Skip to main content

Moniliophthora roreri Genome and Transcriptome

  • Chapter
  • First Online:
Cacao Diseases

Abstract

Frosty pod rot disease of cacao is one of the most destructive diseases of cacao and at this time is limited to regions in South America and Central America. Frosty pod rot is caused by a fungal pathogen Moniliophthora roreri, a basidiomycete that is closely related to another cacao pathogen that causes the witches’ broom disease, Moniliophthora perniciosa. Combined these two pathogens are the leading causes of cacao yield losses in the Americas. Both pathogens are unique in that they have long biotrophic phases after infection as the disease progresses. In this chapter, genomic and transcriptomic sequencing will be used to corroborate and hypothesize various mechanisms of the molecular interactions of the host and pathogen during the disease interaction of frosty pod rot. The systematic timing of fungal and plant gene regulation in this pathosystem appears to be a key component of this plant disease resulting in specific molecular and cellular interactions. When this coordinated gene regulation is disrupted, for example, in a resistant plant variety, the disease interaction fails.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aimanianda, V., Bayry, J., Bozza, S., Kniemeyer, O., Perruccio, K., Elluru, S. R., Clavaud, C., Paris, S., Brakhage, A. A., Kaveri, S. V., Romani, L., & Latge, J. P. (2009). Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature, 460(7259), 1117–1121.

    Article  PubMed  CAS  Google Scholar 

  • Aime, M. C., & Phillips-Mora, W. (2005). The causal agents of witches’ broom and frosty pod rot of cacao (chocolate, Theobroma cacao) form a new lineage of Marasmiaceae. Mycologia, 97 (5), 1012–1022.

    Article  PubMed  CAS  Google Scholar 

  • Ali, S. S., Melnick, R. L., Crozier, J., Phillips-Mora, W., Strem, M. D., Shao, J., Zhang, D., Sicher, R., Meinhardt, L., & Bailey, B. A. (2014). Successful pod infections by Moniliophthora roreri result in differential Theobroma cacao gene expression depending on the clone’s level of tolerance. Molecular Plant Pathology, 15(7), 698–710.

    Article  PubMed  CAS  Google Scholar 

  • Ali, S. S., Shao, J., Strem, M. D., Phillips-Mora, W., Zhang, D., Meinhardt, L., & Bailey, B. (2015). Combination of RNAseq and SNP nanofluidic array reveals the center of genetic diversity of cacao pathogen Moniliophthora roreri in the upper Magdalena Valley of Colombia and its clonality. Frontiers in Microbiology, 6, 850.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bailey, B. A., Crozier, J., Sicher, R. C., Strem, M. D., Melnick, R., Carazzolle, M. F., Costa, G. G. L., Pereira, G. A. G., Zhang, D. P., Maximova, S., Guiltinan, M., & Meinhardt, L. (2013). Dynamic changes in pod and fungal physiology associated with the shift from biotrophy to necrotrophy during the infection of Theobroma cacao by Moniliophthora roreri. Physiological and Molecular Plant Pathology, 81, 84–96.

    Article  CAS  Google Scholar 

  • Bailey, B. A., Melnick, R. L., Strem, M. D., Crozier, J., Shao, J., Sicher, R., Phillips-Mora, W., Ali, S. S., Zhang, D., & Meinhardt, L. (2014). Differential gene expression by Moniliophthora roreri while overcoming cacao tolerance in the field. Molecular Plant Pathology, 15(7), 711–729.

    Article  PubMed  CAS  Google Scholar 

  • Barsottini, M. R. D., de Oliveira, J. F., Adamoski, D., Teixeira, P. J. P. L., do Prado, P. F. V., Tiezzi, H. O., Sforca, M. L., Cassago, A., Portugal, R. V., de de Oliveira, P. S. L., Zeri, A. C. D., Dias, S. M. G., Pereira, G. A. G., & Ambrosio, A. L. B. (2013). Functional diversification of cerato-platanins in Moniliophthora perniciosa as seen by differential expression and protein function specialization. Molecular Plant-Microbe Interactions, 26(11), 1281–1293.

    Article  CAS  Google Scholar 

  • Bayry, J., Aimanianda, V., Guijarro, J. I., Sunde, M., & Latge, J. P. (2012). Hydrophobins – unique fungal proteins. PLoS Pathog, 8(5), e1002700.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bowman, S. M., & Free, S. J. (2006). The structure and synthesis of the fungal cell wall. Bioessays, 28(8), 799–808.

    Article  PubMed  Google Scholar 

  • Cabrera, O. G., Zaparoli, G., Medrano, F. J., Tiburcio, R. A., Lacerda, G. G., & Pereira, G. G. (2008). Functional and structural characterization of cerato-platanin proteins in Moniliophthora perniciosa, the cause of Witches’ Broom disease in cacao. Phytopathology, 98(6), S29.

    Google Scholar 

  • Calle, H., Cook, A. A., & Fernando, S. Y. (1982). A histological study of Witches' broom in cocoa, caused by Crinipellis perniciosa. Phytopathology, 72, 1479–1481.

    Article  Google Scholar 

  • Carmona-Gutierrez, D., Frohlich, K. U., Kroemer, G., & Madeo, F. (2010). Metacaspases are caspases. Doubt no more. Cell Death and Differentiation, 17(3), 377–378.

    Article  PubMed  CAS  Google Scholar 

  • Ceita, G. D., Macedo, J. N. A., Santos, T. B., Alemanno, L., Gesteira, A. D., Micheli, F., Mariano, A. C., Gramacho, K. P., Silva, D. D., Meinhardt, L., Mazzafera, P., Pereira, G. A. G., & Cascardo, J. C. D. (2007). Involvement of calcium oxalate degradation during programmed cell death in Theobroma cacao tissues triggered by the hemibiotrophic fungus Moniliophthora pemiciosa. Plant Science, 173(2), 106–117.

    Article  CAS  Google Scholar 

  • Chen, W., Lee, M. K., Jefcoate, C., Kim, S. C., Chen, F., & Yu, J. H. (2014). Fungal cytochrome p450 monooxygenases: Their distribution, structure, functions, family expansion, and evolutionary origin. Genome Biology and Evolution, 6(7), 1620–1634.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ciferri, R., & Parodi, E. (1933). Descrizione del fungo che causa la “Moniliasi” del cacao. Phytopathologische Zeitschrift-Journal of Phytopathology, 5, 539–542.

    Google Scholar 

  • Costa, G. G., Cabrera, O. G., Tiburcio, R. A., Medrano, F. J., Carazzolle, M. F., Thomazella, D. P., Schuster, S. C., Carlson, J. E., Guiltinan, M. J., Bailey, B. A., Mieczkowski, P., Pereira, G. A., & Meinhardt, L. W. (2012). The mitochondrial genome of Moniliophthora roreri, the frosty pod rot pathogen of cacao. Fungal Biology, 116(5), 551–562.

    Article  PubMed  CAS  Google Scholar 

  • Daskalov, A., Paoletti, M., Ness, F., & Saupe, S. J. (2012). Genomic clustering and homology between HET-S and the NWD2 STAND protein in various fungal genomes. PLos One, 7(4), e34854.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Davies, G. Glycoside hydrolase family 5. In CAZypedia. Accessed January 8, 2015, from http://www.cazypedia.org/

  • Davies, G., Juge, N., & Eijsink, V. Glycoside hydrolase family 18. In CAZypedia. Accessed January 8, 2015, from http://www.cazypedia.org/

  • de Oliveira, G. A. P., Pereira, E. G., Dias, C. V., Souza, T. L. F., Ferretti, G. D. S., Cordeiro, Y., Camillo, L. R., Cascardo, J., Almeida, F. C., Valente, A. P., & Silva, J. L. (2012). Moniliophthora perniciosa necrosis- and ethylene-inducing protein 2 (MpNep2) as a metastable dimer in solution: Structural and functional implications. PLos One, 7(9).

    Google Scholar 

  • Desrosiers, R., & Suárez, C. (1974). Monilia pod rot of cacao. London: Longman.

    Google Scholar 

  • do Rio, M. C. S., de Oliveira, B. V., de Tomazella, D. P. T., da Silva, J. A. F., & Pereira, G. A. G. (2008). Production of calcium oxalate crystals by the basidiomycete Moniliophthora perniciosa, the causal agent of Witches’ Broom disease of cacao. Current Microbiology, 56(4), 363–370.

    Article  PubMed  CAS  Google Scholar 

  • Durner, J., & Klessig, D. F. (1995). Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses. Proceedings of the National Academy of Sciences of the United States of America, 92(24), 11312–11316.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Eklöf, J., & Hehemann, J.-H. Glycoside hydrolase family 16. In CAZypedia. Accessed January 8, 2015, from http://www.cazypedia.org/

  • Evans, H. C. (1980). Pleomorphism in Crinipellis perniciosa, causal agent of Witches’ broom disease of cocoa. Transactions of the British Mycology Society, 74, 515–526.

    Article  Google Scholar 

  • Evans, H. C. (1981). Pod rot of cacao caused by Moniliophthora (Monilia) roreri. London: Commonwealth Agricultural Bureau.

    Google Scholar 

  • Evans, H. C. (1986). A re-assessment of Moniliophthora (Monilia) pod rot of cocoa. Cocoa Growers’ Bulletin, 37, 34–43.

    Google Scholar 

  • Evans, H. C., Holmes, K. A., Phillips, W., & Wilkinson, M. J. (2002). What's in a name: Crinipellis, the final resting place for the frosty pod rot pathogen of cocoa? Mycologist, 16, 148–152.

    Google Scholar 

  • Evans, H. C., Stalpers, J. A., Samson, R. A., & Benny, G. L. (1978). Taxonomy of Monilia-roreri, an important pathogen of Theobroma-cacao in South-America. Canadian Journal of Botany-Revue Canadienne De Botanique, 56(20), 2528–2532.

    Google Scholar 

  • Formighieri, E. F., Tiburcio, R. A., Armas, E. D., Medrano, F. J., Shimo, H., Carels, N., Goes-Neto, A., Cotomacci, C., Carazzolle, M. F., Sardinha-Pinto, N., Thomazella, D. P. T., Rincones, J., Digiampietri, L., Carraro, D. M., Azeredo-Espin, A. M., Reis, S. F., Deckmann, A. C., Gramacho, K., Goncalves, M. S., Neto, J. P. M., Barbosa, L. V., Meinhardt, L. W., Cascardo, J. C. M., & Pereira, G. A. G. (2008). The mitochondrial genome of the phytopathogenic basidiomycete Moniliophthora perniciosa is 109 kb in size and contains a stable integrated plasmid. Mycological Research, 112, 1136–1152.

    Article  PubMed  CAS  Google Scholar 

  • Fournier, E., & Giraud, T. (2008). Sympatric genetic differentiation of a generalist pathogenic fungus, Botrytis cinerea, on two different host plants, grapevine and bramble. Journal of Evolutionary Biology, 21(1), 122–132.

    PubMed  CAS  Google Scholar 

  • Frias, G. A., Purdy, L. H., & Schmidt, R. A. (1991). Infection biology of Crinipellis-perniciosa on vegetative flushes of cacao. Plant Disease, 75(6), 552–556.

    Article  Google Scholar 

  • Garcia, O., Macedo, J. A. N., Tiburcio, R., Zaparoli, G., Rincones, J., Bittencourt, L. M. C., Ceita, G. O., Micheli, F., Gesteira, A., Mariano, A. C., Schiavinato, M. A., Medrano, F. J., Meinhardt, L. W., Pereira, G. A. G., & Cascardo, J. C. M. (2007). Characterization of necrosis and ethylene-inducing proteins (NEP) in the basidiomycete Moniliophthora perniciosa, the causal agent of witches’ broom in Theobroma cacao. Mycological Research, 111, 443–455.

    Article  PubMed  CAS  Google Scholar 

  • Giraud, T., Refregier, G., Le Gac, M., de Vienne, D. M., & Hood, M. E. (2008). Speciation in fungi. Fungal Genetics and Biology, 45(6), 791–802.

    Article  PubMed  CAS  Google Scholar 

  • Hammel, K. E., Mozuch, M. D., Jensen, K. A., & Kersten, P. J. (1994). H2O2 recycling during oxidation of the arylglycerol beta-aryl ether lignin structure by lignin peroxidase and glyoxal oxidase. Biochemistry, 33(45), 13349–13354.

    Article  PubMed  CAS  Google Scholar 

  • Harper, D. B., Buswell, J. A., Kennedy, J. T., & Hamilton, J. T. (1990). Chloromethane, Methyl Donor in Veratryl Alcohol Biosynthesis in Phanerochaete chrysosporium and Other Lignin-Degrading Fungi. Applied and Environmental Microbiology, 56(11), 3450–3457.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Harper, D. B., & Hamilton, J. T. G. (1988). Biosynthesis of chloromethane in Phellinus-pomaceus. Journal of General Microbiology, 134, 2831–2839.

    CAS  Google Scholar 

  • Harper, D. B., Kennedy, J. T., & Hamilton, J. T. G. (1988). Chloromethane biosynthesis in poroid fungi. Phytochemistry, 27(10), 3147–3153.

    Article  CAS  Google Scholar 

  • Hernandez-Ortega, A., Ferreira, P., & Martinez, A. T. (2012). Fungal aryl-alcohol oxidase: A peroxide-producing flavoenzyme involved in lignin degradation. Applied Microbiology and Biotechnology, 93(4), 1395–1410.

    Article  PubMed  CAS  Google Scholar 

  • Hofrichter, M., Ullrich, R., Pecyna, M. J., Liers, C., & Lundell, T. (2010). New and classic families of secreted fungal heme peroxidases. Applied Microbiology and Biotechnology, 87(3), 871–897.

    Article  PubMed  CAS  Google Scholar 

  • Holliday, P. (1957). Spread of pod rot of cacao. Commonwealth Phytopathological News, 3(1), 12.

    Google Scholar 

  • Holliday, P. (1971). Some tropical plant pathogenic fungi of limited distribution. Review of Plant Pathology, 50, 337–348.

    Google Scholar 

  • Holliday, P. (1980). Fungus diseases of tropical crops. New York: Dover Inc.

    Google Scholar 

  • Idnurm, A., & Howlett, B. J. (2002). Isocitrate lyase is essential for pathogenicity of the fungus Leptosphaeria maculans to canola (Brassica napus). Eukaryotic Cell, 1(5), 719–724.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Iimura, Y., & Tatsumi, K. (1997). Isolation of mRNAs induced by a hazardous chemical in white-rot fungus, Coriolus versicolor, by differential display. FEBS Letters, 412(2), 370–374.

    Article  PubMed  CAS  Google Scholar 

  • Kersten, P. J. (1990). Glyoxal oxidase of Phanerochaete chrysosporium: its characterization and activation by lignin peroxidase. Proceedings of the National Academy of Sciences of the United States of America, 87(8), 2936–2940.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kim, S., Ahn, I. P., Rho, H. S., & Lee, Y. H. (2005). MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Molecular Microbiology, 57 (5), 1224–1237.

    Article  PubMed  CAS  Google Scholar 

  • Kleman-Leyer, K. M., Siika-Aho, M., Teeri, T. T., & Kirk, T. K. (1996). The cellulases Endoglucanase I and Cellobiohydrolase II of Trichoderma reesei act synergistically to solubilize native cotton cellulose but not to decrease its molecular size. Applied and Environmental Microbiology, 62(8), 2883–2887.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kothe, E. (2008). Sexual attraction: On the role of fungal pheromone/receptor systems (A review). Acta Microbiologica et Immunologica Hungarica, 55(2), 125–143.

    Article  PubMed  Google Scholar 

  • Lacourt, I., Duplessis, S., Abba, S., Bonfante, P., & Martin, F. (2002). Isolation and characterization of differentially expressed genes in the mycelium and fruit body of Tuber borchii. Applied and Environmental Microbiology, 68(9), 4574–4582.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lazan, H., Ng, S. Y., Goh, L. Y., & Ali, Z. M. (2004). Papaya beta-galactosidase/galactanase isoforms in differential cell wall hydrolysis and fruit softening during ripening. Plant Physiology and Biochemistry, 42(11), 847–853.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J. J., Sturrock, R., & Ekramoddoullah, A. K. (2010). The superfamily of thaumatin-like proteins: its origin, evolution, and expression towards biological function. Plant Cell Reports, 29(5), 419–436.

    Article  PubMed  CAS  Google Scholar 

  • Maddison, A. C., Macias, G., Moreira, C., Arias, R., & Neira, R. (1995). Cocoa production in Ecuador in relation to dry-season escape from pod rot caused by Crinipellis perniciosa and Moniliophthora roreri. Plant Pathology, 44(6), 982–998.

    Article  Google Scholar 

  • Meinhardt, L. W., Costa, G. G., Thomazella, D. P., Teixeira, P. J., Carazzolle, M. F., Schuster, S. C., Carlson, J. E., Guiltinan, M. J., Mieczkowski, P., Farmer, A., Ramaraj, T., Crozier, J., Davis, R. E., Shao, J., Melnick, R. L., Pereira, G. A., & Bailey, B. A. (2014). Genome and secretome analysis of the hemibiotrophic fungal pathogen, Moniliophthora roreri, which causes frosty pod rot disease of cacao: mechanisms of the biotrophic and necrotrophic phases. BMC Genomics, 15, 164.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Meinhardt, L. W., Rincones, J., Bailey, B. A., Aime, M. C., Griffith, G. W., Zhang, D., & Pereira, G. A. (2008). Moniliophthora perniciosa, the causal agent of witches’ broom disease of cacao: what’s new from this old foe? Molecular Plant Pathology, 9(5), 577–588.

    Article  PubMed  Google Scholar 

  • Mondego, J. M., Carazzolle, M. F., Costa, G. G., Formighieri, E. F., Parizzi, L. P., Rincones, J., Cotomacci, C., Carraro, D. M., Cunha, A. F., Carrer, H., Vidal, R. O., Estrela, R. C., Garcia, O., Thomazella, D. P., de Oliveira, B. V., Pires, A. B., Rio, M. C., Araujo, M. R., de Moraes, M. H., Castro, L. A., Gramacho, K. P., Goncalves, M. S., Neto, J. P., Neto, A. G., Barbosa, L. V., Guiltinan, M. J., Bailey, B. A., Meinhardt, L. W., Cascardo, J. C., & Pereira, G. A. (2008). A genome survey of Moniliophthora perniciosa gives new insights into Witches’ Broom Disease of cacao. BMC Genomics, 9, 548.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Morisseau, C. (2013). Role of epoxide hydrolases in lipid metabolism. Biochimie, 95(1), 91–95.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Paoletti, M., & Clave, C. (2007). The fungus-specific HET domain mediates programmed cell death in Podospora anserina. Eukaryotic Cell, 6(11), 2001–2008.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Perfect, S. E., & Green, J. R. (2001). Infection structures of biotrophic and hemibiotrophic fungal plant pathogens. Molecular Plant Pathology, 2(2), 101–108.

    Article  PubMed  CAS  Google Scholar 

  • Phillips-Mora, W. (2003).Origin, biogeography, genetic diversity and taxonomic affinities of the cacao (Theobroma cacao L.) fungus Moniliophthora roreri (Cif.) Evans et al. as determined using molecular, phytopathological and morpho-physiological evidence. In Department of Agricultural Botany, School of Plant Sciences, Vol. Doctor of Philosophy, 349. Reading: University of Reading.

    Google Scholar 

  • Phillips-Mora, W., Aime, M. C., & Wilkinson, M. J. (2007). Biodiversity and biogeography of the cacao (Theobroma cacao) pathogen Moniliophthora roreri in tropical America. Plant Pathology, 56(6), 911–922.

    Article  CAS  Google Scholar 

  • Phillips-Mora, W., Cawich, J., Garnett, W., & Aime, M. C. (2006a). First report of frosty pod rot (moniliasis disease) caused by Moniliophthora roreri on cacao in Belize. Plant Pathology, 55 (4), 584.

    Google Scholar 

  • Phillips-Mora, W., Coutino, A., Ortiz, C. F., Lopez, A. P., Hernandez, J., & Aime, M. C. (2006b). First report of Moniliophthora roreri causing frosty pod rot (moniliasis disease) of cocoa in Mexico. Plant Pathology, 55(4), 584.

    Google Scholar 

  • Pickersgill, R. Glycoside hydrolase family 28. In CAZypedia. Accessed January 8, 2015, from http://www.cazypedia.org/

  • Pinot, F., Caldas, E. D., Schmidt, C., Gilchrist, D. G., Jones, A. D., Winter, C. K., & Hammock, B. D. (1997). Characterization of epoxide hydrolase activity in Alternaria alternata f. sp. lycopersici. Possible involvement in toxin production. Mycopathologia, 140(1), 51–58.

    Article  PubMed  CAS  Google Scholar 

  • Popiel, D., Koczyk, G., Dawidziuk, A., Gromadzka, K., Blaszczyk, L., & Chelkowski, J. (2014). Zearalenone lactonohydrolase activity in Hypocreales and its evolutionary relationships within the epoxide hydrolase subset of a/b-hydrolases. BMC Microbiology, 14.

    Google Scholar 

  • Rabe, F., Ajami-Rashidi, Z., Doehlemann, G., Kahmann, R., & Djamei, A. (2013). Degradation of the plant defence hormone salicylic acid by the biotrophic fungus Ustilago maydis. Molecular Microbiology, 89(1), 179–188.

    Article  PubMed  CAS  Google Scholar 

  • Rondon Carvajal, J. G. (1993). Cocoa genetic resources in Colombia. In: Proceedings of the International Workshop on Conservation, Characterisation and Utilisation of Cocoa Genetics Resources in the 21st Century (pp. 371–378). UWI, Trinidad: CRU.

    Google Scholar 

  • Rorer, J. B. (1918). Enfermedadas y plagas del cacao en el Ecuador y mĂ©todos modernos aprpiados al cultivo del cacao. Quayaquil: Ecudaor AsociaciĂłn e Agricultores.

    Google Scholar 

  • Saupe, S. J., Clave, C., & Begueret, J. (2000). Vegetative incompatibility in filamentous fungi: Podospora and Neurospora provide some clues. Current Opinion in Microbiology, 3(6), 608–612.

    Article  PubMed  CAS  Google Scholar 

  • Saupe, S. J., & Daskalov, A. (2012). The [Het-s] prion, an amyloid fold as a cell death activation trigger. PLoS Pathogens, 8(5), e1002687.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schlumberger, S., Kristan, K. C., Ota, K., Frangez, R., Molgomicron, J., Sepcic, K., Benoit, E., & Macek, P. (2014). Permeability characteristics of cell-membrane pores induced by ostreolysin A/pleurotolysin B, binary pore-forming proteins from the oyster mushroom. FEBS Letters, 588 (1), 35–40.

    Article  PubMed  CAS  Google Scholar 

  • Song, G., Cheng, C., Li, Y., Shaw, N., Xiao, Z. C., & Liu, Z. J. (2014). Crystal structure of the N-terminal methyltransferase-like domain of anamorsin. Proteins, 82(6), 1066–1071.

    Article  PubMed  CAS  Google Scholar 

  • Suárez, C. (1971).Estudio del mecanismo de penetraciĂłn v del processo de infecciĂłn de Monilia roreri Cif. Par. en frutos de cacao (Theobroma cacao L.). In Facultad de Agronomia y Veterinaria, Vol. Ing. Agr., 59 Guayaquil, Ecuador: Universidad de Guayaquil.

    Google Scholar 

  • Talbot, N. J., Kershaw, M. J., Wakley, G. E., De Vries, O., Wessels, J., & Hamer, J. E. (1996). MPG1 encodes a fungal hydrophobin involved in surface interactions during infection-related development of Magnaporthe grisea. Plant Cell, 8(6), 985–999.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Teixeira, P. J., Thomazella, D. P., Reis, O., do Prado, P. F., do Rio, M. C., Fiorin, G. L., Jose, J., Costa, G. G., Negri, V. A., Mondego, J. M., Mieczkowski, P., & Pereira, G. A. (2014). High-resolution transcript profiling of the atypical biotrophic interaction between Theobroma cacao and the fungal pathogen Moniliophthora perniciosa. Plant Cell, 26(11), 4245–4269.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Teixeira, P. J. P. L., Thomazella, D. P. T., Vidal, R. O., do Prado, P. F. V., Reis, O., Baroni, R. M., Franco, S. F., Mieczkowski, P., Pereira, G. A. G., & Mondego, J. M. C. (2012). The fungal pathogen Moniliophthora perniciosa has genes similar to plant PR-1 that are highly expressed during its interaction with cacao. PLoS One, 7(9).

    Google Scholar 

  • ten Have, R., & Teunissen, P. J. (2001). Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chemical Reviews, 101(11), 3397–3413.

    Article  PubMed  CAS  Google Scholar 

  • Tiburcio, R. A., Costa, G. G. L., Carazzolle, M. F., Mondego, J. M. C., Schuster, S. C., Carlson, J. E., Guiltinan, M. J., Bailey, B. A., Mieczkowski, P., Meinhardt, L. W., & Pereira, G. A. G. (2010). genes acquired by horizontal transfer are potentially involved in the evolution of phytopathogenicity in Moniliophthora perniciosa and Moniliophthora roreri, two of the major pathogens of cacao. Journal of Molecular Evolution, 70(1), 85–97.

    Article  PubMed  CAS  Google Scholar 

  • Turnbull, C. J. & Hadley, P. (2015). International Cocoa Germplasm Database (ICGD). CRU Ltd/NYSE Liffe/University of Reading.

    Google Scholar 

  • van den Brink, J., & de Vries, R. P. (2011). Fungal enzymes sets for plant polysaccharide degradation. Applied Microbiology and Biotechnology, 91(6), 1477–1492.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • van Hall, C. J. (1914). Cocoa. London: Macmillan.

    Google Scholar 

  • Wessels, J., De Vries, O., Asgeirsdottir, S. A., & Schuren, F. (1991). Hydrophobin genes involved in formation of aerial hyphae and fruit bodies in Schizophyllum. Plant Cell, 3(8), 793–799.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Williams, S. Glycoside hydolase family 76. In CAZypedia. Accessed January 8, 2015, from http://www.cazypedia.org/

  • Wright, G. D., & Sutherland, A. D. (2007). New strategies for combating multidrug-resistant bacteria. Trends in Molecular Medicine, 13(6), 260–267.

    Article  PubMed  CAS  Google Scholar 

  • Yang, D. D., Francois, J. M., & de Billerbeck, G. M. (2012). Cloning, expression and characterization of an aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosporium strain BKM-F-1767. BMC Microbiology, 12, 126.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang, J., Siika-Aho, M., Tenkanen, M., & Viikari, L. (2011). The role of acetyl xylan esterase in the solubilization of xylan and enzymatic hydrolysis of wheat straw and giant reed. Biotechnology for Biofuels, 4(1), 60.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work was funded by USDA ARS. References to a company and/or product by the USDA are only for the purposes of information and do not imply approval or recommendation of the product to the exclusion of others that may also be suitable. USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyndel W. Meinhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Meinhardt, L.W., Bailey, B.A. (2016). Moniliophthora roreri Genome and Transcriptome. In: Bailey, B., Meinhardt, L. (eds) Cacao Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-24789-2_4

Download citation

Publish with us

Policies and ethics