Skip to main content

Effective Quantum Gravity

  • Chapter
  • First Online:
Perturbative Algebraic Quantum Field Theory

Part of the book series: Mathematical Physics Studies ((MPST))

  • 2035 Accesses

Abstract

The functional approach to pQFT together with the BV framework introduced in Chap. 7 has been successfully applied to gauge theories [FR12b, FR12a] and can also be used in quantization of theories where the local symmetries involve transformation of spacetime points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Reuter et al. [Reu98, RS02] define the renormalisation group flow in terms of Wetterich equations [Wet93]. We expect that this notion is related to the Stückelberg-Petermann renormalization group we have introduced in Sect. 6.3 A result connecting the later to the Wilsonian flow has been already obtained in [BDF09].

References

  1. Brennecke, F., Dütsch, M.: Removal of violations of the master Ward identity in perturbative QFT. Rev. Math. Phys. 20(02), 119–151 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brown, J.D., Kuchar, K.V.: Dust as a standard of space and time in canonical quantum gravity. Phys. Rev. D 51(10), 5600 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  3. Brunetti, R., Fredenhagen, K.: Towards a background independent formulation of perturbative quantum gravity. Quantum Gravity, 151–159 (2007)

    Google Scholar 

  4. Brunetti, R., Dütsch, M., Fredenhagen, K.: Perturbative algebraic quantum field theory and the renormalization groups. Adv. Theor. Math. Phys. 13(5), 1541–1599 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brunetti, R., Fredenhagen, K., Rejzner, K.: Quantum gravity from the point of view of locally covariant quantum field theory (2013). arXiv:1306.1058 [math-ph]

  6. Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle-a new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31–68 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Coley, A., Hervik, S., Pelavas, N.: Spacetimes characterized by their scalar curvature invariants. Classical and Quantum Gravity 26(2), 025013 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Dappiaggi, C., Moretti, V., Pinamonti, N.: Cosmological horizons and reconstruction of quantum field theories. Commun. Math. Phys. 285(3), 1129–1163 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Dappiaggi, C., Moretti, V., Pinamonti, N.: Distinguished quantum states in a class of cosmological spacetimes and their Hadamard property. J. Math. Phys. 50(6), 062304 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Dappiaggi, C., Moretti, V., Pinamonti, N.: Rigorous construction and Hadamard property of the Unruh state in Schwarzschild spacetime. Adv. Theor. Math. Phys. 15(2), 355–447 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dittrich, B.: Partial and complete observables for canonical general relativity. Class. Quantum Gravity 23(22), 6155 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Drago, N., Hack, T.-P., Pinamonti, N.: The generalised principle of perturbative agreement and the thermal mass (2015). arXiv preprint arXiv:1502.02705

  13. Dütsch, M., Fredenhagen, K.: The master Ward identity and generalized Schwinger-Dyson equation in classical field theory, (2), 275–314 (2002). arXiv.org [hep-th]

  14. Fredenhagen, K., Rejzner, K.: Batalin-Vilkovisky formalism in perturbative algebraic quantum field theory. Commun. Math. Phys. 317(3), 697–725 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Fredenhagen, K., Rejzner, K.: Batalin-Vilkovisky formalism in the functional approach to classical field theory. Commun. Math. Phys. 314(1), 93–127 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Fredenhagen, K., Rejzner, K.: Local Covariance and Background Independence. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  17. Gomis, J., Weinberg, S.: Are nonrenormalizable gauge theories renormalizable? Nucl. Phys. B 469(3), 473–487 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Hack, T.-P.: On the backreaction of scalar and spinor quantum fields in curved spacetimes. Hamburg University, Thesis (2010)

    Google Scholar 

  19. Hack, T.-P.: Quantization of the linearized Einstein-Klein-Gordon system on arbitrary backgrounds and the special case of perturbations in inflation. Class. Quantum Gravity 31(21), 215004 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Hack, T.-P.: Cosmological Applications of Algebraic Quantum Field Theory in Curved Spacetimes. Springer, Berlin (2015)

    MATH  Google Scholar 

  21. Hervik, S., Coley, A.: Curvature operators and scalar curvature invariants. Class. Quantum Gravity 27(9), 095014 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Hollands, S., Wald, R.M.: Conservation of the stress tensor in perturbative interacting quantum field theory in curved spacetimes. Rev. Math. Phys. 17(03), 227–311 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rejzner, K.: Batalin–Vilkovisky formalism in locally covariant field theory. Ph.D. thesis (2011). arXiv:1111.5130v1 [math-ph]

  24. Reuter, M.: Nonperturbative evolution equation for quantum gravity. Phys. Rev. D 57(2), 971 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  25. Reuter, M., Saueressig, F.: Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation. Phys. Rev. D 65(6), 065016 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  26. Rovelli, C.: Partial observables. Phys. Rev. D 65(12), 124013 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  27. Sahlmann, H., Verch, R.: Microlocal spectrum condition and hadamard form for vector-valued quantum fields in curved spacetime, pp. 1–42 (2000). arXiv.org [math-ph]

  28. Thiemann, T.: Reduced phase space quantization and Dirac observables. Class. Quantum Gravity 23(4), 1163 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Weinberg, S.: Ultraviolet divergences in quantum theories of gravitation (1979)

    Google Scholar 

  30. Wetterich, C.: Exact evolution equation for the effective potential. Phys. Lett. B 301(1), 90–94 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasia Rejzner .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Rejzner, K. (2016). Effective Quantum Gravity. In: Perturbative Algebraic Quantum Field Theory. Mathematical Physics Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-25901-7_8

Download citation

Publish with us

Policies and ethics