 275(34):26158–26163

    Article  CAS  PubMed  Google Scholar 

  112. Trepakova ES, Gericke M, Hirakawa Y, Weisbrod RM, Cohen RA, Bolotina VM (2001) Properties of a native cation channel activated by Ca2+ store depletion in vascular smooth muscle cells. J Biol Chem 276(11):7782–7790

    Article  CAS  PubMed  Google Scholar 

  113. Boittin FX, Shapovalov G, Hirn C, Ruegg UT (2010) Phospholipase A 2-derived lysophosphatidylcholine triggers Ca 2+ entry in dystrophic skeletal muscle fibers. Biochem Biophys Res Commun 391(1):401–406

    Article  CAS  PubMed  Google Scholar 

  114. Jans R, Mottram L, Johnson DL, Brown AM, Sikkink S, Ross K, Reynolds NJ (2013) Lysophosphatidic acid promotes cell migration through STIM1-and Orai1-mediated Ca2+(i) mobilization and NFAT2 activation. J Invest Dermatol 133(3):793–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Vanden Abeele F, Zholos A, Bidaux G, Shuba Y, Thebault S, Beck B, Flourakis M, Panchin Y, Skryma R, Prevarskaya N (2006) Ca2+-independent phospholipase A2-dependent gating of TRPM8 by lysophospholipids. J Biol Chem 281(52):40174–40182

    Article  CAS  PubMed  Google Scholar 

  116. AL-Shawaf E, Tumova S, Naylor J, Majeed Y, Li J, Beech DJ (2011) GVI phospholipase A2 role in the stimulatory effect of sphingosine-1-phosphate on TRPC5 cationic channels. Cell Calcium 50(4):343–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Guo Z, Su W, Ma Z, Smith GM, Gong MC (2003) Ca2+-independent phospholipase A2 is required for agonist-induced Ca2+ sensitization of contraction in vascular smooth muscle. J Biol Chem 278(3):1856–1863

    Article  CAS  PubMed  Google Scholar 

  118. Park KM, Trucillo M, Serban N, Cohen RA, Bolotina VM (2008) Role of iPLA2 and store-operated channels in agonist-induced Ca2+ influx and constriction in cerebral, mesenteric, and carotid arteries. Am J Physiol Heart Circ Physiol 294(3):H1183–H1187

    Article  CAS  PubMed  Google Scholar 

  119. Yang B, Gwozdz T, Dutko-Gwozdz J, Bolotina VM (2012) Orai1 and Ca2+-independent phospholipase A2 are required for store-operated Icat-SOC current, Ca2+ entry, and proliferation of primary vascular smooth muscle cells. Am J Physiol Cell Physiol 302(5):C748–C756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Schäfer C, Rymarczyk G, Ding L, Kirber MT, Bolotina VM (2012) Role of molecular determinants of store-operated Ca2+ entry (Orai1, phospholipase A2 group 6, and STIM1) in focal adhesion formation and cell migration. J Biol Chem 287(48):40745–40757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Reutenauer-Patte J, Boittin FX, Patthey-Vuadens O, Ruegg UT, Dorchies OM (2012) Urocortins improve dystrophic skeletal muscle structure and function through both PKA-and EPAC-dependent pathways. Am J Pathol 180(2):749–762

    Article  CAS  PubMed  Google Scholar 

  122. Zhu C, Sun Z, Li C, Guo R, Li L, Jin L, Li S (2014) Urocortin affects migration of hepatic cancer cell lines via differential regulation of cPLA2 and iPLA2. Cell Signal 26(5):1125–1134

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Spanish Ministry of Economy and Competitiveness [BFU2013-45564-C2-1-P and BFU2013-45564-C2-2-P]; Institute of Carlos III and Cardiovascular Network “RIC” [RD12/0042/0041;PI12/00941]; and from the Andalusia Government [PI-0108-2012; P10-CVI-6095]. A.D.R. is supported by ITRIBIS FP-7-REGPOT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarik Smani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Smani, T., Domínguez-Rodriguez, A., Callejo-García, P., Rosado, J.A., Avila-Medina, J. (2016). Phospholipase A2 as a Molecular Determinant of Store-Operated Calcium Entry. In: Rosado, J. (eds) Calcium Entry Pathways in Non-excitable Cells. Advances in Experimental Medicine and Biology, vol 898. Springer, Cham. https://doi.org/10.1007/978-3-319-26974-0_6

Download citation

Publish with us

Policies and ethics