Skip to main content

Matched Filtering and the Ecology of Vision in Insects

  • Chapter
  • First Online:
The Ecology of Animal Senses

Abstract

In the words of Wehner (J Comp Physiol A 161:511–531, 1987) who first coined the term “matched filter” in the context of sensory systems, matched filters “severely limit the amount of information the brain can pick up from the outside world, but they free the brain from the need to perform more intricate computations to extract the information finally needed for fulfilling a particular task”. In other words, by matching the properties of neurons, circuits and sensory structures to the characteristics of the most crucial sensory stimuli that need to be detected, these stimuli can be rapidly and reliably extracted for further processing, thus drastically improving the efficiency of sensing. And by “severely limiting information picked up by the brain”, the energetic costs that would have been associated with coding superfluous information are effectively eliminated. Thus, “freeing the brain” not only frees it from the need to perform intricate computations, it also frees it from significant (and unnecessary) energetic costs. Not surprisingly, with their small eyes and brains and severely limited energy budgets, visual matched filtering is particularly well developed in small animals like insects. It is most obvious at the visual periphery, in the morphology and physiology of the compound eyes, but remarkable matched filters also occur at higher levels of visual processing. Using a number of case studies, I will show how visual matched filters have evolved for all aspects of insect life, including the detection and pursuit of mates and prey and for locomotion and navigation in the natural habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atick JJ (1992) Could information theory provide an ecological theory of sensory processing? Network 3:213–251

    Article  Google Scholar 

  • Atick JJ, Redlich AN (1992) What does the retina know about natural scenes? Neural Comput 4:196–210

    Article  Google Scholar 

  • Autrum H (1950) Die Belichtungspotentiale und das Sehen der Insekten (Untersuchungen an Calliphora und Dixippus). Z Vergl Physiol 32:176–227

    Article  CAS  Google Scholar 

  • Bech M, Homberg U, Pfeiffer K (2014) Receptive fields of locust brain neurons are matched to polarization patterns of the sky. Curr Biol 24:2124–2129

    Article  CAS  PubMed  Google Scholar 

  • Burton BG, Tatler BW, Laughlin SB (2001) Variations in photoreceptor response dynamics across the fly retina. J Neurophysiol 86:950–960

    CAS  PubMed  Google Scholar 

  • Byrne M, Dacke M, Nordström P, Scholtz C, Warrant EJ (2003) Visual cues used by ball-rolling dung beetles for orientation. J Comp Physiol A 189:411–418

    Article  Google Scholar 

  • Chittka L, Niven JE (2009) Are bigger brains better? Curr Biol 19:R995–R1008

    Article  CAS  PubMed  Google Scholar 

  • Cronin TW, Johnsen S, Marshall NJ, Warrant EJ (2014) Visual ecology. Princeton University Press, Princeton

    Google Scholar 

  • Cuttle MF, Hevers W, Laughlin SB, Hardie RC (1995) Diurnal modulation of photoreceptor potassium conductance in the locust. J Comp Physiol A 176:307–316

    Article  CAS  Google Scholar 

  • Dacke M, Baird E, Byrne M, Scholtz C, Warrant EJ (2013) Dung beetles use the milky way for orientation. Curr Biol 23:298–300

    Article  CAS  PubMed  Google Scholar 

  • Dahmen H (1991) Eye specialisations in waterstriders: an adaptation to life in a flat world. J Comp Physiol A 169:623–632

    Article  Google Scholar 

  • de Souza JM, Ventura DF (1989) Comparative of temporal summation and response form in hymenopåteran photoreceptors. J Comp Physiol A 165:237–245

    Article  PubMed  Google Scholar 

  • Dong DW, Atick JJ (1995) Statistics of natural time-varying images. Netw Comput Neur Syst 6:345–358

    Article  Google Scholar 

  • Eberhard WG (2007) Miniaturized orb-weaving spiders: behavioural precision is not limited by small size. Proc Roy Soc B 274:2203–2209

    Article  Google Scholar 

  • Field DJ (1987) Relations between the statistics of natural images and the response properties of cortical cells. J Opt Soc Am A 4:2379–2394

    Article  CAS  PubMed  Google Scholar 

  • Field DJ (1999) Wavelets, vision and the statistics of natural scenes. Phil Trans R Soc A 357:2527–2542

    Article  Google Scholar 

  • Frederiksen R, Wcislo WT, Warrant EJ (2008) Visual reliability and information rate in the retina of a nocturnal bee. Curr Biol 18:349–353

    Article  CAS  PubMed  Google Scholar 

  • Gibson JJ (1950) The perception of the visual world. Houghton Mifflin, Boston

    Google Scholar 

  • Gilbert C, Strausfeld NJ (1991) The functional organization of male-specific visual neurons in flies. J Comp Physiol A 169:395–411

    Article  CAS  PubMed  Google Scholar 

  • Gronenberg W, Strausfeld NJ (1991) Descending pathways connecting the male-specific visual system of flies to the neck and flight motor. J Comp Physiol A 169:413–426

    Article  CAS  PubMed  Google Scholar 

  • Hausen K (1982a) Motion sensitive interneurons in the optomotor system of the fly. 1. The horizontal cells – structure and signals. Biol Cybern 45:143–156

    Article  Google Scholar 

  • Hausen K (1982b) Motion sensitive interneurons in the optomotor system of the fly. 2. The horizontal cells – receptive-field organization and response characteristics. Biol Cybern 46:67–79

    Article  Google Scholar 

  • Heinze S, Homberg U (2007) Maplike representation of celestial E-vector orientations in the brain of an insect. Science 315:995–997

    Article  CAS  PubMed  Google Scholar 

  • Heinze S, Reppert SM (2011) Sun compass integration of skylight cues in migratory monarch butterflies. Neuron 69:345–358

    Article  CAS  PubMed  Google Scholar 

  • Homberg U, el Jundi B (2014) Polarization vision in arthropods. In: Werner JS, Chalupa LM (eds) The new visual neurosciences. MIT Press, Cambridge, MA, pp 1207–1218

    Google Scholar 

  • Hornstein EP, O'Carroll DC, Anderson JC, Laughlin SB (2000) Sexual dimorphism matches photoreceptor performance to behavioural requirements. Proc R Soc Lond B 267:2111–2117

    Article  CAS  Google Scholar 

  • Horridge GA (1978) The separation of visual axes in apposition compound eyes. Phil Trans Roy Soc Lond B 285:1–59

    Article  CAS  Google Scholar 

  • Howard J, Blakeslee B, Laughlin SB (1984) The dynamics of phototransduction in insects: a comparative study. J Comp Physiol A 154:707–718

    Article  Google Scholar 

  • Hughes A (1977) The topography of vision in mammals of contrasting life style: comparative optics and retinal organisation. In: Crescitelli F (ed) Handbook of sensory physiology, vol VII/5. Springer, Berlin, pp 613–756

    Google Scholar 

  • Junger W, Varju D (1990) Drift compensation and its sensory basis in waterstriders (Gerris paludum F.). J Comp Physiol A 167:441–446

    Article  Google Scholar 

  • Krapp HG (2014) Sensory integration: neuronal filters for polarized light patterns. Curr Biol 24:R840–R841

    Article  CAS  PubMed  Google Scholar 

  • Krapp HG, Hengstenberg R (1996) Estimation of self-motion by optic flow processing in single visual neurons. Nature 384:463–466

    Article  CAS  PubMed  Google Scholar 

  • Krapp HG, Hengstenberg B, Hengstenberg R (1998) Dendritic structure and receptive field organization of optic flow processing interneurons in the fly. J Neurophysiol 79:1902–1917

    CAS  PubMed  Google Scholar 

  • Land MF (1981) Optics and vision in invertebrates. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6B. Springer, Berlin, pp 471–592

    Google Scholar 

  • Land MF (1989) Variations in the structure and design of compound eyes. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Berlin, pp 90–111

    Chapter  Google Scholar 

  • Land MF, Collett TS (1974) Chasing behaviour of houseflies (Fannia canicularis): a description and analysis. J Comp Physiol 89:331–357

    Article  Google Scholar 

  • Land MF, Eckert H (1985) Maps of the acute zones of fly eyes. J Comp Physiol A 156:525–538

    Article  Google Scholar 

  • Land MF, Nilsson DE (2012) Animal eyes. Oxford University Press, Oxford

    Book  Google Scholar 

  • Laughlin S (1981) A simple coding procedure enhances a neuron’s information capacity. Z Naturforsch 36C:910–912

    Google Scholar 

  • Laughlin SB (1996) Matched filtering by a photoreceptor membrane. Vision Res 36:1529–1541

    Article  CAS  PubMed  Google Scholar 

  • Laughlin SB, Weckström M (1993) Fast and slow photoreceptors – a comparative study of the functional diversity of coding and conductances in the Diptera. J Comp Physiol A 172:593–609

    Article  Google Scholar 

  • Laughlin SB, de Ruyter van Steveninck RR, Anderson JC (1998) The metabolic cost of neural information. Nat Neurosci 1:36–41

    Article  CAS  PubMed  Google Scholar 

  • Müller M, Wehner R (1988) Path integration in desert ants, Cataglyphis fortis. Proc Natl Acad Sci U S A 85:5287–5290

    Article  PubMed  PubMed Central  Google Scholar 

  • Narendra A, Alkaladi A, Raderschall CA, Robson SKA, Ribi WA (2013) Compound eye adaptations for diurnal and nocturnal lifestyle in the intertidal ant, Polyrhachis sokolova. PLoS One 8(10):e76015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson DE (1989) Optics and evolution of the compound eye. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Berlin, pp 30–73

    Chapter  Google Scholar 

  • Nilsson DE, Warrant EJ, Johnsen S, Hanlon R, Shashar N (2012) A unique advantage for giant eyes in giant squid. Curr Biol 22:683–688

    Article  CAS  PubMed  Google Scholar 

  • Niven JE, Farris SM (2012) Miniaturization of nervous systems and neurons. Curr Biol 22:R323–R329

    Article  CAS  PubMed  Google Scholar 

  • Niven JE, Laughlin SB (2008) Energy limitations as a selective pressure on the evolution of sensory systems. J Exp Biol 211:1792–1804

    Article  CAS  PubMed  Google Scholar 

  • Niven JE, Anderson JC, Laughlin SB (2007) Fly photoreceptors demonstrate energy-information trade-offs in neural coding. PLoS Biol 5(4):e91

    Article  Google Scholar 

  • Nordström K, O’Carroll DC (2009) Feature detection and the hypercomplex property in insects. TINS 32:383–391

    PubMed  Google Scholar 

  • O’Carroll DC (1993) Feature-detecting neurons in dragonflies. Nature 362:541–543

    Article  Google Scholar 

  • Okawa H, Sampath AP, Laughlin SB, Fain GL (2008) ATP consumption by mammalian rod photoreceptors in darkness and in light. Curr Biol 18:1917–1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olberg RM (1981) Object- and self-movement detectors in the ventral cord of the dragonfly. J Comp Physiol A 141:327–334

    Article  Google Scholar 

  • Olberg RM (1986) Identified target-selective visual interneurons descending from the dragonfly brain. J Comp Physiol A 159:827–840

    Article  Google Scholar 

  • Perez SM, Taylor OR, Jander R (1997) A sun compass in monarch butterflies. Nature 387:29

    Article  CAS  Google Scholar 

  • Pfeiffer K, Homberg U (2007) Coding of azimuthal directions via time-compensated combination of celestial compass cues. Curr Biol 17:960–965

    Article  CAS  PubMed  Google Scholar 

  • Rutowski RL, Warrant EJ (2002) Visual field structure in a butterfly Asterocampa leilia (Lepidoptera, Nymphalidae): dimensions and regional variation in acuity. J Comp Physiol A 188:1–12

    Article  Google Scholar 

  • Salmela I, Immonen EV, Frolov R, Krause S, Krause Y, Vähäsöyrinki M, Weckström M (2012) Cellular elements for seeing in the dark: voltage-dependent conductances in cockroach photoreceptors. BMC Neurosci 13:93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwind R (1978) Visual system of Notonecta glauca: a neuron sensitive to movement in the binocular visual field. J Comp Physiol 123:315–328

    Article  Google Scholar 

  • Schwind R (1980) Geometrical optics of the Notonecta eye: adaptations to optical environment and way of life. J Comp Physiol 140:59–68

    Article  Google Scholar 

  • Sherk TE (1978) Development of the compound eyes of dragonflies (Odonata). III Adult compound eyes. J Exp Zool 203:61–80

    Article  CAS  PubMed  Google Scholar 

  • Smolka J, Hemmi JM (2009) Topography of vision and behavior. J Exp Biol 212:3522–3532

    Article  PubMed  Google Scholar 

  • Snyder AW (1977) Acuity of compound eyes: physical limitations and design. J Comp Physiol 116:161–182

    Article  Google Scholar 

  • Snyder AW, Laughlin SB (1975) Dichroism and absorption by photoreceptors. J Comp Physiol 100:101–116

    Article  Google Scholar 

  • Srinivasan MV, Bernard GD (1975) The effect of motion on visual acuity of the compound eye: a theoretical analysis. Vision Res 15:515–525

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan MV, Laughlin SB, Dubs A (1982) Predictive coding: a fresh view of inhibition in the retina. Proc R Soc Lond B 216:427–459

    Article  CAS  PubMed  Google Scholar 

  • Stavenga DG, Kuiper JW (1977) Insect pupil mechanisms. I. On the pigment migration in the retinula cells of Hymenoptera (suborder Apocrita). J Comp Physiol 113:55–72

    Article  Google Scholar 

  • Strausfeld NJ (1991) Structural organization of male-specific visual neurons in calliphorid optic lobe. J Comp Physiol A 169:379–393

    Article  CAS  PubMed  Google Scholar 

  • Ugolini A, Fantini T, Innocenti R (2003) Orientation at night: an innate moon compass in sandhoppers (Amphipoda: Talitridae). Proc Roy Soc Lond B 270:279–281

    Article  Google Scholar 

  • van Hateren JH (1992) Real and optimal neural images in early vision. Nature 360:68–70

    Article  PubMed  Google Scholar 

  • van Hateren JH (1993) Spatiotemporal contrast sensitivity of early vision. Vision Res 33:257–267

    Article  PubMed  Google Scholar 

  • Walls GL (1942) The vertebrate eye and its adaptive radiation. The Cranbrook Press, Bloomfield Hills

    Book  Google Scholar 

  • Warrant EJ (1999) Seeing better at night: life style, eye design and the optimum strategy of spatial and temporal summation. Vision Res 39:1611–1630

    Article  CAS  PubMed  Google Scholar 

  • Warrant EJ (2001) The design of compound eyes and the illumination of natural habitats. In: Barth FG, Schmid A (eds) Ecology of sensing. Springer, Berlin, pp 187–213

    Chapter  Google Scholar 

  • Weckström M, Laughlin SB (1995) Visual ecology and voltage-gated ion channels in insect photoreceptors. Trends Neurosci 18:17–21

    Article  PubMed  Google Scholar 

  • Wehner R (1981) Spatial vision in arthropods. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6C. Springer, Berlin, pp 287–616

    Google Scholar 

  • Wehner R (1984) Astronavigation in insects. Annu Rev Entom 29:277–298

    Article  Google Scholar 

  • Wehner R (1987) “Matched filters” – neural models of the external world. J Comp Physiol A 161:511–531

    Article  Google Scholar 

  • Wehner R, Labhart T (2006) Polarisation vision. In: Warrant EJ, Nilsson DE (eds) Invertebrate vision. Cambridge University Press, Cambridge, pp 291–348

    Google Scholar 

  • Williams CB (1965) Insect migration. Collins, London

    Google Scholar 

  • Williams DS (1983) Changes of photoreceptor performance associated with the daily turnover of photoreceptor membrane in locusts. J Comp Physiol 150:509–519

    Article  Google Scholar 

  • Zeil J (1983a) Sexual dimorphism in the visual system of flies: the compound eyes and neural superposition in Bibionidae (Diptera). J Comp Physiol 150:379–393

    Article  Google Scholar 

  • Zeil J (1983b) Sexual dimorphism in the visual system of flies: the free flight behaviour of male Bibionidae (Diptera). J Comp Physiol 150:395–412

    Article  Google Scholar 

  • Zeil J (2012) Visual homing: an insect perspective. Curr Opin Neurobiol 22:285–293

    Article  CAS  PubMed  Google Scholar 

  • Zeil J, Hemmi JM (2006) The visual ecology of fiddler crabs. J Comp Physiol A 192:1–25

    Article  Google Scholar 

  • Zeil J, Nalbach G, Nalbach H-O (1986) Eyes, eye stalks and the visual world of semi-terrestrial crabs. J Comp Physiol 159:801–811

    Article  Google Scholar 

  • Zeil J, Nalbach G, Nalbach H-O (1988) Spatial vision in a flat world: optical and neural adaptations in arthropods. In: Singh RH, Strausfeld N (eds) Neurobiology of sensory systems. Plenum Press, New York, pp 123–137

    Google Scholar 

Download references

Acknowledgements

This review was written during 2015 while I was a Visiting Fellow at the Research School of Biology at the Australian National University in Canberra, Australia. I am deeply indebted to Prof. Jochen Zeil who generously hosted me in his research group and provided critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Warrant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Warrant, E.J. (2016). Matched Filtering and the Ecology of Vision in Insects. In: von der Emde, G., Warrant, E. (eds) The Ecology of Animal Senses. Springer, Cham. https://doi.org/10.1007/978-3-319-25492-0_6

Download citation

Publish with us

Policies and ethics