Skip to main content
Log in

Drift compensation and its sensory basis in waterstriders (Gerris paludum F.)

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

Watestriders (Gerris paludum F.), displaced by flowing water or wind, compensate for this by periodic jumps against the direction of drift so that they keep their average position — relative to the river bank, for instance — constant over long periods of time. To identify the cues used by the animals to compensate for drift, they were kept on an artificial stream with visual patterns along one or both sides. The velocity of the water flow and the pattern motion were varied. It is not possible to induce compensatory jumps in darkness by water or air current alone. Visual cues are indispensable for the reaction. The product of jump amplitude and jump frequency equals the drift velocity on average. The jump amplitudes are more or less independent of the flow velocity while the jump frequency is adjusted to it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bedau K (1911) Das Facettenauge der Wasserwanzen. Z Wiss Zool 97:417–456

    Google Scholar 

  • Borst A, Bahde S (1986) What kind of movement detector is triggering the landing response of the housefly? Biol Cybern 55:58–69

    Google Scholar 

  • Buchner E (1976) Elementary movement detectors in an insect visual system. Biol Cybern 24:85–101

    Google Scholar 

  • Cartwright BA, Collett TS (1982) How honey bees use landmark to guide their return to a food source. Nature 295:560–564

    Google Scholar 

  • Cartwright BA, Collett TS (1983) Landmark learning in bees. J Comp Physiol 151:521–543

    Google Scholar 

  • Collett TS (1980) Some operating rules for the optomotor system of a hoverfly during voluntary flight. J Comp Physiol 138:271–282

    Google Scholar 

  • Collett TS, Land MF (1975) Visual control of flight behaviour in the hoverfly, Syritta pipiens. J Comp Physiol 99:1–66

    Google Scholar 

  • Dahmen HJ, Junger W (1988) Adaptation to the watersurface: Structural and functional specialization of the gerrid eye. In: Elsner N, Barth FG (eds) Sense organs. Interfaces between environment and behaviour. Thieme, Stuttgart New York, p 233

    Google Scholar 

  • Görner P (1973) Beispiele einer Orientierung ohne richtende Außenreize. Fortschr Zool 21:20–45

    Google Scholar 

  • Hamann B, Langer H (1980) Sehfarbstoffe im Auge des Wasserläufers Gerris lacustris. Verh Dtsch Zool Ges 73:337

    Google Scholar 

  • Hart DD (1987) Feeding territoriality in aquatic insects: cost-benefit models and experimental tests. Am Zool 27:371–386

    Google Scholar 

  • Hausen K (1982) Motion sensitive interneurons in the optomotor system of the fly. 2. The horizontal cells: receptive field organization and response characteristics. Biol Cybern 46:67–79

    Google Scholar 

  • Hausen K, Egelhaaf M (1989) Neural mechanism of visual course control in insects. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Berlin Heidelberg New York, pp 391–424

    Google Scholar 

  • Heran H, Lindauer M (1963) Windkompensation und Seitenwindkorrektur der Bienen bei Flug über Wasser. Z Vergl Physiol 47:39–55

    Google Scholar 

  • Jamieson GS, Scudder GGE (1979) Predation in Gerris (Hemiptera): Reactive distances and locomotion rates. Oecologia (Berlin) 44:13–20

    Google Scholar 

  • Jander R, Horn E, Hoffmann M (1970) Die Bedeutung der Gelenkrezeptoren in den Beinen für die Geotaxis der höheren Insekten (Pterygota). Z Vergl Physiol 66:326–342

    Google Scholar 

  • Junger W, Dahmen HJ (1986) Visually induced drift compensation in waterstriders. Verh Dtsch Zool Ges 79:217

    Google Scholar 

  • Kirchner WH, Srinivasan MV (1988) Estimation of distance using motion parallax in free-flying honeybees. In: Elsner N, Barth FG (eds) Sense organs: Interfaces between environment and behaviour. Thieme, Stuttgart New York, p 231

    Google Scholar 

  • Koenderink JJ (1986) Optic flow. Vision Res 26:161–180

    Google Scholar 

  • Koenderink JJ, Doorn AV van (1987) Facts on optic flow. Biol Cybern 56:247–254

    Google Scholar 

  • Longuet-Higgins HC, Prazdny K (1980) The interpretation of moving retinal images. Proc R Soc Lond (B) 208:385–387

    Google Scholar 

  • Mittelstaedt H, Mittelstaedt-Burger ML (1973) Mechanismen der Orientierung ohne richtende Außenreize. Fortschr Zool 21:46–58

    Google Scholar 

  • Murphey RK (1971) Sensory aspects of the control of orientation to prey by the waterstrider, Gerris remigis. Z Vergl Physiol 72:168–185

    Google Scholar 

  • Precht W (1978) Neuronal operations in the vestibular system. In: Braitenberg V (ed) Studies on brain function, vol. 2. Springer, Berlin Heidelberg New York, pp 203–210

    Google Scholar 

  • Preiss R, Kramer E (1983) Stabilization of altitude and speed in tethered flying gipsy moth males: Influence of (+) and (-) disparlure. Physiol Entomol 8:55–68

    Google Scholar 

  • Rensing L (1962) Beiträge zur vergleichenden Morphologie, Physiologie und Ethologie der Wasserläufer (Gerriden). Zool Beiträge 7:447–485

    Google Scholar 

  • Rubenstein DI (1984) Resource acquisition and alternative mating strategies in water striders. Am Zool 24:345–353

    Google Scholar 

  • Schneider L, Langer H (1969) Die Struktur des Rhabdoms im Doppelauge des Wasserläufers Gerris lacustris. Z Zellforsch 99:538–559

    Google Scholar 

  • Shen L (1989) Neural integration by short term potentiation. Biol Cybern 62:319–325

    Google Scholar 

  • Wehner R (1981) Spatial vision in arthropods. In: Autrum H (ed) Vision in invertebrates (Handbook of sensory physiology), Vol. VII/6C. Springer, Berlin Heidelberg New York, pp 287–616

    Google Scholar 

  • Wilson DS, Leighton D, Leighton M (1978) Interference competition in a tropical ripple bug (Hemiptera: Veliidae). Biotropica 10:302–306

    Google Scholar 

  • Wiese K (1974) The mechanoreceptive system of prey localization in Notonecta. J Comp Physiol 92:317–325

    Google Scholar 

  • Zanker JM, Collett TS (1985) The optomotor system on the ground: on the absence of visual control of speed in walking ladybirds. J Comp Physiol A 156:395–402

    Google Scholar 

  • Zeil J, Wittmann D (1989) Visually controlled station-keeping by hovering guard bees of Trigona (Tetragonisca) angustula (Apidae, Meliponinae). J Comp Physiol A 165:711–718

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Junger, W., Varjú, D. Drift compensation and its sensory basis in waterstriders (Gerris paludum F.). J Comp Physiol A 167, 441–446 (1990). https://doi.org/10.1007/BF00192580

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00192580

Key words

Navigation