Skip to main content

Endothelium, the Blood–Brain Barrier, and Hypertension

  • Chapter
  • First Online:
Hypertension and the Brain as an End-Organ Target

Abstract

This chapter summarizes concepts regarding the effects of hypertension on the cerebral circulation. In relation to end-organ effects, the brain is one of the organs most significantly affected by chronic elevations in arterial pressure. Hypertension is a leading risk factor for cerebrovascular disease, stroke, and cognitive decline. Endothelial cells are a target of hypertension. These cells are normally key determinants of vascular tone, while also protecting against thrombosis and abnormal vascular growth. The impact of acute and chronic hypertension is outlined with emphasis on changes in the biology of the signaling molecule nitric oxide and the role that oxidative stress plays in these changes. The importance of NADPH oxidase and other mechanisms that promote oxidative stress are presented. As part of the discussion, there is an overview regarding vascular alterations in various genetic and pharmacological models of hypertension. Effects of the renin-angiotensin system and angiotensin-II are highlighted. Endothelial cells are also the site of the blood–brain barrier (BBB). The molecular organization of the BBB is summarized along with key changes that occur in response to acute and chronic hypertension. Lastly, the clinical impact of these changes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation. 2013;127:e6–245.

    Article  PubMed  Google Scholar 

  2. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, et al. Heart disease and stroke statistics—2011 update. Circulation. 2011;123:e18–209.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2224–60.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Collaboration PS. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–13.

    Article  PubMed  Google Scholar 

  5. O’Donnell MJ, Xavier D, Liu L, Zhang H, Chin SL, Rao-Melacini P, et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE Study): a case-control study. Lancet. 2010;376:112–23.

    Article  PubMed  Google Scholar 

  6. Gorelick PB, Scuteri A, Black SE, DeCarli C, Greenberg SM, Iadecola C, et al. Vascular contributions to cognitive impairment and dementia. Stroke. 2011;42:2672–713.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Faraco G, Iadecola C. Hypertension: a harbinger of stroke and dementia. Hypertension. 2013;62:810–7.

    Article  CAS  PubMed  Google Scholar 

  8. Capone C, Faraco G, Anrather J, Zhou P, Iadecola C. Cyclooxygenase 1-derived prostaglandin E2 and EP1 receptors are required for the cerebrovascular dysfunction induced by angiotensin II. Hypertension. 2010;55:911–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Girouard H, Park L, Anrather J, Zhou P, Iadecola C. Angiotensin II attenuates endothelium-dependent responses in the cerebral microcirculation through Nox-2-derived radicals. Arterioscler Thromb Vasc Biol. 2006;26:826–32.

    Article  CAS  PubMed  Google Scholar 

  10. Kazama K, Wang G, Frys K, Anrather J, Iadecola C. Angiotensin II attenuates functional hyperemia in the mouse somatosensory cortex. Am J Physiol Heart Circ Physiol. 2003;285:H1890–9.

    Article  CAS  PubMed  Google Scholar 

  11. Faraci FM. Protecting against vascular disease in brain. Am J Physiol Heart Circ Physiol. 2011;300:H1566–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stoica AL, Stoica E, Constantinescu I, Uscatescu V, Ginghina C. Interleukin-6 and interleukin-10 gene polymorphism, endothelial dysfunction, and postoperative prognosis in patients with peripheral arterial disease. J Vasc Surg. 2010;52:103–9.

    Article  PubMed  Google Scholar 

  13. Lentz SR. Mechanisms of homocysteine-induced atherothrombosis. J Thromb Haemost. 2005;3:1646–54.

    Article  CAS  PubMed  Google Scholar 

  14. Neuwelt EA. Mechanisms of disease: the blood-brain barrier. Neurosurgery. 2004;54:131–40.

    Article  PubMed  Google Scholar 

  15. Dharmashankar K, Welsh A, Wang J, Kizhakekuttu TJ, Ying R, Gutterman DD, et al. Nitric oxide synthase-dependent vasodilation of human subcutaneous arterioles correlates with noninvasive measurements of endothelial function. Am J Hypertens. 2012;25:528–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ganz P, Vita JA. Testing endothelial vasomotor function: nitric oxide, a multipotent molecule. Circulation. 2003;108:2049–53.

    Article  PubMed  Google Scholar 

  17. Faraci FM, Heistad DD. Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol Rev. 1998;78:53–97.

    CAS  PubMed  Google Scholar 

  18. Volpe M, Iaccarino G, Vecchione C, Rizzoni D, Russo R, Rubattu S, et al. Association and cosegregation of stroke with impaired endothelium-dependent vasorelaxation in stroke prone, spontaneously hypertensive rats. J Clin Invest. 1996;98:256–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988;332:411–5.

    Article  CAS  PubMed  Google Scholar 

  20. Barton M. The discovery of endothelium-dependent contraction: the legacy of Paul M. Vanhoutte. Pharmacol Res. 2011;63:455–62.

    Article  CAS  PubMed  Google Scholar 

  21. Vanhoutte PM. Inhibition by acetylcholine of adrenergic neurotransmission in vascular smooth muscle. Circ Res. 1974;34:317–26.

    Article  CAS  PubMed  Google Scholar 

  22. Garland CJ, Hiley CR, Dora KA. EDHF: spreading the influence of the endothelium. Br J Pharmacol. 2011;164:839–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Takaki A, Morikawa K, Murayama Y, Yamagishi H, Hosoya M, Ohashi J, et al. Roles of endothelial oxidases in endothelium-derived hyperpolarizing factor responses in mice. J Cardiovasc Pharmacol. 2008;52:510–7.

    Article  CAS  PubMed  Google Scholar 

  24. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: Structure, function and inhibition. Biochem J. 2001;357:593–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Michel T, Feron O. Nitric oxide synthases: which, where, how, and why? J Clin Invest. 1997;100:2146–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Perrotta I, Brunelli E, Sciangula A, Conforti F, Perrotta E, Tripepi S, et al. iNOS induction and PARP-1 activation in human atherosclerotic lesions: an immunohistochemical and ultrastructural approach. Cardiovasc Pathol. 2010;20:195–203.

    Article  PubMed  CAS  Google Scholar 

  27. Daneshtalab N, Smeda JS. Alterations in the modulation of cerebrovascular tone and blood flow by nitric oxide synthases in SHRsp with stroke. Cardiovasc Res. 2010;86:160–8.

    Article  CAS  PubMed  Google Scholar 

  28. Panayiotou CM, Baliga R, Stidwill R, Taylor V, Singer M, Hobbs AJ. Resistance to endotoxic shock in mice lacking natriuretic peptide receptor-A. Br J Pharmacol. 2010;160:2045–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991;43:109–42.

    CAS  PubMed  Google Scholar 

  30. Andrew PJ, Mayer B. Enzymatic function of nitric oxide synthases. Cardiovasc Res. 1999;43:521–31.

    Article  CAS  PubMed  Google Scholar 

  31. Feil R, Lohmann SM, de Jonge H, Walter U, Hofmann F. Cyclic GMP-dependent protein kinases and the cardiovascular system: insights from genetically modified mice. Circ Res. 2003;93:907–16.

    Article  CAS  PubMed  Google Scholar 

  32. Conti M, Beavo J. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem. 2007;76:481–511.

    Article  CAS  PubMed  Google Scholar 

  33. Didion SP, Heistad DD, Faraci FM. Mechanisms that produce nitric oxide-mediated relaxation of cerebral arteries during atherosclerosis. Stroke. 2001;32:761–6.

    Article  CAS  PubMed  Google Scholar 

  34. Bai N, Moien-Afshari F, Washio H, Min A, Laher I. Pharmacology of the mouse-isolated cerebral artery. Vasc Pharmacol. 2004;41:97–106.

    Article  CAS  Google Scholar 

  35. Sobey CG, Faraci FM. Effects of a novel inhibitor of guanylyl cyclase on dilator responses of mouse cerebral arterioles. Stroke. 1997;28:837–43.

    Article  CAS  PubMed  Google Scholar 

  36. Dietrich HH, Kimura M, Dacey Jr RG. N omega-nitro-L-arginine constricts cerebral arterioles without increasing intracellular calcium levels. Am J Physiol Heart Circ Physiol. 1994;266:H1681–6.

    CAS  Google Scholar 

  37. Cipolla MJ, Bullinger LV. Reactivity of brain parenchymal arterioles after ischemia and reperfusion. Microcirculation. 2008;15:495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yamashiro K, Milsom AB, Duchene J, Panayiotou C, Urabe T, Hattori N, et al. Alterations in nitric oxide and endothelin-1 bioactivity underlie cerebrovascular dysfunction in ApoE-deficient mice. J Cereb Blood Flow Metab. 2010;30:1494–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Faraci FM. Role of nitric oxide in regulation of basilar artery tone in vivo. Am J Physiol Heart Circ Physiol. 1990;259:H1216–21.

    CAS  Google Scholar 

  40. Iadecola C, Li J, Ebner TJ, Xu X. Nitric oxide contributes to functional hyperemia in cerebellar cortex. Am J Physiol. 1995;268:R1153–62.

    CAS  PubMed  Google Scholar 

  41. McPherson RW, Kirsch JR, Ghaly RF, Traystman RJ. Effect of nitric oxide synthase inhibition on the cerebral vascular response to hypercapnia in primates. Stroke. 1995;26:682–7.

    Article  CAS  PubMed  Google Scholar 

  42. Faraci FM, Sobey CG. Role of potassium channels in regulation of cerebral vascular tone. J Cereb Blood Flow Metab. 1998;18:1047–63.

    Article  CAS  PubMed  Google Scholar 

  43. Osuka K, Watanabe Y, Yasuda M, Takayasu M. Adiponectin activates endothelial nitric oxide synthase through AMPK signaling after subarachnoid hemorrhage. Neurosci Lett. 2012;514:2–5.

    Article  CAS  PubMed  Google Scholar 

  44. Yamada M, Lamping KG, Duttaroy A, Zhang W, Cui Y, Bymaster FP, et al. Cholinergic dilation of cerebral blood vessels is abolished in M5 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci U S A. 2001;98:14096–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen BR, Kozberg MG, Bouchard MB, Shaik MA, Hillman EM. A critical role for the vascular endothelium in functional neurovascular coupling in the brain. J Am Heart Assoc. 2014;3:s.

    Google Scholar 

  46. Stobart JLL, Lu L, Anderson HDI, Mori H, Anderson CM. Astrocyte-induced cortical vasodilation is mediated by D-serine and endothelial nitric oxide synthase. Proc Natl Acad Sci U S A. 2013;110:3149–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Baumbach GL, Sigmund CD, Faraci FM. Structure of cerebral arterioles in mice deficient in expression of the gene for endothelial nitric oxide synthase. Circ Res. 2004;95:822–9.

    Article  CAS  PubMed  Google Scholar 

  48. Dai X, Faber JE. Endothelial nitric oxide synthase deficiency causes collateral vessel rarefaction and impairs activation of a cell cycle gene network during arteriogenesis. Circ Res. 2010;106:1870–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bermejo E, Saenz DA, Alberto F, Rosenstein RE, Bari SE, Lazzari MA. Effect of nitroxyl on human platelets function. Thromb Haemost. 2005;94:578–84.

    CAS  PubMed  Google Scholar 

  50. Mondoro TH, Ryan BB, Hrinczenko BW, Schechter AN, Vostal JG, Alayash AI. Biological action of nitric oxide donor compounds on platelets from patients with sickle cell disease. Br J Haematol. 2001;112:1048–54.

    Article  CAS  PubMed  Google Scholar 

  51. Katusic ZS, Austin SA. Endothelial nitric oxide: protector of a healthy mind. Eur Heart J. 2014;35:888–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.

    Article  PubMed  Google Scholar 

  53. Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33:829–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Chen AF, Chen D-D, Daiber A, Faraci FM, Li H, Rembold CM, et al. Free radical biology of the cardiovascular system. Clin Sci. 2012;123:73–91.

    Article  CAS  PubMed  Google Scholar 

  55. Touyz RM, Briones AM. Reactive oxygen species and vascular biology: implications in human hypertension. Hypertens Res. 2011;34:5–14.

    Article  CAS  PubMed  Google Scholar 

  56. Narayanan D, Xi Q, Pfeffer LM, Jaggar JH. Mitochondria control functional CaV1.2 expression in smooth muscle cells of cerebral arteries. Circ Res. 2010;107:631–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kinugawa S, Huang H, Wang Z, Kaminski PM, Wolin MS, Hintze TH. A defect of neuronal nitric oxide synthase increases xanthine oxidase-derived superoxide anion and attenuates the control of myocardial oxygen consumption by nitric oxide derived from endothelial nitric oxide synthase. Circ Res. 2005;96:355–62.

    Article  CAS  PubMed  Google Scholar 

  58. Niwa K, Haensel C, Ross ME, Iadecola C. Cyclooxygenase-1 participates in selected vasodilator responses of the cerebral circulation. Circ Res. 2001;88:600–8.

    Article  CAS  PubMed  Google Scholar 

  59. Didion S, Hathaway C, Faraci F. Superoxide levels and function of cerebral blood vessels after inhibition of CuZn-SOD. Am J Physiol Heart Circ Physiol. 2001;281:H1697–703.

    CAS  PubMed  Google Scholar 

  60. Drummond GR, Selemidis S, Griendling KK, Sobey CG. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov. 2011;10:453–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Miller AA, De Silva TM, Judkins CP, Diep H, Drummond GR, Sobey CG. Augmented superoxide production by Nox2-containing NADPH oxidase causes cerebral artery dysfunction during hypercholesterolemia. Stroke. 2010;41:784–9.

    Article  CAS  PubMed  Google Scholar 

  62. Selemidis S, Sobey CG, Wingler K, Schmidt HH, Drummond GR. NADPH oxidases in the vasculature: molecular features, roles in disease and pharmacological inhibition. Pharmacol Ther. 2008;120:254–91.

    Article  CAS  PubMed  Google Scholar 

  63. Heistad DD, Wakisaka Y, Miller J, Chu Y, Pena-Silva R. Novel aspects of oxidative stress in cardiovascular diseases. Circ J. 2009;73:201–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Faraci FM, Didion SP. Vascular protection: superoxide dismutase isoforms in the vessel wall. Arterioscler Thromb Vac Biol. 2004;24:1367–73.

    Article  CAS  Google Scholar 

  65. Du J, Cullen JJ, Buettner GR. Ascorbic acid: chemistry, biology and the treatment of cancer. Biochim Biophys Acta. 2012;1826:443–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Buettner GR, Wagner BA, Rodgers VG. Quantitative redox biology: an approach to understand the role of reactive species in defining the cellular redox environment. Cell Biochem Biophys. 2013;67:477–83.

    Article  CAS  PubMed  Google Scholar 

  67. Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med. 2001;30:1191–212.

    Article  CAS  PubMed  Google Scholar 

  68. Santhanam AVR, d’Uscio LV, Smith LA, Katusic ZS. Uncoupling of eNOS causes superoxide anion production and impairs NO signaling in the cerebral microvessels of hph-1 mice. J Neurochem. 2012;122:1211–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Girouard H, Park L, Anrather J, Zhou P, Iadecola C. Cerebrovascular nitrosative stress mediates neurovascular and endothelial dysfunction induced by angiotensin II. Arterioscler Thromb Vasc Biol. 2007;27:303–9.

    Article  CAS  PubMed  Google Scholar 

  70. Ferrer-Sueta G, Radi R. Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. ACS Chem Biol. 2009;4:161–77.

    Article  CAS  PubMed  Google Scholar 

  71. Thomson L, Trujillo M, Telleri R, Radi R. Kinetics of cytochrome C2+ oxidation by peroxynitrite: implications for superoxide measurements in nitric oxide-producing biological systems. Arch Biochem Biophys. 1995;319:491–7.

    Article  CAS  PubMed  Google Scholar 

  72. De Silva TM, Broughton BRS, Drummond GR, Sobey CG, Miller AA. Gender influences cerebral vascular responses to angiotensin II through Nox2-derived reactive oxygen species. Stroke. 2009;40:1091–7.

    Article  PubMed  CAS  Google Scholar 

  73. Kazama K, Anrather J, Zhou P, Girouard H, Frys K, Milner TA, et al. Angiotensin II impairs neurovascular coupling in neocortex through NADPH oxidase-derived radicals. Circ Res. 2004;95:1019–26.

    Article  CAS  PubMed  Google Scholar 

  74. Miller A, Drummond G, Schmidt H, Sobey C. NADPH oxidase activity and function are profoundly greater in cerebral versus systemic arteries. Circ Res. 2005;97:1055–62.

    Article  CAS  PubMed  Google Scholar 

  75. Chan SL, Baumbach GL. Deficiency of Nox2 prevents angiotensin II-induced inward remodeling in cerebral arterioles. Front Physiol. 2013;4:133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chrissobolis S, Faraci FM. Sex differences in protection against angiotensin II-induced endothelial dysfunction by manganese superoxide dismutase in the cerebral circulation. Hypertension. 2010;55:905–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gerzanich V, Ivanova S, Zhou H, Simard JM. Mislocalization of eNOS and upregulation of cerebral vascular Ca2+ channel activity in angiotensin-hypertension. Hypertension. 2003;41:1124–30.

    Article  CAS  PubMed  Google Scholar 

  78. Chrissobolis S, Banfi B, Sobey CG, Faraci FM. Role of Nox isoforms in angiotensin II-induced oxidative stress and endothelial dysfunction in brain. J Appl Physiol. 2012;113:184–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Faraci FM, Lamping KG, Modrick ML, Ryan MJ, Sigmund CD, Didion SP. Cerebral vascular effects of angiotensin II: new insights from genetic models. J Cereb Blood Flow Metab. 2006;26:449–55.

    Article  CAS  PubMed  Google Scholar 

  80. Capone C, Faraco G, Peterson JR, Coleman C, Anrather J, Milner TA, et al. Central cardiovascular circuits contribute to the neurovascular dysfunction in angiotensin II hypertension. J Neurosci. 2012;32:4878–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Johnson AW, Kinzenbaw DA, Modrick ML, Faraci FM. Small-molecule inhibitors of signal transducer and activator of transcription 3 protect against angiotensin II–induced vascular dysfunction and hypertension. Hypertension. 2013;61:437–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Capone C, Faraco G, Park L, Cao X, Davisson RL, Iadecola C. The cerebrovascular dysfunction induced by slow pressor doses of angiotensin II precedes the development of hypertension. Am J Physiol Heart Circ Physiol. 2011;300:H397–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Girouard H, Lessard A, Capone C, Milner TA, Iadecola C. The neurovascular dysfunction induced by angiotensin II in the mouse neocortex is sexually dimorphic. Am J Physiol Heart Circ Physiol. 2008;294:H156–63.

    Article  CAS  PubMed  Google Scholar 

  84. Kitayama J, Yi C, Faraci FM, Heistad DD. Modulation of dilator responses of cerebral arterioles by extracellular superoxide dismutase. Stroke. 2006;37:2802–6.

    Article  PubMed  Google Scholar 

  85. Baumbach GL, Sigmund CD, Faraci FM. Cerebral arteriolar structure in mice overexpressing human renin and angiotensinogen. Hypertension. 2003;41:50–5.

    Article  CAS  PubMed  Google Scholar 

  86. Yemane H, Busauskas M, Burris SK, Knuepfer MM. Neurohumoral mechanisms in deoxycorticosterone acetate (DOCA)-salt hypertension in rats. Exp Physiol. 2010;95:51–5.

    Article  CAS  PubMed  Google Scholar 

  87. Schenk J, McNeill JH. The pathogenesis of DOCA-salt hypertension. J Pharmacol Toxicol Meth. 1992;27:161–70.

    Article  CAS  Google Scholar 

  88. Grobe JL, Grobe CL, Beltz TG, Westphal SG, Morgan DA, Xu D, et al. The brain renin-angiotensin system controls divergent efferent mechanisms to regulate fluid and energy balance. Cell Metab. 2010;12:431–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Toque HA, Nunes KP, Rojas M, Bhatta A, Yao L, Xu Z, et al. Arginase 1 mediates increased blood pressure and contributes to vascular endothelial dysfunction in deoxycorticosterone acetate-salt hypertension. Front Immunol. 2013;4:219.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Somers MJ, Mavromatis K, Galis ZS, Harrison DG. Vascular superoxide production and vasomotor function in hypertension induced by deoxycorticosterone acetate-salt. Circulation. 2000;101:1722–8.

    Article  CAS  PubMed  Google Scholar 

  91. Li L, Fink GD, Watts SW, Northcott CA, Galligan JJ, Pagano PJ, et al. Endothelin-1 increases vascular superoxide via endothelin-NADPH oxidase pathway in low-renin hypertension. Circulation. 2003;107:1053–8.

    Article  CAS  PubMed  Google Scholar 

  92. Viel EC, Benkirane K, Javeshghani D, Touyz RM, Schiffrin EL. Xanthine oxidase and mitochondria contribute to vascular superoxide anion generation in DOCA-salt hypertensive rats. Am J Physiol Heart Circ Physiol. 2008;295:H281–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Soltis EE, Bohr DF. Cerebral vascular responsiveness in deoxycorticosterone acetate-salt hypertensive rats. Am J Physiol. 1987;252:H198–203.

    CAS  PubMed  Google Scholar 

  94. De Silva TM, Lynch CM, Grobe JL, Faraci FM. Activation of the central renin angiotensin system (RAS) causes selective cerebrovascular dysfunction (Abstract). FASEB J. 2015;29:646.4.

    Google Scholar 

  95. Kajikawa M, Noma K, Maruhashi T, Mikami S, Iwamoto Y, Iwamoto A, et al. Rho-associated kinase activity is a predictor of cardiovascular outcomes. Hypertension. 2014;63:856–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mayhan WG. Impairment of endothelium-dependent dilatation of basilar artery during chronic hypertension. Am J Physiol. 1990;259:H1455–62.

    CAS  PubMed  Google Scholar 

  97. Kitazono T, Heistad DD, Faraci FM. Enhanced responses of the basilar artery to activation of endothelin-B receptors in stroke-prone spontaneously hypertensive rats. Hypertension. 1995;25:490–4.

    Article  CAS  PubMed  Google Scholar 

  98. Mayhan WG. Role of prostaglandin H2-thromboxane A2 in responses of cerebral arterioles during chronic hypertension. Am J Physiol. 1992;262:H539–43.

    CAS  PubMed  Google Scholar 

  99. Mayhan WG, Faraci FM, Heistad DD. Impairment of endothelium-dependent responses of cerebral arterioles in chronic hypertension. Am J Physiol. 1987;253:H1435–40.

    CAS  PubMed  Google Scholar 

  100. Mayhan WG, Faraci FM, Heistad DD. Responses of cerebral arterioles to adenosine 5′-diphosphate, serotonin, and the thromboxane analogue U-46619 during chronic hypertension. Hypertension. 1988;12:556–61.

    Article  CAS  PubMed  Google Scholar 

  101. Yang ST, Faraci FM, Heistad DD. Effects of cilazapril on cerebral vasodilatation in hypertensive rats. Hypertension. 1993;22:150–5.

    Article  CAS  PubMed  Google Scholar 

  102. Yang ST, Mayhan WG, Faraci FM, Heistad DD. Endothelium-dependent responses of cerebral blood vessels during chronic hypertension. Hypertension. 1991;17:612–8.

    Article  CAS  PubMed  Google Scholar 

  103. Riedel MW, Anneser F, Haberl RL. Different mechanisms of l-arginine induced dilation of brain arterioles in normotensive and hypertensive rats. Brain Res. 1995;671:21–6.

    Article  CAS  PubMed  Google Scholar 

  104. Kitazono T, Faraci FM, Heistad DD. L-Arginine restores dilator responses of the basilar artery to acetylcholine during chronic hypertension. Hypertension. 1996;27:893–6.

    Article  CAS  PubMed  Google Scholar 

  105. Toth P, Csiszar A, Sosnowska D, Tucsek Z, Cseplo P, Springo Z, et al. Treatment with the cytochrome P450 ω-hydroxylase inhibitor HET0016 attenuates cerebrovascular inflammation, oxidative stress and improves vasomotor function in spontaneously hypertensive rats. Br J Pharmacol. 2013;168:1878–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pires PW, Girgla SS, McClain JL, Kaminski NE, van Rooijen N, Dorrance AM. Improvement in middle cerebral artery structure and endothelial function in stroke-prone spontaneously hypertensive rats after macrophage depletion. Microcirculation. 2013;20:650–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ge T, Hughes H, Junquero DC, Wu KK, Vanhoutte PM, Boulanger CM. Endothelium-dependent contractions are associated with both augmented expression of prostaglandin H synthase-1 and hypersensitivity to prostaglandin H2 in the SHR aorta. Circ Res. 1995;76:1003–10.

    Article  CAS  PubMed  Google Scholar 

  108. Virdis A, Ghiadoni L, Taddei S. Human endothelial dysfunction: EDCFs. Pflugers Arch. 2010;459:1015–23.

    Article  CAS  PubMed  Google Scholar 

  109. Saunders NR, Habgood MD, Dziegielewska KM. Barrier mechanisms in the brain, I. Adult brain. Clin Exp Pharmacol Physiol. 1999;26:11–9.

    Article  CAS  PubMed  Google Scholar 

  110. Bechmann I, Galea I, Perry VH. What is the blood-brain barrier (not)? Trends Immunol. 2007;28:5–11.

    Article  CAS  PubMed  Google Scholar 

  111. Daneman R. The blood-brain barrier in health and disease. Ann Neurol. 2012;72:648–72.

    Article  CAS  PubMed  Google Scholar 

  112. Nag S, Kapadia A, Stewart DJ. Review: molecular pathogenesis of blood-brain barrier breakdown in acute brain injury. Neuropathol Appl Neurobiol. 2011;37:3–23.

    Article  CAS  PubMed  Google Scholar 

  113. Weidenfeller C, Svendsen CN, Shusta EV. The blood-brain barrier. In: Aird WC, editor. Endothelial biomedicine. Cambridge: Cambridge University Press; 2007. p. 1124–39.

    Chapter  Google Scholar 

  114. Lippmann ES, Weidenfeller C, Svendsen CN, Shusta EV. Blood-brain barrier modeling with co-cultured neural progenitor cell-derived astrocytes and neurons. J Neurochem. 2011;119:507–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zehendner CM, Luhmann HJ, Kuhlmann CR. Studying the neurovascular unit: an improved blood-brain barrier model. J Cereb Blood Flow Metab. 2009;29:1879–84.

    Article  PubMed  Google Scholar 

  116. Shayan G, Choi YS, Shusta EV, Shuler ML, Lee KH. Murine in vitro model of the blood-brain barrier for evaluating drug transport. Eur J Pharm Sci. 2011;42:148–55.

    Article  CAS  PubMed  Google Scholar 

  117. Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature. 2010;468:562–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ribatti D, Nico B, Crivellato E, Artico M. Development of the blood-brain barrier: a historical point of view. Anatomical Record Part B New Anatomist. 2006;289:3–8.

    Article  Google Scholar 

  119. Reese TS, Karnovsky MJ. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol. 1967;34:207–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nishitsuji K, Hosono T, Nakamura T, Bu G, Michikawa M. Apolipoprotein E regulates the integrity of tight junctions in an isoform-dependent manner in an in vitro blood-brain barrier model. J Biol Chem. 2011;286:17536–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yang Y, Rosenberg GA. Blood-brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke. 2011;42:3323–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Butt AM, Jones HC, Abbott NJ. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol. 1990;429:47–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Nacer A, Movila A, Baer K, Mikolajczak SA, Kappe SH, Frevert U. Neuroimmunological blood brain barrier opening in experimental cerebral malaria. PLoS Pathogens. 2012;8:e1002982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Knowland D, Arac A, Sekiguchi KJ, Hsu M, Lutz SE, Perrino J, et al. Stepwise recruitment of transcellular and paracellular pathways underlies blood-brain barrier breakdown in stroke. Neuron. 2014;82:603–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ueno M, Wu B, Nishiyama A, Huang CL, Hosomi N, Kusaka T, et al. The expression of matrix metalloproteinase-13 is increased in vessels with blood-brain barrier impairment in a stroke-prone hypertensive model. Hypertens Res. 2009;32:332–8.

    Article  CAS  PubMed  Google Scholar 

  126. Lakhan SE, Kirchgessner A, Tepper D, Leonard A. Matrix metalloproteinases and blood-brain barrier disruption in acute ischemic stroke. Front Neurol. 2013;4:32.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Pons M, Cousins SW, Alcazar O, Striker GE, Marin-Castano ME. Angiotensin II-induced MMP-2 activity and MMP-14 and basigin protein expression are mediated via the angiotensin II receptor type 1-mitogen-activated protein kinase 1 pathway in retinal pigment epithelium: implications for age-related macular degeneration. Am J Pathol. 2011;178:2665–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Nakai K, Kawato T, Morita T, Iinuma T, Kamio N, Zhao N, et al. Angiotensin II induces the production of MMP-3 and MMP-13 through the MAPK signaling pathways via the AT1 receptor in osteoblasts. Biochimie. 2013;95:922–33.

    Article  CAS  PubMed  Google Scholar 

  129. Odenbach J, Wang X, Cooper S, Chow FL, Oka T, Lopaschuk G, et al. MMP-2 mediates angiotensin II-induced hypertension under the transcriptional control of MMP-7 and TACE. Hypertension. 2011;57:123–30.

    Article  CAS  PubMed  Google Scholar 

  130. Walter A, Etienne-Selloum N, Sarr M, Kane MO, Beretz A, Schini-Kerth VB. Angiotensin II induces the vascular expression of VEGF and MMP-2 in vivo: preventive effect of red wine polyphenols. J Vasc Res. 2008;45:386–94.

    Article  CAS  PubMed  Google Scholar 

  131. Wakisaka Y, Chu Y, Miller JD, Rosenberg GA. Spontaneous intracerebral hemorrhage during acute and chronic hypertension in mice. J Cereb Blood Flow Metab. 2009;30:56–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Johansson BB. Experimental models of altering the blood-brain barrier. Prog Brain Res. 1992;91:171–5.

    Article  CAS  PubMed  Google Scholar 

  133. Reynolds MR, Willie JT, Zipfel GJ, Dacey RG. Sexual intercourse and cerebral aneurysmal rupture: potential mechanisms and precipitants. J Neurosurg. 2011;114:969–77.

    Article  PubMed  Google Scholar 

  134. MacDougall JD, Tuxen D, Sale DG, Moroz JR, Sutton JR. Arterial blood pressure response to heavy resistance exercise. J Appl Physiol. 1985;58:785–90.

    CAS  PubMed  Google Scholar 

  135. Vaughan CJ, Delanty N. Hypertensive emergencies. Lancet. 2000;356:411–7.

    Article  CAS  PubMed  Google Scholar 

  136. Heistad DD, Faraci FM, Talman WT. Pathogenesis of acute hypertensive encephalopathy. In: Izzo JL, Sica DA, Black HR, editors. Hypertension primer. Philadelphia: Lippincott Williams & Wilkins; 2008. p. 217–9.

    Google Scholar 

  137. Qi X, Inagaki K, Sobel RA, Mochly-Rosen D. Sustained pharmacological inhibition of deltaPKC protects against hypertensive encephalopathy through prevention of blood-brain barrier breakdown in rats. J Clin Invest. 2008;118:173–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhang XM, Ellis EF. Superoxide dismutase reduces permeability and edema induced by hypertension in rats. Am J Physiol. 1990;259:H497–503.

    CAS  PubMed  Google Scholar 

  139. Mohammadi MT, Dehghani GA. Acute hypertension induces brain injury and blood-brain barrier disruption through reduction of claudins mRNA expression in rat. Pathol Res Pract. 2014;210:985–90. doi:10.1016/j.prp.2014.05.007.

    Article  CAS  PubMed  Google Scholar 

  140. Baumbach GL, Heistad DD. Heterogeneity of brain blood flow and permeability during acute hypertension. Am J Physiol. 1985;249:H629–37.

    CAS  PubMed  Google Scholar 

  141. Mayhan WG, Faraci FM, Heistad DD. Disruption of the blood-brain barrier in cerebrum and brain stem during acute hypertension. Am J Physiol. 1986;251:H1171–5.

    CAS  PubMed  Google Scholar 

  142. Mayhan WG, Faraci FM, Heistad DD. Mechanisms of protection of the blood-brain barrier during acute hypertension in chronically hypertensive rats. Hypertension. 1987;9:III101–5.

    Article  CAS  PubMed  Google Scholar 

  143. Mayhan WG, Heistad DD. Role of veins and cerebral venous pressure in disruption of the blood-brain barrier. Circ Res. 1986;59:216–20.

    Article  CAS  PubMed  Google Scholar 

  144. Ueno M, Sakamoto H, Liao YJ, Onodera M, Huang CL, Miyanaka H, et al. Blood-brain barrier disruption in the hypothalamus of young adult spontaneously hypertensive rats. Histochem Cell Biol. 2004;122:131–7.

    Article  CAS  PubMed  Google Scholar 

  145. Biancardi VC, Son SJ, Ahmadi S, Filosa JA, Stern JE. Circulating angiotensin II gains access to the hypothalamus and brain stem during hypertension via breakdown of the blood-brain barrier. Hypertension. 2014;63:572–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Nakagawa T, Hasegawa Y, Uekawa K, Ma M, Katayama T, Sueta D, et al. Renal denervation prevents stroke and brain injury via attenuation of oxidative stress in hypertensive rats. J Am Heart Assoc. 2013;2:e000375.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Joutel A, Faraci FM. Cerebral small vessel disease: insights and opportunities from mouse models of collagen IV-related small vessel disease and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke. 2014;45:1215–21.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol. 2013;12:483–97.

    Article  PubMed  Google Scholar 

  149. Zhang M, Mao Y, Ramirez SH, Tuma RF, Chabrashvili T. Angiotensin II induced cerebral microvascular inflammation and increased blood-brain barrier permeability via oxidative stress. Neuroscience. 2010;171:852–8.

    Article  CAS  PubMed  Google Scholar 

  150. Vital SA, Terao S, Nagai M, Granger DN. Mechanisms underlying the cerebral microvascular responses to angiotensin II-induced hypertension. Microcirculation. 2010;17:641–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Toth P, Tucsek Z, Sosnowska D, Gautam T, Mitschelen M, Tarantini S, et al. Age-related autoregulatory dysfunction and cerebromicrovascular injury in mice with angiotensin II-induced hypertension. J Cereb Blood Flow Metab. 2013;33:1732–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Rosenblum WI, Donnenfeld H, Aleu F. Effects of increased blood pressure on cerebral vessels in mice. Arch Neurol. 1966;14:631–43.

    Article  CAS  PubMed  Google Scholar 

  153. Manfre L, Midiri M, Giuffre G, Mangiameli A, Cardella G, Ponte F, et al. Blood-ocular barrier damage: use of contrast-enhanced MRI. Eur Radiol. 1997;7:110–4.

    Article  CAS  PubMed  Google Scholar 

  154. Bowman GL, Kaye JA, Moore M, Waichunas D, Carlson NE, Quinn JF. Blood-brain barrier impairment in Alzheimer disease: stability and functional significance. Neurology. 2007;68:1809–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wardlaw JM, Doubal FN, Valdes-Hernandez M, Wang X, Chappell FM, Shuler K, et al. Blood-brain barrier permeability and long-term clinical and imaging outcomes in cerebral small vessel disease. Stroke. 2013;44:525–7.

    Article  PubMed  Google Scholar 

  156. Dankbaar JW, Hom J, Schneider T, Cheng SC, Lau BC, van der Schaaf I, et al. Age- and anatomy-related values of blood-brain barrier permeability measured by perfusion-CT in non-stroke patients. J Neuroradiol. 2009;36:219–27.

    Article  CAS  PubMed  Google Scholar 

  157. Akiguchi I, Tomimoto H, Suenaga T, Wakita H, Budka H. Blood-brain barrier dysfunction in Binswanger’s disease: an immunohistochemical study. Acta Neuropathol. 1998;95:78–84.

    Article  CAS  PubMed  Google Scholar 

  158. Wei EP, Kontos HA, Christman CW, DeWitt DS, Povlishock JT. Superoxide generation and reversal of acetylcholine-induced cerebral arteriolar dilation after acute hypertension. Circ Res. 1985;57:781–7.

    Article  CAS  PubMed  Google Scholar 

  159. Chan SL, Sweet JG, Cipolla MJ. Treatment for cerebral small vessel disease: effect of relaxin on the function and structure of cerebral parenchymal arterioles during hypertension. FASEB J. 2013;27:3917–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Sobey CG, Moffatt JD, Cocks TM. Evidence for selective effects of chronic hypertension on cerebral artery vasodilatation to protease-activated receptor-2 activation. Stroke. 1999;30:1933–40.

    Article  CAS  PubMed  Google Scholar 

  161. Capone C, Faraco G, Coleman C, Young CN, Pickel VM, Anrather J, et al. Endothelin 1-dependent neurovascular dysfunction in chronic intermittent hypoxia. Hypertension. 2012;60:106–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Chrissobolis S, Drummond GR, Faraci FM, Sobey CG. Chronic aldosterone administration causes Nox2-mediated increases in reactive oxygen species production and endothelial dysfunction in the cerebral circulation. J Hypertens. 2014;32:1815–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Moreau P, Takase H, Kung CF, van Rooijen MM, Schaffner T, Luscher TF. Structure and function of the rat basilar artery during chronic nitric oxide synthase inhibition. Stroke. 1995;26:1922–8.

    Article  CAS  PubMed  Google Scholar 

  164. Chan SL, Baumbach GL. Nox2 deficiency prevents hypertension-induced vascular dysfunction and hypertrophy in cerebral arterioles. Int J Hypertens. 2013;2013:793630.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

Work summarized in this chapter was supported by research grants from the National Institute of Health (HL-38901, NS-24621, HL-62984, and HL-113863), the Department of Veteran’s Affair’s (BX001399), and the Fondation Leducq (Transatlantic Network of Excellence on the Pathogenesis of Cerebral Small Vessel Disease in the Brain). TMD was the recipient of an Overseas Post-doctoral Fellowship from the National Health and Medical Research Council of Australia (1053786). RP received a North Shore University Hospital Chair of Research Award from the Brain Aneurysm Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank M. Faraci Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

De Silva, T.M., Silva, R.A.P., Faraci, F.M. (2016). Endothelium, the Blood–Brain Barrier, and Hypertension. In: Girouard, H. (eds) Hypertension and the Brain as an End-Organ Target. Springer, Cham. https://doi.org/10.1007/978-3-319-25616-0_8

Download citation

Publish with us

Policies and ethics