Skip to main content

Advertisement

Log in

Blood-brain barrier disruption in the hypothalamus of young adult spontaneously hypertensive rats

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Vascular permeability and endothelial glycocalyx were examined in young adult spontaneously hypertensive rats (SHR), stroke-prone SHR (SHRSP), and Wistar Kyoto rats (WKY) as a control, in order to determine earlier changes in the blood-brain barrier (BBB) in the hypothalamus in chronic hypertension. These rats were injected with horseradish peroxidase (HRP) as an indicator of vascular permeability. Brain slices were developed with a chromogen and further examined with cationized ferritin, a marker for evaluating glycocalyx. Staining for HRP was seen around vessels in the hypothalamus of SHR and SHRSP, but was scarce in WKY. The reaction product of HRP appeared in the abluminal pits of endothelial cells and within the basal lamina of arterioles, showing increased vascular permeability in the hypothalamus of SHR and SHRSP, whereas there were no leaky vessels in the frontal cortex of SHR and SHRSP, or in both areas of WKY. The number of cationized ferritin particles binding to the capillary endothelial cells was decreased in the hypothalamus of SHR and SHRSP, while the number decreased in the frontal cortex of SHRSP, compared with those in WKY. Cationized ferritin binding was preserved in some leaky arterioles, while it was scarce or disappeared in other leaky vessels. These findings suggest that BBB disruption occurs in the hypothalamus of 3-month-old SHR and SHRSP, and that endothelial glycocalyx is markedly damaged there without a close relationship to the early changes in the BBB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–C
Fig. 2A–F
Fig. 3
Fig. 4A–F

Similar content being viewed by others

References

  • Amano S (1977) Vascular changes in the brain of spontaneously hypertensive rats: hyaline and fibrinoid degeneration. J Pathol 121:119–128

    CAS  PubMed  Google Scholar 

  • Amenta F, Di Tullio MA, Tomassoni D (2003) Arterial hypertension and brain damage: evidence from animal models (review). Clin Exp Hypertens 25:359–380

    Article  PubMed  Google Scholar 

  • Carlson SH, Roysomutti S, Peng N, Wyss JM (2001) The role of the central nervous system in NaCl-sensitive hypertension in spontaneously hypertensive rats. Am J Hypertens 14:155–162

    Article  PubMed  Google Scholar 

  • Cervos-Navarro J, Artigas J, Mrsulja BJ (1983) Morphofunctional aspects of the normal and pathological blood-brain barrier. Acta Neuropathol 8:1–19

    CAS  Google Scholar 

  • Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC, Schedl A, Haller H, Kurzchalia TV (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293:2449–2452

    Article  PubMed  Google Scholar 

  • Fredriksson K, Auer RN, Kalimo H, Nordborg C, Olsson Y, Johansson BB (1985) Cerebrovascular lesions in stroke-prone spontaneously hypertensive rats. Acta Neuropathol 68:284–294

    CAS  PubMed  Google Scholar 

  • Fredriksson K, Kalimo H, Westergren I, Kahrstrom J, Johansson BB (1987) Blood-brain barrier leakage and brain edema in the stroke-prone spontaneously hypertensive rats. Acta Neuropathol 74:259–268

    CAS  PubMed  Google Scholar 

  • Fredriksson K, Nordborg C, Kalimo H, Olsson Y, Johansson BB (1988a) Cerebral microangiopathy in stroke-prone spontaneously hypertensive rats. An immunohistochemical and ultrastructural study. Acta Neuropathol 75:241–252

    CAS  PubMed  Google Scholar 

  • Fredriksson K, Kalimo H, Nordborg C, Olsson Y, Johansson BB (1988b) Cyst formation and glial response in the brain lesions of stroke-prone spontaneously hypertensive rats. Acta Neuropathol 76:441–450

    CAS  PubMed  Google Scholar 

  • Fukushima M (1968) Histometric and histochemical studies of the hypothalamo-hypophyseal neurosecretory system of spontaneously hypertensive rats and rats with experimental hypertension. Jpn Circ J 32:485–516

    CAS  PubMed  Google Scholar 

  • Hachinski VC, Potter P, Merskey H (1987) Leuko-araiosis. Arch Neurol 44:21–23

    CAS  PubMed  Google Scholar 

  • Hazama F, Amano S, Haebara H, Okamoto K (1975) Changes in vascular permeability in the brain of stroke-prone spontaneously hypertensive rats studied with peroxidase as a tracer. Acta Pathol Jpn 25:565–574

    CAS  PubMed  Google Scholar 

  • Horn EM, Shonis CA, Holzwarth MA, Waldrop TG (1998) Decrease in glutamic acid decarboxylase level in the hypothalamus of spontaneously hypertensive rats. J Hypertens 16:625–633

    Article  CAS  PubMed  Google Scholar 

  • Johansson BB (1980) The blood-brain barrier in acute and chronic hypertension. Adv Exp Med Biol 131:211–226

    CAS  PubMed  Google Scholar 

  • Knox CA, Yates RD, Chen I-L, Klara PM (1980) Effects of aging on the structural and permeability characteristics of cerebrovasculature in normotensive and hypertensive strains of rats. Acta Neuropathol 51:1–13

    CAS  PubMed  Google Scholar 

  • Kramer JM, Plowey ED, Beatty JA, Little HR, Waldrop TG (2000) Hypothalamus, hypertension, and exercise. Brain Res Bull 53:77–85

    Article  CAS  PubMed  Google Scholar 

  • Lindner JR, Ismail S, Spotnitz WD, Skyba DM, Jayaweera AR, Kaul S (1998) Albumin microbubble persistence during myocardial contrast echocardiography is associated with microvascular endothelial glycocalyx damage. Circulation 98:2187–2194

    CAS  PubMed  Google Scholar 

  • Mesulam M-M (1978) Tetramethylbenzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction-product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem 26:106–117

    CAS  PubMed  Google Scholar 

  • Mueller SM (1982) The blood-brain barrier in young spontaneously hypertensive rats. Acta Neurol Scand 65:623–628

    CAS  PubMed  Google Scholar 

  • Nag S (1984) Cerebral endothelial surface charge in hypertension. Acta Neuropathol 63:276–281

    CAS  PubMed  Google Scholar 

  • Ogata J, Fujishima M, Tamaki K, Nakatomi Y, Ishitsuka T, Omae T (1981) Vascular changes underlying cerebral lesions in stroke-prone spontaneously hypertensive rats. Acta Neuropathol 54:183–188

    CAS  PubMed  Google Scholar 

  • Okamoto K, Aoki K (1963) Development of a strain of spontaneously hypertensive rats. Jpn Circ J 27:282–293

    CAS  PubMed  Google Scholar 

  • Okamoto K, Yamori Y, Nagaoka A (1974) Establishment of the stroke-prone spontaneously hypertensive rat (SHR). Circ Res 34:143–153

    PubMed  Google Scholar 

  • O’Sullivan C, Duggan J, Lyons S, Thornton J, Lee M, O’Brien E (2003) Hypertensive target-organ damage in the very elderly. Hypertension 42:130–135

    Article  PubMed  Google Scholar 

  • Parnetti L, Mari D, Mecocci P, Senin U (1994) Pathogenetic mechanisms in vascular dementia. Int J Clin Lab Res 24:15–22

    CAS  PubMed  Google Scholar 

  • Pascariu M, Bendayan M, Ghitescu L (2004) Correlated endothelial caveolin overexpression and increased transcytosis in experimental diabetes. J Histochem Cytochem 52:65–76

    CAS  PubMed  Google Scholar 

  • Peng N, Meng QC, King K, Oparil S, Wyss JM (1995) Acute hypertension increases norepinephrine release in the anterior hypothalamic area. Hypertension 25:828–833

    CAS  PubMed  Google Scholar 

  • Peng N, Clark JT, Wei CC, Wyss JM (2003) Estrogen depletion increases blood pressure and hypothalamic norepinephrine in middle-aged spontaneously hypertensive rats. Hypertension 41:1164–1167

    Article  CAS  PubMed  Google Scholar 

  • Reese TS, Karnovsky MJ (1967) Fine structural localization of blood-brain barrier to exogenous peroxidase. J Cell Biol 34:207–217

    Article  CAS  PubMed  Google Scholar 

  • Roman GC (1996) From UBOs to Binswanger’s disease: impact of magnetic resonance imaging on vascular dementia research. Stroke 27:1269–1273

    CAS  PubMed  Google Scholar 

  • Sabbatini M, Strocchi P, Vitaioli L, Amenta F (2000) The hippocampus in spontaneously hypertensive rats: a quantitative microanatomical study. Neuroscience 100:251–258

    Article  CAS  PubMed  Google Scholar 

  • Sabbatini M, Catalani A, Consoli C, Marletta N, Tomassoni D, Avola R (2002) The hippocampus in spontaneously hypertensive rats: an animal model of vascular dementia. Mech Ageing Dev 123:547–559

    Article  CAS  PubMed  Google Scholar 

  • Simionescu M, Simionescu N, Palade GE (1974) Morphometric data on the endothelium of blood capillaries. J Cell Biol 60:128–152

    Article  CAS  PubMed  Google Scholar 

  • Stan R-V (2002) Structure and function of endothelial caveolae. Microsc Res Tech 57:350–364

    Article  PubMed  Google Scholar 

  • Thurauf N, Dermietzel R, Kalweit P (1983) Surface charges associated with fenestrated brain capillaries. I. In vitro labeling of anionic sites. J Ultrastruct Res 84:103–110

    CAS  PubMed  Google Scholar 

  • Ueno M, Akiguchi I, Hosokawa M, Kotani H, Kanenishi K, Sakamoto H (2000) Blood-brain barrier permeability in the periventricular areas of the normal mouse brain. Acta Neuropathol 99:385–392

    Article  CAS  PubMed  Google Scholar 

  • Ueno M, Sakamoto H, Kanenishi K, Onodera M, Akiguchi I, Hosokawa M (2001a) Ultrastructural and permeability features of microvessels in the hippocampus, cerebellum and pons of senescence-accelerated mice (SAM). Neurobiol Aging 22:469–478

    Article  CAS  PubMed  Google Scholar 

  • Ueno M, Sakamoto H, Kanenishi K, Onodera M, Akiguchi I, Hosokawa M (2001b) Ultrastructural and permeability features of microvessels in the periventricular area of senescence-accelerated mice (SAM). Microsc Res Tech 53:232–238

    Article  CAS  PubMed  Google Scholar 

  • Ueno M, Tomimoto H, Akiguchi I, Wakita H, Sakamoto H (2002) Blood-brain barrier disruption in white matter lesions in a rat model of chronic cerebral hypoperfusion. J Cereb Blood Flow Metab 22:97–104

    Article  PubMed  Google Scholar 

  • Ueno M, Sakamoto H, Tomimoto H, Akiguchi I, Onodera M, Huang CL, Kanenishi K (2004) Blood-brain barrier is impaired in the hippocampus of young adult spontaneously hypertensive rats. Acta Neuropathol 107:532-538

    Article  PubMed  Google Scholar 

  • Vorbrodt AW, Lossinsky AS, Dobrogowska DH, Wisniewski HM (1986) Distribution of anionic sites and glycoconjugates on the endothelial surfaces of the developing blood-brain barrier. Dev Brain Res 29:69–79

    Article  CAS  Google Scholar 

  • Wallin A, Blennow K (1993) Heterogeneity of vascular dementia: mechanisms and subgroups. J Geriatr Psychiatr Neurol 6:177–188

    CAS  Google Scholar 

  • Wardlaw JM, Sandercock PAG, Dennia MS, Starr J (2003) Is breakdown of the blood-brain barrier responsible for lacunar stroke, leukoaraiosis, and dementia? Stroke 34:806–812

    Article  CAS  Google Scholar 

  • Yamori Y, Okamoto K (1969) Hypothalamic tonic regulation of blood pressure in spontaneously hypertensive rats. Jpn Circ J 33:509–519

    CAS  PubMed  Google Scholar 

  • Yamori Y, Horie R, Sato M, Sasagawa S, Okamoto K (1975) Experimental studies on the pathogenesis and prophylaxis of stroke-prone spontaneously hypertensive rats (SHR). 1. Quantitative estimation of cerebrovascular permeability. Jpn Circ J 39:611–615

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a Budget from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The authors thank Ms C. Ishikawa and Ms Y. Fujiwara for technical and editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Ueno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ueno, M., Sakamoto, H., Liao, YJ. et al. Blood-brain barrier disruption in the hypothalamus of young adult spontaneously hypertensive rats. Histochem Cell Biol 122, 131–137 (2004). https://doi.org/10.1007/s00418-004-0684-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-004-0684-y

Keywords

Navigation